Exposure to Nanoplastics and Co-Contaminants in Foods and Environment: Threats to Human Health
Abstract
1. Introduction
2. Environmental Behavior of Nanoplastics
2.1. Distribution and Transportation in Environments
2.2. Aggregation and Sedimentation
2.3. Sorption and Carrier Effect for Co-Contaminants
2.4. Degradation and Persistence in the Environment
3. Food Security and Human Health Risks of Nanoplastics and Co-Contaminants
3.1. Food Security Risks of Nanoplastics and Co-Contaminants
3.1.1. Nanoplastics in Foods
3.1.2. Exposure to Nanoplastics and Co-Contaminants in Foods
3.2. Human Health Risks of Nanoplastics and Co-Contaminants
3.2.1. Ingestion and Infusions
3.2.2. Inhalation and Dermal Exposure
3.2.3. Potential Health Risks
4. Research Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPs | microplastics |
NPs | nanoplastics |
MNPs | microplastics and nanoplastics |
PS | polystyrene |
PE | polyethylene |
PP | polypropylene |
PET | polyethylene terephthalate |
PVC | polyvinyl chloride |
PLA | polylactic acid |
PCL | poly(ε-caprolactone) |
PMMA | polymethylmethacrylate |
PPC | polypropylene carbonate |
POPs | persistent organic pollutants |
ENPs | environmental nanoparticles |
EDCs | endocrine-disrupting chemicals |
TD-PTR-MS | thermal-desorption proton-transfer-reaction mass spectrometry |
Py-GC/MS | pyrolysis gas chromatography−mass spectrometry |
SRS | stimulated Raman scattering |
SERS | surface-enhanced Raman spectroscopy |
NOM | natural organic matter |
UV | ultraviolet |
PAHs | polycyclic aromatic hydrocarbons |
PCBs | polychlorinated biphenyls |
PFOA | perfluorooctanoic acid |
TCS | triclosan |
CIP | ciprofloxacin |
BPA | bisphenol-A |
SDZ | sulfadiazine |
IBU | ibuprofen |
As | arsenic |
Cd | cadmium |
Cr | chromium |
Cu | copper |
Hg | mercury |
Pb | lead |
Zn | zinc |
MeHg | methylmercury |
DBDPE | decabromodiphenyl ethane |
PCB-18 | 2,2’,5-Trichlorobiphenyl |
DEHP | di(2-ethylhexyl) phthalate |
PBDE-47 | 2,2′,4,4′-tetrabromodiphenyl ether |
TDCIPP | tris (1,3-dichloro-2-propyl) phosphate |
DES | diethylstilbestrol |
APAP | acetaminophen |
TPT | triphenyltin |
DBP | dibutyl phthalate |
Phe | phenanthrene |
PYR | pyraclostrobin |
F-53B | 6:2 chlorinated polyfluorinated ether sulfonate |
PFOS | perfluorooctanesulfonic acid |
CSC | cigarette smoke condensate |
CIP | ciprofloxacin |
SMX | sulfamethoxazole |
PHO | phoxim |
HMC | heavy metal cocktail |
SOD | superoxide dismutase |
MDA | malondialdehyde |
T-AOC | total antioxidant capacity |
ROS | reactive oxygen species |
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassl, B.; Rowenczyk, L.; Tufenkji, N.; Feng, S.Y.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef]
- Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. Sci. Total Environ. 2024, 906, 167404. [Google Scholar] [CrossRef]
- Antonelli, P.; Fazion, J.P.; Marzoli, F.; Losasso, C.; Belluco, S. Routes of human exposure to Micro- and Nanoplastics through the food chain: What do literature reviews say? Eur. Food Res. Technol. 2024, 250, 2697–2709. [Google Scholar] [CrossRef]
- Ducoli, S.; Kalcíková, G.; Velimirovic, M.; Depero, L.E.; Federici, S. Production, characterization, and toxicology of environmentally relevant nanoplastics: A review. Environ. Chem. Lett. 2025, 23, 649–675. [Google Scholar] [CrossRef]
- Chen, M.Y.; Chen, F.; Li, Z.; Haider, M.R.; Wei, J.X.; Chen, G.L.; Wang, W.J.; Wang, J. Environmental risk assessment of microplastics and nanoplastics generated from biodegradable plastics in marine ecosystem. TrAC Trends Anal. Chem. 2023, 169, 117381. [Google Scholar] [CrossRef]
- Yong, C.Q.Y.; Valiyaveettil, S.; Tang, B.L. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public Health 2020, 17, 1509. [Google Scholar] [CrossRef]
- Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 2017, 7, 11452. [Google Scholar] [CrossRef] [PubMed]
- Duncan, T.V.; Khan, S.A.; Patri, A.K.; Wiggins, S. Regulatory Science Perspective on the Analysis of Microplastics and Nanoplastics in Human Food. Anal. Chem. 2024, 96, 4343–4358. [Google Scholar] [CrossRef]
- Son, J.W.; Nam, Y.; Kim, C. Nanoplastics from disposable paper cups and microwavable food containers. J. Hazard. Mater. 2024, 464, 133014. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, H.T.; Niu, S.Y.; Guo, M.H.; Xue, Y.Y. Mechanisms of micro- and nanoplastics on blood-brain barrier crossing and neurotoxicity: Current evidence and future perspectives. Neurotoxicology 2025, 109, 92–107. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; Felipe-Sotelo, M.; Bance-Soualhi, R.; Crean, C.; Al-Sid-Cheikh, M. Sub-100 nm nanoplastics: Potent carriers of tributyltin in marine water. Environ. Sci.-Nano 2024, 11, 241–252. [Google Scholar] [CrossRef]
- Borriello, L.; Scivicco, M.; Cacciola, N.A.; Esposito, F.; Severino, L.; Cirillo, T. Microplastics, a Global Issue: Human Exposure through Environmental and Dietary Sources. Foods 2023, 12, 3396. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, J.; Nishimura, N.; Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives. J. Hazard. Mater. 2021, 405, 123913. [Google Scholar] [CrossRef]
- Sun, N.; Shi, H.; Li, X.; Gao, C.; Liu, R. Combined toxicity of micro/nanoplastics loaded with environmental pollutants to organisms and cells: Role, effects, and mechanism. Environ. Int. 2023, 171, 107711. [Google Scholar] [CrossRef]
- Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastic in the North Atlantic Subtropical Gyre. Environ. Sci. Technol. 2017, 51, 13689–13697. [Google Scholar] [CrossRef]
- Davranche, M.; Lory, C.; Le Juge, C.; Blancho, F.; Dia, A.; Grassl, B.; El Hadri, H.; Pascal, P.Y.; Gigault, J. Nanoplastics on the coast exposed to the North Atlantic Gyre: Evidence and traceability. Nanoimpact 2020, 20, 100262. [Google Scholar] [CrossRef]
- ten Hietbrink, S.; Materic, D.; Holzinger, R.; Groeskamp, S.; Niemann, H. Nanoplastic concentrations across the North Atlantic. Nature 2025, 643, 412–416. [Google Scholar] [CrossRef]
- Shi, X.; Mao, T.; Huang, X.; Shi, H.; Jiang, K.; Lan, R.; Zhao, H.; Ma, J.; Zhao, J.; Xing, B. Capturing, enriching and detecting nanoplastics in water based on optical manipulation, surface-enhanced Raman scattering and microfluidics. Nat. Water 2025, 3, 449–460. [Google Scholar] [CrossRef]
- Slaveykova, V.I.; Marelja, M. Progress in Research on the Bioavailability and Toxicity of Nanoplastics to Freshwater Plankton. Microplastics 2023, 2, 389–410. [Google Scholar] [CrossRef]
- Tamayo-Belda, M.; Pulido-Reyes, G.; Rosal, R.; Fernández-Piñas, F. Nanoplastic toxicity towards freshwater organisms. Water Emerg. Contam. Nanoplastics 2022, 1, 19. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, Q.; Jiao, M.; Liu, G.; van der Hoek, J.P. Identification and Quantification of Nanoplastics in Surface Water and Groundwater by Pyrolysis Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol. 2022, 56, 4988–4997. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Thomas, K. Quantitative analysis of nanoplastics in environmental and potable waters by pyrolysis-gas chromatography-mass spectrometry. J. Hazard. Mater. 2024, 464, 133013. [Google Scholar] [CrossRef]
- Materić, D.; Kjær, H.A.; Vallelonga, P.; Tison, J.L.; Röckmann, T.; Holzinger, R. Nanoplastics measurements in Northern and Southern polar ice. Environ. Res. 2022, 208, 112741. [Google Scholar] [CrossRef]
- Materić, D.; Kasper-Giebl, A.; Kau, D.; Anten, M.; Greilinger, M.; Ludewig, E.; van Sebille, E.; Röckmann, T.; Holzinger, R. Micro- and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environ. Sci. Technol. 2020, 54, 2353–2359. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, H.; Jones, R.; Feng, Y.; Gong, K.; Li, K.; Fang, X.; Tahir, M.A.; Valev, V.K.; Zhang, L. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment. Environ. Sci. Technol. 2020, 54, 15594–15603. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.; Le Juge, C.; Davranche, M.; El Hadri, H.; Grassl, B.; Reynaud, S.; Gigault, J. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere 2021, 262, 127784. [Google Scholar] [CrossRef]
- Nihart, A.J.; Garcia, M.A.; El Hayek, E.; Liu, R.; Olewine, M.; Kingston, J.D.; Castillo, E.F.; Gullapalli, R.R.; Howard, T.; Bleske, B.; et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 2025, 31, 1367. [Google Scholar] [CrossRef] [PubMed]
- Qian, N.; Gao, X.; Lang, X.; Deng, H.; Bratu, T.M.; Chen, Q.; Stapleton, P.; Yan, B.; Min, W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc. Natl. Acad. Sci. USA 2024, 121, e2300582121. [Google Scholar] [CrossRef] [PubMed]
- Materić, D.; Ludewig, E.; Brunner, D.; Röckmann, T.; Holzinger, R. Nanoplastics transport to the remote, high-altitude Alps. Environ. Pollut. 2021, 288, 117697. [Google Scholar] [CrossRef]
- Materić, D.; Peacock, M.; Dean, J.; Futter, M.; Maximov, T.; Moldan, F.; Röckmann, T.; Holzinger, R. Presence of nanoplastics in rural and remote surface waters. Environ. Res. Lett. 2022, 17, 054036. [Google Scholar] [CrossRef]
- Li, Z.C.; Gao, Y.; Wu, Q.H.; Yan, B.; Zhou, X.X. Quantifying the occurrence of polystyrene nanoplastics in environmental solid matrices via pyrolysis-gas chromatography/mass spectrometry. J. Hazard. Mater. 2022, 440, 129855. [Google Scholar] [CrossRef]
- Allen, D.; Allen, S.; Abbasi, S.; Baker, A.; Bergmann, M.; Brahney, J.; Butler, T.; Duce, R.A.; Eckhardt, S.; Evangeliou, N.; et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth Environ. 2022, 3, 393–405. [Google Scholar] [CrossRef]
- Jebashalomi, V.; Charles, P.E.; Rajaram, R.; Sadayan, P. A critical review on nanoplastics and its future perspectives in the marine environment. Environ. Monit. Assess. 2023, 195, 1186. [Google Scholar] [CrossRef]
- Pérez-Reverón, R.; Alvarez-Méndez, S.J.; González-Sálamo, J.; Socas-Hernández, C.; Díaz-Peña, F.J.; Hernández-Sánchez, C.; Hernández-Borges, J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environ. Pollut. 2023, 317, 120788. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zuo, R.; Shang, J.H.; Wu, G.L.; Dong, Y.N.; Zheng, S.D.; Xu, Z.R.; Liu, J.C.; Xu, Y.X.; Wu, Z.Y.; et al. Nano- and micro-plastic transport in soil and groundwater environments: Sources, behaviors, theories, and models. Sci. Total Environ. 2023, 904, 166641. [Google Scholar] [CrossRef]
- Zhang, D.M.; Chen, Q.Q.; Xu, T.; Yin, D.Q. Current research status on the distribution and transport of micro (nano) plastics in hyporheic zones and groundwater. J. Environ. Sci. 2025, 151, 387–409. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.A.; Gedik, K.; Gaga, E.O. Atmospheric micro (nano) plastics: Future growing concerns for human health. Air Qual. Atmos. Health 2023, 16, 233–262. [Google Scholar] [CrossRef]
- Permana, R.; Chakraborty, S.; Valsami-Jones, E. Nanoplastics in aquatic environments: The hidden impact of aging on fate and toxicity. Environ. Chem. Ecotoxicol. 2025, 7, 429–444. [Google Scholar] [CrossRef]
- Pradel, A.; Catrouillet, C.; Gigault, J. The environmental fate of nanoplastics: What we know and what we need to know about aggregation. Nanoimpact 2023, 29, 100453. [Google Scholar] [CrossRef]
- Singh, N.; Tiwari, E.; Khandelwal, N.; Darbha, G.K. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ. Sci.-Nano 2019, 6, 2968–2976. [Google Scholar] [CrossRef]
- Wu, J.Y.; Ye, Q.Y.; Chen, M.Q.; Sun, L.Y.; Liu, S.; Liu, L.Q.; Wu, P.X.; Zhu, N.W. Nanoplastics enhance the stability of kaolinite and affect the sorption of Pb2in aquatic environments. Chem. Eng. J. 2024, 491, 152123. [Google Scholar] [CrossRef]
- Zhou, X.P.; Li, A.Z.; Cerne, M.; Macrae, S.; Eggleston, I.; Qiao, H.T.; Li, X.Y.; Huang, G.Y.; Wang, P.; Zhao, J.; et al. Nanoplastic-mineral heteroaggregation under varying degrees of plastic pollution: Implications for antibiotic adsorption in aquatic systems. Chem. Eng. J. 2025, 503, 158444. [Google Scholar] [CrossRef]
- Natarajan, L.; Jenifer, M.A.; Chandrasekaran, N.; Suraishkumar, G.K.; Mukherjee, A. Polystyrene nanoplastics diminish the toxic effects of Nano-TiO2 in marine algae Chlorella sp. Environ. Res. 2022, 204, 112400. [Google Scholar]
- Wang, Y.; Wang, K.Y.; Yang, J.B.; Dai, M.Q.; Zeng, D.J.; Wang, X.H.; Du, J.J.; Pu, G.Z. Synergistic effects of nanoplastics and graphene oxides on microbe-driven litter decomposition in streams. J. Hazard. Mater. 2025, 494, 138613. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Darbha, G.K. Impact of Minerals (Ferrihydrite and Goethite) and Their Organo-Mineral Complexes on Fate and Transport of Nanoplastics in the Riverine and Terrestrial Environments. Environ. Sci. Technol. 2025, 59, 11205–11215. [Google Scholar] [CrossRef]
- Shams, M.; Alam, I.; Chowdhury, I. Aggregation and stability of nanoscale plastics in aquatic environment. Water Res. 2020, 171, 115401. [Google Scholar] [CrossRef]
- Cao, T.C.; Zhao, M.T.; Zhang, T.; Chen, W. Weathering pathways differentially affect colloidal stability of nanoplastics. Environ. Sci.-Nano 2025, 12, 232–240. [Google Scholar] [CrossRef]
- Zhou, X.; Eggleston, I.; MacRae, S.; Cerne, M.; Ma, C.; Li, X.; Qiao, H.; Zhao, J.; Xing, B. Interactions between Nanoplastics and Antibiotics: Implications for Nanoplastics Aggregation in Aquatic Environments. Environ. Sci. Technol. 2025, 59, 11261–11274. [Google Scholar] [CrossRef]
- Ali, I.; Tan, X.; Li, J.Y.; Peng, C.S.; Naz, I.; Duan, Z.P.; Ruan, Y.L. Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants—A critical review. J. Clean. Prod. 2022, 376, 134314. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Z.; Xi, M.; Ma, H.; Qin, J.; Jia, H. Molecular modeling to elucidate the dynamic interaction process and aggregation mechanism between natural organic matters and nanoplastics. Eco-Environ. Health 2025, 4, 100122. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Jiang, R.F.; Liu, Q.L.; Ouyang, G.F. Impact of different modes of adsorption of natural organic matter on the environmental fate of nanoplastics. Chemosphere 2021, 263, 127967. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Wang, X.T.; van der Hoek, J.P.; Liu, G.; Lompe, K.M. Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions. Environ. Sci. Technol. 2025, 59, 1822–1834. [Google Scholar] [CrossRef]
- Simpson, K.; Martin, L.; O’Leary, S.L.; Watt, J.; Moon, S.; Luo, T.F.; Xu, W. Environmental protein corona on nanoplastics altered the responses of skin keratinocytes and fibroblast cells to the particles. J. Hazard. Mater. 2025, 494, 138722. [Google Scholar] [CrossRef]
- Zhou, J.L.; Chen, M.Y.; Li, Y.; Wang, J.J.; Chen, G.L.; Wang, J. Microbial bioremediation techniques of microplastics and nanoplastics in the marine environment. TrAC Trends Anal. Chem. 2024, 180, 117971. [Google Scholar] [CrossRef]
- ter Halle, A.; Ghiglione, J.F. Nanoplastics: A Complex, Polluting Terra Incognita. Environ. Sci. Technol. 2021, 55, 14466–14469. [Google Scholar] [CrossRef]
- Gigault, J.; Davranche, M. Nanoplastics in focus: Exploring interdisciplinary approaches and future directions. Nanoimpact 2025, 37, 100544. [Google Scholar] [CrossRef]
- Agboola, O.D.; Benson, N.U. Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review. Front. Environ. Sci. 2021, 9, 678574. [Google Scholar] [CrossRef]
- Prajapati, A.; Vaidya, A.N.; Kumar, A.R. Microplastic properties and their interaction with hydrophobic organic contaminants: A review. Environ. Sci. Pollut. Res. 2022, 29, 49490–49512. [Google Scholar] [CrossRef]
- Yu, Y.M.; Mo, W.Y.; Luukkonen, T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics—A review. Sci. Total Environ. 2021, 797, 149140. [Google Scholar] [CrossRef]
- Trevisan, R.; Ranasinghe, P.; Jayasundara, N.; Di Giulio, R.T. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. Toxics 2022, 10, 326. [Google Scholar] [CrossRef]
- Blancho, F.; Davranche, M.; Léon, A.; Marsac, R.; Reynauld, S.; Grassl, B.; Gigault, J. Mechanistic description of lead sorption onto nanoplastics. Environ. Sci.-Nano 2024, 11, 1671–1681. [Google Scholar] [CrossRef]
- García-Hernández, E.; Torres, F.J.; Cortés-Arriagada, D.; Nochebuena, J. Understanding the co-adsorption mechanism between nanoplastics and neonicotinoid insecticides from an atomistic perspective. J. Mol. Model. 2025, 31, 140. [Google Scholar] [CrossRef]
- Pokhrel, A.; Islam, M.S.; Mitra, S. Generation of Eroded Nanoplastics from Real World Wastes and Their Capacity for Heavy Metal Adsorption. ACS EST Water 2025, 5, 2291–2299. [Google Scholar] [CrossRef]
- Chen, C.Z.; Sun, C.X.; Wang, B.; Zhang, Z.G.; Yu, G. Adsorption behavior of triclosan on polystyrene nanoplastics: The roles of particle size, surface functionalization, and environmental factors. Sci. Total Environ. 2024, 906, 167430. [Google Scholar] [CrossRef]
- Town, R.M.; van Leeuwen, H.P.; Duval, J.F.L. Sorption kinetics of metallic and organic contaminants on micro- and nanoplastics: Remarkable dependence of the intraparticulate contaminant diffusion coefficient on the particle size and potential role of polymer crystallinity. Environ. Sci.-Process. Impacts 2025, 27, 634–648. [Google Scholar] [CrossRef]
- Nurain, A.; Zhang, Y.; Meier, D.; Farner, J.M.; Goss, G.; Arlos, M.J. Sorption Behavior of Trace Organic Chemicals on Carboxylated Polystyrene Nanoplastics. ACS EST Water 2024, 4, 4018–4027. [Google Scholar] [CrossRef]
- Oliveira, Y.M.; Vernin, N.S.; Maia Bila, D.; Marques, M.; Tavares, F.W. Pollution caused by nanoplastics: Adverse effects and mechanisms of interaction via molecular simulation. PeerJ 2022, 10, e13618. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Liu, Y.; Xu, Y.; Li, S.; Liu, X.; Dai, Y.; Zhao, J.; Yue, T. Benzo[a]pyrene and heavy metal ion adsorption on nanoplastics regulated by humic acid: Cooperation/competition mechanisms revealed by molecular dynamics simulations. J. Hazard. Mater. 2022, 424, 127431. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.C.; Zhao, J.H.; Li, L.Q.; Wang, Y.Y.; Dai, X.H.; Yu, F.; Ma, J. Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution. Water Res. 2020, 184, 116100. [Google Scholar] [CrossRef]
- Xu, Y.H.; Ou, Q.; van der Hoek, J.P.; Liu, G.; Lompe, K.M. Photo-oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. Environ. Sci. Technol. 2024, 58, 991–1009. [Google Scholar] [CrossRef]
- Ma, L.; Fan, Z.Y.; Lian, W.Q.; Wei, X.F.; Bao, R.Y.; Yang, W. Nanoplastics and microplastics released from an enzyme-embedded biodegradable polyester during hydrolysis. J. Hazard. Mater. 2025, 489, 137640. [Google Scholar] [CrossRef]
- Mendez, N.F.; Sharma, V.; Valsecchi, M.; Pai, V.; Lee, J.K.; Schadler, L.S.; Muller, A.J.; Watson-Sanders, S.; Dadmun, M.; Kumaraswamy, G.; et al. Mechanism of quiescent nanoplastic formation from semicrystalline polymers. Nat. Commun. 2025, 16, 3051. [Google Scholar] [CrossRef]
- Süssmann, J.; Walz, E.; Hetzer, B.; Greiner, R.; Fischer, E.K.; Rohn, S.; Fritsche, J. Pressure-assisted isolation of micro- and nanoplastics from food of animal origin with special emphasis on seafood. J. Consum. Prot. Food Saf. 2025, 20, 141–154. [Google Scholar] [CrossRef]
- Kousheh, S.; Lin, M.S. Recent advancements in SERS-based detection of micro- and nanoplastics in food and beverages: Techniques, instruments, and machine learning integration. Trends Food Sci. Tech. 2025, 159, 104940. [Google Scholar] [CrossRef]
- Zimmermann, L.; Geueke, B.; Parkinson, L.V.; Schuer, C.; Wagner, M.; Muncke, J. Food contact articles as source of micro- and nanoplastics: A systematic evidence map. Npj Sci. Food 2025, 9, 111. [Google Scholar] [CrossRef]
- Duda, A.; Petka, K. The Presence of Micro-and Nanoplastics in Food and the Estimation of the Amount Consumed Depending on Dietary Patterns. Molecules 2025, 30, 3666. [Google Scholar] [CrossRef]
- Palanisamy, S.; Kumar, B.K.S.; Vetrivel, A.; Michael, R.J.; Babu, N.; Nallamuthu, S.S.; Saravanan, K.; Venkatachalam, S.; Kumar, R.J.N.; Selvaraju, G.D. Nanoplastics in heat-sensitive food packaging: A review of migration, detection, health, and environmental impacts. Food Control 2025, 169, 111002. [Google Scholar] [CrossRef]
- Atugoda, T.; Piyumali, H.; Wijesekara, H.; Sonne, C.; Lam, S.S.; Mahatantila, K.; Vithanage, M. Nanoplastic occurrence, transformation and toxicity: A review. Environ. Chem. Lett. 2023, 21, 363–381. [Google Scholar] [CrossRef]
- Haldar, S.; Muralidaran, Y.; Miguez, D.; Mulla, S.I.; Mishra, P. Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective. Sci. Total Environ. 2023, 861, 160571. [Google Scholar] [CrossRef]
- Thakur, R.; Joshi, V.; Sahoo, G.C.; Jindal, N.; Tiwari, R.R.; Rana, S. Review of mechanisms and impacts of nanoplastic toxicity in aquatic organisms and potential impacts on human health. Toxicol. Rep. 2025, 14, 102013. [Google Scholar] [CrossRef]
- Kazmi, S.; Tayyab, M.; Pastorino, P.; Barcelo, D.; Yaseen, Z.M.; Grossart, H.P.; Khan, Z.H.; Li, G. Decoding the molecular concerto: Toxicotranscriptomic evaluation of microplastic and nanoplastic impacts on aquatic organisms. J. Hazard. Mater. 2024, 472, 134574. [Google Scholar] [CrossRef]
- Li, J.C.; Zhao, Y.C. Bioeffects of Nanoplastics: DNA Damage and Mechanism. Nano Lett. 2025, 25, 1660–1665. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Xu, D.H.; Zhao, Y.M.; Sheng, B.; Wu, Z.J.; Wen, X.B.; Zhou, J.; Chen, G.; Lv, J.; Wang, J.; et al. Micro/Nanoplastics in plantation agricultural products: Behavior process, phytotoxicity under biotic and abiotic stresses, and controlling strategies. J. Nanobiotechnol. 2025, 23, 231. [Google Scholar] [CrossRef]
- Ruggieri, F.; Battistini, B.; Sorbo, A.; Senofonte, M.; Leso, V.; Iavicoli, I.; Bocca, B. From food-to-human microplastics and nanoplastics exposure and health effects: A review on food, animal and human monitoring data. Food Chem. Toxicol. 2024, 196, 115209. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, M.Y.; Wang, W.J.; Liu, W.J.; Liao, H.P.; Li, Z.; Wang, J. The direct effects of micro- and nanoplastics on rice and wheat. Trac-Trends Anal. Chem. 2024, 180, 117976. [Google Scholar] [CrossRef]
- Lazar, N.N.; Calmuc, M.; Milea, S.A.; Georgescu, P.L.; Iticescu, C. Micro and nano plastics in fruits and vegetables: A review. Heliyon 2024, 10, e28291. [Google Scholar] [CrossRef] [PubMed]
- Boctor, J.; Hoyle, F.C.; Farag, M.A.; Ebaid, M.; Walsh, T.; Whiteley, A.S.; Murphy, D.V. Microplastics and nanoplastics: Fate, transport, and governance from agricultural soil to food webs and humans. Environ. Sci. Eur. 2025, 37, 68. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, M.; Li, R.; Peijnenburg, W.J.; Yang, L.; Liu, P.; Shi, Q. Transport Dynamics and Physiological Responses of Polystyrene Nanoplastics in Pakchoi: Implications for Food Safety and Environmental Health. J. Agric. Food. Chem. 2025, 73, 10923–10933. [Google Scholar] [CrossRef]
- Zytowski, E.; Mollavali, M.; Baldermann, S. Uptake and translocation of nanoplastics in mono and dicot vegetables. Plant Cell Environ. 2025, 48, 134–148. [Google Scholar] [CrossRef]
- Li, C.Y.; Ma, C.X.; Shang, H.P.; White, J.C.; Cai, Z.Y.; Hao, Y.; Xu, X.X.; Liang, A.Q.; Jia, W.L.; Cao, Y.N.; et al. Polystyrene Nanoplastics Compromise the Nutritional Value of Radish (Raphanus sativus L.). Environ. Sci. Technol. 2025, 59, 9730–9743. [Google Scholar] [CrossRef]
- Kim, D.; Kweon, H.S.; An, Y.J. Grandparental transfer of nanoplastics in pea plants (Pisum sativum): Transmission from soil to third generations. J. Hazard. Mater. 2025, 492, 138198. [Google Scholar] [CrossRef]
- Hu, X.; Liu, Y.Y.; Ma, Y.P.; Zhang, J.; Ma, L.A.; Chen, W.Q.; Tang, X.J.; Lu, J.X.; Chen, L.Z.; Cai, G.D.; et al. Untargeted Metabolomics Uncovers Food Safety Risks: Polystyrene Nanoplastics Induce Metabolic Disorders in Chicken Liver. Foods 2025, 14, 2781. [Google Scholar] [CrossRef] [PubMed]
- Pause, F.C.; Baufeld, A.; Urli, S.; Crociati, M.; Stradaioli, G.; Vanselow, J.; Kalbe, C. Exploring the influence of polystyrene-nanoplastics on two distinct in vitro systems in farm animals: A pilot study. Sci. Total Environ. 2025, 976, 179378. [Google Scholar] [CrossRef]
- Seref, N.; Cufaoglu, G. Food Packaging and Chemical Migration: A Food Safety Perspective. J. Food Sci. 2025, 90, e70265. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.Z.; Ding, Y.L.; Zeng, H.X.; Zhong, Y.F.; Zhang, H.Y.; Chen, Y.X.; Xu, X.L.; Wei, W. Effects of chronic co-exposure polystyrene nanoplastics and cadmium on liver function in Prussian carp (Carassius gibelio). Ecotox Environ. Safe 2025, 302, 118687. [Google Scholar] [CrossRef]
- Banaee, M.; Zeidi, A.; Beitsayah, A.; Multisanti, C.R.; Faggio, C. Combined Effects of Nano-Polystyrene and Heavy Metal Mixture on the Bioaccumulation of Heavy Metals and Physiological Changes in Macrobrachium rosenbergii. J. Xenobiot. 2025, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Che, S.L.; Huang, M.T.; Ma, H.Y.; Wan, Z.C.; Feng, J.B.; Ding, S.Q.; Li, X.L. Toxic effects of nanopolystyrene and cadmium on the intestinal tract of the Chinese mitten crab (Eriocheir sinensis). Ecotox Environ. Safe 2024, 270, 115936. [Google Scholar] [CrossRef]
- Huang, M.; Ma, Y.; Fan, Q.; Che, S.; Zhang, J.; Ding, S.; Zhu, S.; Li, X. Effects of nanopolystyrene and/or phoxim exposure on digestive function of Eriocheir sinensis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2025, 289, 110102. [Google Scholar] [CrossRef]
- Huang, P.; Cao, L.P.; Du, J.L.; Guo, Y.Q.; Li, Q.J.; Sun, Y.; Zhu, H.J.; Xu, G.C.; Gao, J.C. Polystyrene nanoplastics amplify the toxic effects of PFOA on the Chinese mitten crab (Eriocheir sinensis). J. Hazard. Mater. 2025, 488, 137488. [Google Scholar] [CrossRef]
- Shi, B.D.; Xu, T.; Chen, T.; Xu, S.W.; Yao, Y.J. Co-exposure of decabromodiphenyl ethane and polystyrene nanoplastics damages grass carp (Ctenopharyngodon idell) hepatocytes: Focus on the role of oxidative stress, ferroptosis, and inflammatory reaction. Sci. Total Environ. 2024, 940, 173575. [Google Scholar] [CrossRef]
- Chen, T.T.; Jiang, H.W.; He, Y.J.; Shen, Y.W.; Huang, Z.Q.; Gu, Y.F.; Wei, Q.; Zhao, J.L.; Chen, X.W. Nanoplastics and chrysene pollution: Potential new triggers for nonalcoholic fatty liver disease and hepatitis, insights from juvenile Siniperca chuatsi. Sci. Total Environ. 2024, 922, 171125. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, J.J.; Gao, J.C.; Jin, W.; Hu, J.W.; Sun, Y.; Zhu, H.J.; Xu, G.C. Apoptosis, MAPK signaling pathway affected in tilapia liver following nano-microplastics and sulfamethoxazole acute co-exposure. Comp. Biochem. Phys. D 2025, 53, 101370. [Google Scholar] [CrossRef]
- Dai, Y.H.; Zhang, X.X.; Chen, X.Y.; Sun, C.X.; Lan, R.Y.; Fan, H.Z.; Liu, Z.M.; Liu, X.; Yue, T.T.; Zhao, J. Antagonistic toxicity of nanoplastics and perfluorobutanoic acid to the behavior of black rockfish (Sebastes schlegelii). Environ. Pollut. 2025, 381, 126578. [Google Scholar] [CrossRef]
- Lin, P.; Liu, L.; Ma, Y.; Du, R.; Yi, C.; Li, P.; Xu, Y.; Yin, H.; Sun, L.; Li, Z.-H. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). Environ. Pollut. 2024, 356, 124334. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; Xu, B.; Guo, F.; Zhu, M.; Yang, R. Co-exposure to polystyrene nanoplastics and mercury synergistically exacerbates toxicity in rare minnow (Gobiocypris rarus) compared to individual exposures. Aquat. Toxicol. 2025, 285, 107416. [Google Scholar] [CrossRef] [PubMed]
- Naziri, A.; Mina, T.; Manoli, K.; Beretsou, V.G.; Christou, A.; Michael, C.; Agathokleous, E.; Fatta-Kassinos, D. Looking into the effects of co-contamination by micro(nano)plastics in the presence of other pollutants on irrigated edible plants. Sci. Total Environ. 2023, 892, 164618. [Google Scholar] [CrossRef]
- Bui, T.H.; Zuverza-Mena, N.; Kendrick, E.; Tamez, C.; Yadav, M.; Alotaibi, S.; Dimkpa, C.; Deloid, G.; Sadik, O.; Demokritou, P.; et al. Micro-nanoscale polystyrene co-exposure impacts the uptake and translocation of arsenic and boscalid by lettuce (Lactuca sativa). Nanoimpact 2025, 37, 100541. [Google Scholar] [CrossRef]
- Bryant, M.T.; Rossi, L.; Mu, R.P.; Cao, Z.Y.; Ma, X.M. Synergistic Effects of Polystyrene Nanoplastics and Cadmium on the Metabolic Processes and Their Accumulation in Hydroponically Grown Lettuce (Lactuca sativa). J. Agric. Food. Chem. 2025, 73, 16157–16164. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.T.; Ren, J.; Sharma, V.K.; Ma, X. Mutual Effects and Uptake of Organic Contaminants and Nanoplastics by Lettuce in Co-Exposure. ACS Agric. Sci. Technol. 2024, 4, 463–470. [Google Scholar] [CrossRef]
- Liang, Y.B.; Liu, X.K.; Jiang, J.G.; Zhai, W.J.; Guo, Q.Q.; Guo, H.M.; Xiao, S.C.; Ling, F.; Zhou, Z.Q.; Liu, D.H.; et al. Nanoplastics enhance tebuconazole toxicity in lettuce by promoting its accumulation and disrupting phenylalanine metabolism: Importance of Trojan horse effect. J. Hazard. Mater. 2025, 489, 137538. [Google Scholar] [CrossRef]
- de Oliveira, C.R.S.; Maestri, G.; Tochetto, G.A.; de Oliveira, J.L.; Stiegelmaier, E.; Fischer, T.V.; Immich, A.P.S. Nanoplastics: Unveiling Contamination Routes and Toxicological Implications for Human Health. Curr. Anal. Chem. 2024, 21, 175–190. [Google Scholar] [CrossRef]
- Ma, Q.; Lei, J.; Pang, Y.; Shen, Y.; Zhang, T. Neurotoxicity of Micro-and Nanoplastics: A Comprehensive Review of Central Nervous System Impacts. Environ. Health 2025, 87. [Google Scholar] [CrossRef]
- Stock, V.; Laurisch, C.; Franke, J.; Donmez, M.H.; Voss, L.; Bohmert, L.; Braeuning, A.; Sieg, H. Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicol. Vitr. 2021, 70, 105021. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Wang, L.; Ruan, X.; Ge, Q.; Ma, M.; Wang, W.; You, W.; Zhang, L.; Valev, V.K. MPs Entering Human Circulation through Infusions: A Significant Pathway and Health Concern. Environ. Health 2025, 3, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Roursgaard, M.; Rothmann, M.H.; Schulte, J.; Karadimou, I.; Marinelli, E.; Moller, P. Genotoxicity of Particles From Grinded Plastic Items in Caco-2 and HepG2 Cells. Front. Public Health 2022, 10, 906430. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.X.; Min, W.C.; Zhong, H.Q.; Yan, X.L.; Gao, Y.; Wang, J.Q.; Zhou, H.Y.; Yan, B. Inflammatory responses induced by synergistic actions between nanoplastics and typical heavy metal ions in human cells. Environ. Sci.-Nano 2023, 10, 1599–1613. [Google Scholar] [CrossRef]
- Li, X.; Hu, S.; Yu, Z.; He, F.; Zhao, X.; Liu, R. New Evidence for the Mechanisms of Nanoplastics Amplifying Cadmium Cytotoxicity: Trojan Horse Effect, Inflammatory Response, and Calcium Imbalance. Environ. Sci. Technol. 2025, 59, 9471–9485. [Google Scholar] [CrossRef]
- Alijagic, A.; Särndahl, E.; Kotlyar, O.; Karlsson, P.; Duberg, D.; Scherbak, N.; Pinsino, A.; Engwall, M.; Hyötyläinen, T. Nanoplastics drive toxicity under co-exposure with perfluorooctanesulfonic acid in human intestinal cells. Environ. Chem. Lett. 2025, 23, 1161–1169. [Google Scholar] [CrossRef]
- Gou, Z.X.; Wu, H.A.; Li, S.Y.; Liu, Z.Y.; Zhang, Y. Airborne micro- and nanoplastics: Emerging causes of respiratory diseases. Part. Fibre Toxicol. 2024, 21, 50. [Google Scholar] [CrossRef]
- Lagana, A.; Visalli, G.; Facciola, A.; Celesti, C.; Iannazzo, D.; Di Pietro, A. Uptake of Breathable Nano- and Micro-Sized Polystyrene Particles: Comparison of Virgin and Oxidised nPS/mPS in Human Alveolar Cells. Toxics 2023, 11, 686. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Simpson, K.; Brzezinski, M.; Watt, J.; Xu, W. Cellular response of keratinocytes to the entry and accumulation of nanoplastic particles. Part. Fibre Toxicol. 2024, 21, 22. [Google Scholar] [CrossRef]
- Annangi, B.; Villacorta, A.; Vela, L.; Tavakolpournegari, A.; Marcos, R.; Hernández, A. Effects of true-to-life PET nanoplastics using primary human nasal epithelial cells. Environ. Toxicol. Pharmacol. 2023, 100, 104140. [Google Scholar] [CrossRef]
- Monikh, F.A.; Lehtonen, S.; Kekäläinen, J.; Karkossa, I.; Auriola, S.; Schubert, K.; Zanut, A.; Peltonen, S.; Niskanen, J.; Bandekar, M.; et al. Biotransformation of nanoplastics in human plasma and their permeation through a model in vitro blood-brain barrier: An in-depth quantitative analysis. Nano Today 2024, 59, 102466. [Google Scholar] [CrossRef]
- Cheng, S.Q.; Hu, J.J.; Guo, C.; Ye, Z.C.; Shang, Y.Z.; Lian, C.; Liu, H.L. The effects of size and surface functionalization of polystyrene nanoplastics on stratum corneum model membranes: An experimental and computational study. J. Colloid. Interface Sci. 2023, 638, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, S.; Jia, X.; Zhu, X.; Cai, L.; Duan, M.; Wang, S.; Jiang, H.; Ji, M.; Wang, S.; et al. Combined toxicity evaluation of polystyrene nanoplastics and Nano-ZnO of distinctive morphology on human lung epithelial cells. Sci. Total Environ. 2025, 973, 179097. [Google Scholar] [CrossRef]
- Morataya-Reyes, M.; Villacorta, A.; Gutierrez-Garcia, J.; Egea, R.; Martin-Perez, J.; Barguilla, I.; Marcos, R.; Hernandez, A. The long-term in vitro co-exposure of polyethylene terephthalate (PET) nanoplastics and cigarette smoke condensate exacerbates the induction of carcinogenic traits. J. Hazard. Mater. 2025, 493, 138359. [Google Scholar] [CrossRef]
- Aloisi, M.; Poma, A.M.G. Nanoplastics as Gene and Epigenetic Modulators of Endocrine Functions: A Perspective. Int. J. Mol. Sci. 2025, 26, 2071. [Google Scholar] [CrossRef]
- Fusco, L.; Gazzi, A.; Giro, L.; Schefer, R.B.; D’Almeida, S.M.; Cagliani, R.; Zoccheddu, M.; Uyar, R.; Besbinar, O.; Çelik, D.; et al. Nanoplastics: Immune Impact, Detection, and Internalization after Human Blood Exposure by Single-Cell Mass Cytometry. Adv. Mater. 2025, 37, 2413413. [Google Scholar] [CrossRef]
- Bojic, S.; Falco, M.M.; Stojkovic, P.; Ljujic, B.; Jankovic, M.G.; Armstrong, L.; Markovic, N.; Dopazo, J.; Lako, M.; Bauer, R.; et al. Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes. Stem Cells 2020, 38, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Nacka-Aleksić, M.; Vilotić, A.; Pirković, A.; Živanović, M.; Ljujić, B.; Krivokuća, M.J. Nano-scale dangers: Unravelling the impact of nanoplastics on human trophoblast invasion. Chem. Biol. Interact. 2025, 405, 111317. [Google Scholar] [CrossRef]
- Balali, H.; Morabbi, A.; Karimian, M. Concerning influences of micro/nano plastics on female reproductive health: Focusing on cellular and molecular pathways from animal models to human studies. Reprod. Biol. Endocrinol. 2024, 22, 141. [Google Scholar] [CrossRef]
- Samaei, S.H.-A.; Mojahednia, P.; Chen, J.; Li, Z.; Jaszczyszyn, K.; Kiedrzyńska, E.; Xue, J. What Does the “Trojan Horse” Carry? The Pollutants Associated with Microplastics/Nanoplastics in Water Environments. ACS ES&T Water 2025, 5, 1530–1545. [Google Scholar]
- Zhang, M.; Xu, L.H. Transport of micro- and nanoplastics in the environment: Trojan-Horse effect for organic contaminants. Crit. Rev. Environ. Sci. Technol. 2022, 52, 810–846. [Google Scholar] [CrossRef]
- Mognetti, B.; Cecone, C.; Fancello, K.; Saraceni, A.; Cottone, E.; Bovolin, P. Interaction of Polystyrene Nanoplastics with Biomolecules and Environmental Pollutants: Effects on Human Hepatocytes. Int. J. Mol. Sci. 2025, 26, 2899. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Zhou, C.; Ma, Z.Q.; Zeng, L.J.; Wang, H.P.; Cheng, X.; Zhang, C.C.; Xue, Y.; Yuan, Y.Y.; Li, J.; et al. Co-exposure to polystyrene nanoplastics and triclosan induces synergistic cytotoxicity in human KGN granulosa cells by promoting reactive oxygen species accumulation. Ecotox Environ. Safe 2024, 273, 116121. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wang, Y.Y.; Liu, H.B.; Lan, J.; Li, Z.C.; Zong, W.S.; Zhao, Z.S. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life 2025, 15, 112. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, S.; Chen, M.; Liu, J.; Wang, J. Exposure to Nanoplastics and Co-Contaminants in Foods and Environment: Threats to Human Health. Foods 2025, 14, 3349. https://doi.org/10.3390/foods14193349
Xiang S, Chen M, Liu J, Wang J. Exposure to Nanoplastics and Co-Contaminants in Foods and Environment: Threats to Human Health. Foods. 2025; 14(19):3349. https://doi.org/10.3390/foods14193349
Chicago/Turabian StyleXiang, Shuo, Mingyu Chen, Jun Liu, and Jun Wang. 2025. "Exposure to Nanoplastics and Co-Contaminants in Foods and Environment: Threats to Human Health" Foods 14, no. 19: 3349. https://doi.org/10.3390/foods14193349
APA StyleXiang, S., Chen, M., Liu, J., & Wang, J. (2025). Exposure to Nanoplastics and Co-Contaminants in Foods and Environment: Threats to Human Health. Foods, 14(19), 3349. https://doi.org/10.3390/foods14193349