Fresh Pecorino Cheese Produced by Ewes Fed Silage with Prickly Pear By-Products: VOC, Chemical, and Sensory Characteristics Detected with a Neuro-Sensory Approach Combining EEG and TDS †
Abstract
1. Introduction
- STEP 1: Evaluate the impact of prickly pear by-products as feed on the chemical characteristics and VOCs of fresh pecorino cheese through an experimental chemical analysis.
- STEP 2: Determine whether innovative cheeses elicit emotional and cognitive responses comparable to traditional cheeses through a neuro-sensory evaluation integrating EEG and TDS methodologies.
2. Materials and Methods
2.1. Raw Material Collection and Ensiling
2.2. Animals, Experimental Design, and Ewe Feeding
2.3. Milk and Cheese Analyses
2.4. Solid-Phase Microextraction of Cheese Volatile Components
2.5. Statistical Analysis
2.6. Neuro-Sensory Approach
2.6.1. Sample
2.6.2. Instruments
2.6.3. Data Processing
2.6.4. Experimental Design
3. Results and Discussion
3.1. Chemical Composition
n. | CAS | Chemical Compounds | Cheese (Mean ± s.e.) | Aroma | Odor Threshold μg/kg in Water | Reference | |
---|---|---|---|---|---|---|---|
CTR | EXP | ||||||
Alcohols | |||||||
1 | 64-17-5 | Ethanol | 14.72 ± 0.90 a | 7.89 ± 1.23 b | sweet | 100,000 | [70,71] |
2 | 543-49-7 | 2-Heptanol | 0.04 ± 0.01 | n.d. | Citrus, Earth, Fried, Mushroom, Oil | 70 | [78,79] |
Carbonylic Compounds | |||||||
3 | 124-19-6 | Nonanal | 0.08 ± 0.03 | 0.07 ± 0.03 | Fat, Floral, Green, Lemon | 1 | [70,71] |
4 | 112-54-9 | Dodecanal | 0.06 ± 0.03 | 0.05 ± 0.04 | Citrus, Fat, Lily | - | [70,71] |
5 | 110-43-0 | 2-Heptanone | 1.10 ± 0.05 | 0.98 ± 0.33 | Penetrating fruity odor | 140–3000 | [70,71] |
6 | 112-12-9 | 2-Undecanone | n.d. | 0.11 ± 0.02 | Fresh, Green, Orange, Rose | 6.2 | [78,79] |
7 | 698-76-0 | δ-octalactone | 0.07 ± 0.02 | 0.07 ± 0.01 | sweet, fruity, and peach-like | 400 | [79,80] |
Esters | |||||||
8 | 105-54-4 | Ethyl butyrate | 4.31 ± 0.47 a | 1.77 ± 0.25 b | Sweet, Fruit, Cognac | - | [70,71] |
9 | 106-70-7 | Methyl caproate | 1.14 ± 0.09 a | 0.64 ± 0.12 b | Ester, Fresh, Fruit, Pineapple | 70–84 | [70,71] |
10 | 123-66-0 | Ethyl caproate | 7.69 ± 0.55 | 3.41 ± 0.21 | Fruity | 1 | [70,71] |
11 | 111-11-5 | Methyl caprylate | 0.18 ± 0.05 a | 0.13 ± 0.01 b | Fruit, Orange, Wax, Wine | - | |
12 | 106-32-1 | Ethyl caprylate | 2.60 ± 0.13 | 1.30 ± 0.01 | Fruit, fat | - | [70,71] |
13 | 110-42-9 | Methyl caprate | 0.08 ± 0.01 | 0.09 ± 0.01 | Fruit, fat | - | |
14 | 110-38-3 | Ethyl caprate | 0.98 ± 0.09 | 0.45 ± 0.18 | Brandy, Grape, Pear | - | [70,71] |
15 | 106-33-2 | Ethyl laurate | 0.02 ± 0.01 | 0.01 ± 0.01 | Floral, Fruit, Leaf | 400 | [78,79] |
Fatty acids | |||||||
16 | 142-62-1 | Caproic acid | 32.11 ± 3.43 b | 59.38 ± 0.62 a | Cheese, Oil, Pungent, Sour | 0.0006 | http://www.leffingwell.com/odorthre accessed on 15 June 2025 |
17 | 124-07-2 | n-caprylic acid | 4.48 ± 0.41 b | 10.95 ± 0.45 a | Cheese, Fat, Grass, Oil | ||
18 | 112-05-0 | Nonanoic acid | n.d. | 0.09 ± 0.09 | Fat, Green, Sour | ||
19 | 334-48-5 | Capric acid | n.d. | 0.51 ± 0.14 | Rancid | ||
Terpenes | |||||||
20 | 1117-61-9 | Citronellol | 0.33 ± 0.02 | 0.34 ± 0.01 | Citrus, Green, Rose | [75,76] | |
Hydrocarbons | |||||||
21 | 1632-16-2 | Heptane, 3 methylene | 0.11 ± 0.01 | n.d. | |||
22 | 111-84-2 | Nonane | 0.07 ± 0.01 | n.d. | Gasoline-like odor | ||
23 | 17615-91-7 | Undecane 5,6-dimethyl | n.d. | 1.88 ± 0.06 | Gasoline-like odor | ||
24 | 17,301-94-9 | Nonane 4-methyl | n.d. | 0.43 ± 0.06 | Gasoline-like odor | ||
25 | 5911 4 6 | Nonane 3-methyl | n.d. | 2.39 ± 0.18 | Gasoline-like odor | ||
26 | 13,475-82-6 | Heptane, 2,2,4,6,6 pentamethyl | 25.82 ± 2.35 | 4.36 ± 0.05 | Gasoline-like odor | ||
27 | 124-18-5 | n-Decane | 0.23 ± 0.07 | 0.68 ± 0.02 | Gasoline-like odor | ||
28 | 62,183-79-3 | 2,2,4,4 Tetramethyloctane | 2.28 ± 0.05 | 0.27 ± 0.12 | Gasoline-like odor | ||
29 | 17,301-23-4 | Undecane 2,6 methyl | n.d. | 0.28 ± 0.09 | Gasoline-like odor | ||
30 | 629-50-5 | Tridecane | n.d. | 0.17 ± 0.01 | Gasoline-like to odorless | ||
31 | 629-62-9 | Pentadecane | 0.06 ± 0.01 | 0.09 ± 0.03 | Oil of D. guineense fruit | ||
32 | Unknow | 1.42 ± 0.01 | 1.21 ± 0.01 | - |
3.2. Neuro-Sensory Approach
- The cheeses are perceived significantly differently (F(1120) = 66.756, p < 0.001, η2p = 0.357).
- Each cheese induces a different sensation profile (F(3360) = 44.392, p < 0.001, η2p = 0.270).
- Cheese perception curves vary significantly depending on the experimental condition (F (1120) = 5.278, p = 0.023, η2p = 0.042).
- The way in which the sensations are perceived changes between the two conditions (F (3360) = 5.462, p = 0.001, η2p = 0.044).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sakadevan, K.; Nguyen, M.L. Livestock production and its impact on nutrient pollution and greenhouse gas emissions. Adv. Agron. 2017, 141, 147–184. [Google Scholar]
- Rojas-Downing, M.; Nejadhashemi, A.; Harrigan, T.; Woznicki, S. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Giamouri, E.; Zisis, F.; Mitsiopoulou, C.; Christodoulou, C.; Pappas, A.C.; Simitzis, P.E.; Kamilaris, C.; Galliou, F.; Manios, T.; Mavrommatis, A.; et al. Sustainable strategies for greenhouse gas emission reduction in small ruminants farming. Sustainability 2023, 15, 4118. [Google Scholar] [CrossRef]
- Haque, F.; Fan, C.; Lee, Y.Y. From waste to value: Addressing the relevance of waste recovery to agricultural sector in line with circular economy. J. Clean. Prod. 2023, 415, 137873. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A review on the use of agro-industrial CO-products in animals’ diets. Ital. J. Animal Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Jalal, H.; Giammarco, M.; Lanzoni, L.; Akram, M.Z.; Mammi, L.M.; Vignola, G.; Chincarini, M.; Formigoni, A.; Fusaro, I. Potential of fruits and vegetable by-products as an alternative feed source for sustainable ruminant nutrition and production: A review. Agriculture 2023, 13, 286. [Google Scholar] [CrossRef]
- Gannuscio, R. Study of New Agro-Industrial By-Products from Prickly Pear to Increase the Sustainability of Livestock Farming. Ph.D. Thesis, University of Palermo, Palermo, Italy, 2025. [Google Scholar]
- ISTAT. Istituto Nazionale di Statistica. 2024. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (accessed on 13 July 2024).
- Todaro, M.; Alabiso, M.; Di Grigoli, A.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Mazza, F.; Bonanno, A. Prickly pear by-product in the feeding of livestock ruminants: Preliminary investigation. Animals 2020, 10, 949. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I.; Raso, G.; Todaro, M. Silage of prickly pears (Opuntia spp.) juice by-products. Animals 2020, 10, 1716. [Google Scholar] [CrossRef]
- Gannuscio, R.; Vastolo, A.; Maniaci, G.; Lucia, C.; Calabrò, S.; Todaro, M.; Cutrignelli, M.I. Improve nutritive value of silage based on prickly pear peel by-products. Ital. J. Anim. Sci. 2024, 23, 492–503. [Google Scholar] [CrossRef]
- Gannuscio, R.; Cardamone, C.; Vastolo, A.; Lucia, C.; D’Amico, A.; Maniaci, G.; Todaro, M. Ensiling as a Conservation Technique for Opuntia ficus indica (L.) By-Products: Peel and Pastazzo. Animals 2024, 14, 3196. [Google Scholar] [CrossRef]
- Hassan, M.U.; Vastolo, A.; Gannuscio, R.; Maniaci, G.; Mancuso, I.; Calabro, S.; Gallo, A.; Todaro, M.; Cutrignelli, M.I. Effects of feeding prickly pear by-product silage as a partial replacement of concentrate on dairy ewes: Milk characteristics, nutrient utilisation and in vitro ruminal fermentation. Anim. Feed Sci. Technol. 2025, 324, 116330. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Innosa, D.; Grotta, L.; D’Onofrio, A.; Martino, G. Chemical-nutritional characteristics and aromatic profile of milk and related dairy products obtained from goats fed with extruded linseed. Asian-Australas J. Anim. Sci. 2020, 33, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile Flavour Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, G. Dietary grape pomace supplementation in dairy cows: Effect on nutritional quality of milk and its derived dairy products. Foods 2020, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Natrella, G.; Difonzo, G.; Calasso, M.; Costantino, G.; Caponio, F.; Faccia, M. Evolution of VOC and sensory characteristics of stracciatella cheese as affected by different preservatives. Foods 2020, 9, 1446. [Google Scholar] [CrossRef] [PubMed]
- Natrella, G.; Gambacorta, G.; Faccia, M. Volatile organic compounds throughout the manufacturing process of Mozzarella di Gioia del Colle PDO cheese. Czech J. Food Sci. 2020, 38, 215–222. [Google Scholar] [CrossRef]
- Wolf, I.V.; Perotti, M.C.; Zalazar, C.A. Composition and volatile profiles of commercial Argentinean blue cheeses. J. Sci. Food Agric. 2011, 91, 385–393. [Google Scholar] [CrossRef]
- Damasio, A.R. Descartes’ Error: Emotion, Reason, and the Human Brain; Putnam: New York, NY, USA, 1994. [Google Scholar]
- Simon, H.A. A behavioral model of rational choice. Q. J. Econ. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Davidson, R.J.; Ekman, P.; Saron, C.D.; Senulis, J.A.; Friesen, W.V. Approach/withdrawal and cerebral asymmetry: Emotional expression and brain physiology: I. J. Pers. Soc. Psychol. 1990, 58, 330–341. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Gable, P.A.; Price, T.F. The influence of affective states on cognitive broadening/narrowing: Considering the importance of motivational intensity. Soc. Personal Psychol. Compass 2012, 6, 314–327. [Google Scholar] [CrossRef]
- Papies, E.K.; Potjes, I.; Keesman, M.; Schwinghammer, S.; van Koningsbruggen, G.M. Using health primes to reduce unhealthy snack purchases among overweight consumers in a grocery store. Int. J. Obes. 2014, 38, 597–602. [Google Scholar] [CrossRef]
- Russo, V.; Zito, M.; Bilucaglia, M.; Circi, R.; Bellati, M.; Marin, L.E.M.; Catania, E.; Licitra, G. Dairy Products with Certification Marks: The Role of Territoriality and Safety Perception on Intention to Buy. Foods 2021, 10, 2352. [Google Scholar] [CrossRef]
- Labbe, D.; Martin, N. Impact of novel olfactory stimuli at supra and subthreshold concentrations on the perceived sweetness of sucrose after associative learning. Chem. Senses 2009, 34, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Pineau, N.; Schlich, P. Temporal dominance of sensations (TDS) as a sensory profiling technique. In Rapid Sensory Profiling Techniques, 2nd ed.; Delarue, J., Ben Lawlor, J., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition, Rapid Sensory Profiling Techniques; Woodhead Publishing: Sawston, UK, 2023; Volume 13, pp. 281–320. [Google Scholar]
- Galmarini, M.V.; Loiseau, A.L.; Debreyer, D.; Visalli, M.; Schlich, P. Use of Multi-Intake Temporal Dominance of Sensations (TDS) to Evaluate the Influence of Wine on Cheese Perception. J. Food Sci. 2017, 82, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D. Fast and Slow Thinking; Allen Lane and Penguin Books: New York, NY, USA, 2011. [Google Scholar]
- Dubé, L.; Cantin, I. Promoting health or promoting pleasure? A contingency approach to the effect of informational and emotional appeals on food liking and consumption. Appetite 2000, 35, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Todaro, M.; Garofalo, G.; Busetta, G.; Gannuscio, R.; Di Rosa, A.R.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Franciosi, E.; Rando, F.; et al. Reduction of PDO Pecorino Siciliano cheese making duration: Microbial dynamics and quality attributes deriving from replacing whey permeate with hot water during cooking. Int. J. Food Microbiol. 2024, 410, 110481. [Google Scholar] [CrossRef]
- Standard FIL-IDF 29; Determination of the Casein Content of Milk. International Dairy Federation: Brussels, Belgium, 1964.
- Standard FIL-IDF 20B; Determination of Total Nitrogen in Milk. International Dairy Federation: Brussels, Belgium, 1993.
- Standard FIL-IDF 4A; Cheese and Processed Cheese Product. Determination of the Total Solids Content. International Dairy Federation: Brussels, Belgium, 1982.
- Standard FIL-IDF 5B; Cheese and Processed Cheese Product. Determination of Fat Content-Gravimetric Method (Reference Method). International Dairy Federation: Brussels, Belgium, 1986.
- Standard FIL-IDF 25; Determination of the Protein Content of Processed Cheese Products. International Dairy Federation: Brussels, Belgium, 1964.
- Standard FIL-IDF 27; Determination of the Ash Content of Processed Cheese Products. International Dairy Federation: Brussels, Belgium, 1964.
- CIE (Commission International de l’Eclairage). Colorimetry–Official Recommendations of the International Commission on Illumination. In CIE Publication No. 15.2; CIE Central Bureau: Vienna, Austria, 1986. [Google Scholar]
- Lee, M.R.F.; Tweed, J.K.S. Isomerisation of cis-9 trans-11 conjugated linoleic acid (CLA) to trans-9 trans-11 CLA during acidic methylation can be avoided by a rapid base catalysed methylation of milk fat. J. Dairy Res. 2008, 75, 354–356. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis Systems Institute). SAS/STAT Qualification Tools User’s Guide, Version 9.2; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Sinha, S.R.; Sullivan, L.; Sabau, D.; San-Juan, D.; Dombrowski, K.E.; Halford, J.J.; Hani, A.J.; Drislane, F.W.; Stecker, M.M. American Clinical Neurophysiology Society Guideline 1: Minimum Technical Requirements for Performing Clinical Electroencephalography. J. Clin. Neurophysiol. 2016, 33, 303–307. [Google Scholar] [CrossRef]
- Bokil, H.; Andrews, P.; Kulkarni, J.E.; Mehta, S.; Mitra, P.P. Chronux: A platform for analyzing neural signals. J. Neurosci. Methods. 2010, 192, 146–151. [Google Scholar] [CrossRef]
- Chang, C.Y.; Hsu, S.H.; Pion-Tonachini, L.; Jung, T.P. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-Channel EEG Recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Bilucaglia, M.; Zito, M.; Fici, A.; Casiraghi, C.; Rivetti, F.; Bellati, M.; Russo, V. I DARE: IULM Dataset of Affective Responses. Front. Hum. Neurosci. 2024, 18, 1347327. [Google Scholar] [CrossRef] [PubMed]
- Kayser, J.; Tenke, C.E. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. Int. J. Psychophysiol. 2015, 97, 189–209. [Google Scholar] [CrossRef]
- Norbury, A.; Valton, V.; Rees, G.; Roiser, J.P.; Husain, M. Shared Neural Mechanisms for the Evaluation of Intense Sensory Stimulation and Economic Reward, Dependent on Stimulation-Seeking Behavior. J. Neurosci. 2016, 36, 10026–10038. [Google Scholar] [CrossRef]
- Diano, M.; Celeghin, A.; Bagnis, A.; Tamietto, M. Human Amygdala in Sensory and Attentional Unawareness: Neural Pathways and Behavioural Outcomes. In The Amygdala-Where Emotions Shape Perception, Learning and Memories; InTechOpen: London, UK, 2017; pp. 3–26. [Google Scholar]
- Jaeger, S.; MacFie, H. The effect of advertising and means–end information on consumer expectations for apples. Food Qual. Prefer. 2001, 12, 189–205. [Google Scholar] [CrossRef]
- Pionnier, E.; Nicklaus, S.; Chabanet, C.; Mioche, L.; Taylor, A.J.; Le Quéré, J.L.; Salles, C. Flavor perception of a model cheese: Relationships with oral and physico-chemical parameters. Food Qual. Prefer. 2004, 15, 843–852. [Google Scholar] [CrossRef]
- Rodrigues, J.F.; Gonçalves, C.S.; Pereira, R.C.; Carneiro, J.D.; Pinheiro, A.C. Utilization of temporal dominance of sensations and time intensity methodology for development of low-sodium Mozzarella cheese using a mixture of salts. J. Dairy Sci. 2014, 97, 4733–4744. [Google Scholar] [CrossRef]
- Todaro, M.; Gannuscio, R.; Mancuso, I.; Ducato, B.; Scatassa, M.L. Relationships between chemical and physical parameters of bulk milk from Valle del Belice sheep. Ital. J. Animal Sci. 2023, 22, 953–958. [Google Scholar] [CrossRef]
- Fuertes, J.A.; Gonzalo, C.; Carriedo, J.A.; San Primitivo, F. Parameters of test day milk yield and milk components for dairy ewes. J. Dairy Sci. 1998, 81, 1300–1307. [Google Scholar] [CrossRef]
- Todaro, M.; Dattena, M.; Acciaioli, A.; Bonanno, A.; Bruni, G.; Caroprese, M.; Mele, M.; Sevi, A.; Trabalza Marinucci, M. Aseasonal sheep and goat milk production in the Mediterranean area: Physiological and technical insights. Small Rum. Res. 2015, 126, 59–66. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Bellocci, M.; Grotta, L.; Sacchetti, G.; Martino, G. Influence of dietary grape pomace supplementation on chemical and sensory properties of ewes’ cheese. Int. Dairy J. 2023, 143, 105671. [Google Scholar] [CrossRef]
- Bocquier, F.; Caja, G. Production et composition du lait de brebis: Effets de l’alimentation. Prod. Anim. 2001, 2, 129–140. [Google Scholar] [CrossRef]
- Gaglio, R.; Todaro, M.; Scatassa, M.L.; Franciosi, E.; Corona, O.; Mancuso, I.; Di Gerlando, R.; Cardamone, C.; Settanni, L. Transformation of raw ewes’ milk applying “Grana” type pressed cheese technology: Development of extra-hard “Gran Ovino” cheese. Int. J. Food Microbiol. 2019, 307, 108277. [Google Scholar] [CrossRef]
- Gaglio, R.; Franciosi, E.; Todaro, A.; Guarcello, R.; Alfeo, V.; Randazzo, C.L.; Settanni, L.; Todaro, M. Addition of selected starter/non-starter lactic acid bacterial inoculums to stabilise PDO Pecorino Siciliano cheese production. Food Res. Int. 2020, 136, 109335. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, A.; Legua, P.; Hernandez, F. Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. J. Food Compos. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem. 2003, 83, 447–456. [Google Scholar] [CrossRef]
- Álvarez-Torres, J.N.; Ramírez-Bribiesca, J.E.; Bautista-Martínez, Y.; Crosby-Galván, M.M.; Granados-Rivera, L.D.; Ramírez-Mella, M.; Ruiz-González, A. Stability and Effects of Protected Palmitic Acid on In Vitro Rumen Degradability and Fermentation in Lactating Goats. Fermentation 2024, 10, 110. [Google Scholar] [CrossRef]
- Cabiddu, A.; Decandia, M.; Addis, M.; Piredda, G.; Pirisi, A.; Molle, G. Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rum. Res. 2005, 59, 169–180. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 2000, 49, 181–205. [Google Scholar] [CrossRef]
- MacGibbon, A.K.H.; Taylor, M.W. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy Chemistry, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Khiaosa-Ard, R.; Bryner, S.F.; Scheeder, M.R.L.; Wettstein, H.-R.; Leiber, F.; Kreuzer, M.; Soliva, C.R. Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 2009, 92, 177–188. [Google Scholar] [CrossRef]
- Cifuni, G.F.; Claps, S.; Morone, G.; Sepe, L.; Caparra, P.; Benincasa, C.; Pellegrino, M.; Perri, E. Valorization of olive mill byproducts: Recovery of biophenol compounds and application in animal feed. Plants 2023, 12, 3062. [Google Scholar] [CrossRef] [PubMed]
- Cappucci, A.; Alves, S.P.; Bessa, R.J.B.; Buccioni, A.; Mannelli, F.; Mariano Pauselli, M.; Viti, C.; Pastorelli, R.; Roscini, V.; Serra, A.; et al. Effect of increasing amounts of olive crude phenolic concentrate in the diet of dairy ewes on rumen liquor and milk fatty acid composition. J. Dairy Sci. 2018, 101, 4992–5005. [Google Scholar] [CrossRef]
- Pétel, C.; Onno, B.; Prost, C. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Sci. Technol. 2017, 59, 105–123. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.J.; Xu, L.Y.; Wang, B.; Zhang, J.H.; Li, B.Z.; Cao, Y.P.; Tan, L. Key aroma compounds identified in Cheddar cheese with different ripening times by aroma extract dilution analysis, odor activity value, aroma recombination, and omission; J. Dairy Sci. 2021, 104, 1576–1590. [Google Scholar] [CrossRef]
- Pinho, O.; Perez, C.; Ferreira, I.M.P.L.V.O. Solid-phase microextraction of volatile compounds in ‘‘Terrincho’’ ewe cheese Comparison of different fibers. J. Chromatogr. 2003, 1011, 1–9. [Google Scholar] [CrossRef]
- Engels, W.J.M.; Dekker, C.; de Jong, C.; Neeter, R.; Visser, S. A comparative study of volatile compounds in the water-soluble fraction of various types of ripened cheese. Int. Dairy J. 1997, 7, 255–263. [Google Scholar] [CrossRef]
- Ziino, M.; Condurso, C.; Romeo, V.; Giuffrida, D.; Verzera, A. Characterization of “Provola dei Nebrodi”, a typical Sicilian cheese, by volatiles analysis using SPME-GC/MS. Int. Dairy J. 2005, 15, 585–593. [Google Scholar] [CrossRef]
- Carpino, S.; Mallia, S.; La Terra, S.; Melilli, C.; Licitra, G.; Acree, T.E.; Barbano, D.M.; Van Soest, P.J. Composition and aroma compounds of Ragusano cheese: Native pasture and total mixed rations. J. Dairy Sci. 2004, 87, 816–830. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Shi, X.; Wang, B. A review on the general cheese processing technology, flavor biochemical pathways and the influence of yeasts in cheese. Front. Microbiol. 2021, 12, 703284. [Google Scholar] [CrossRef] [PubMed]
- Coronado-Contreras, A.; Ruelas-Chacón, X.; Reyes-Acosta, Y.K.; Dávila-Medina, M.D.; Ascacio-Valdés, J.A.; Sepúlveda, L. Valorization of Prickly Pear Peel Residues (Opuntia ficus-indica) Using Solid-State Fermentation. Foods 2023, 12, 4213. [Google Scholar] [CrossRef] [PubMed]
- Santamarina-García, G.; Amores, G.; Hernández, I.; Morán, L.; Barrón, L.J.R.; Virto, M. Relationship between the dynamics of volatile aroma compounds and microbial succession during the ripening of raw ewe milk-derived Idiazabal cheese. Curr. Res. Food Sci. 2023, 6, 100425. [Google Scholar] [CrossRef]
- Deliza, R.; MacFIE, H.J.H. The generation of sensory expectation by external cues and its effect on sensory perception and hedonic ratings: A review. J. Sens. Stud. 1996, 11, 103–128. [Google Scholar] [CrossRef]
- Moussaoui, K.; Varela, P. Exploring consumer product profiling techniques and their linkage to a quantitative descriptive analysis. Food Qual. Prefer. 2010, 21, 1088–1099. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. Science 1981, 211, 453–458. [Google Scholar] [CrossRef]
- Wägeli, S.; Janssen, M.; Hamm, U. Organic consumers’ preferences and willingness-to-pay for locally produced animal products. Int. J. Consum. Stud. 2016, 40, 357–367. [Google Scholar] [CrossRef]
Sample/Matrix | Fresh Pecorino Cheese “Primo Sale” |
---|---|
SPME fiber | 50/30 µm DVB/CAR/PDMS |
Sample equilibration | 30 min, into a thermostatic water bath at 60 °C |
Extraction | 30 min, into a thermostatic water bath at 60 °C |
Column | TG XLBMS column, L = 20 m × I.D. = 0.18 mm × df = 0.18 μm (Thermo Scientific GC Column) |
Injection T | 230 °C |
Detector | Triple quadruple |
Scan range | Full scan, m/z 30–350 |
Carrier gas | He 99.9999%, 1.2 mL/min |
Items | Diet | SEM | p-Value | |
---|---|---|---|---|
CTR | EXP | |||
Fat (%) | 6.04 | 5.48 | 0.151 | 0.001 |
Protein (%) | 5.83 | 5.79 | 0.102 | 0.106 |
Casein (%) | 4.47 | 4.39 | 0.113 | 0.035 |
Urea (mg/dl) | 46.71 | 44.31 | 0.135 | 0.001 |
Lactose (%) | 4.25 | 4.28 | 0.022 | 0.098 |
pH | 6.71 | 6.78 | 0.028 | 0.238 |
Titratable acidity (SH/50 mL) | 5.01 | 4.81 | 0.150 | 0.005 |
Somatic Cell Count (Log10/mL) | 6.14 | 6.27 | 0.118 | 0.012 |
Total Bacterial Count (Log10/mL) | 5.62 | 5.44 | 0.025 | 0.039 |
Items | Diet | SEM | p-Value | |
---|---|---|---|---|
CTR | EXP | |||
Dry matter (DM, %) | 61.4 | 63.1 | 0.43 | 0.109 |
Fat (% DM) | 43.2 | 44.1 | 0.09 | 0.110 |
Protein (% DM) | 45.3 | 45.6 | 0.38 | 0.676 |
Ash (% DM) | 11.2 | 10.1 | 0.09 | 0.181 |
Hardness (N/mm2) | 0.393 | 0.389 | 0.054 | 0.966 |
Lightness, L* | 75.27 | 73.49 | 0.715 | 0.221 |
Redness, a* | −5.79 | −5.91 | 0.456 | 0.875 |
Yellowness, b* | 18.49 | 16.72 | 1.668 | 0.531 |
Fatty Acids (FA) | Diet | SEM | p-Value | |
---|---|---|---|---|
CTR | EXP | |||
Total FA, % DM | 45.64 | 47.11 | 1.407 | 0.488 |
C4:0 | 2.95 | 2.93 | 0.222 | 0.963 |
C6:0 | 3.00 | 3.13 | 0.208 | 0.687 |
C8:0 | 2.89 | 3.07 | 0.163 | 0.465 |
C10:0 | 7.64 B | 8.51 A | 0.260 | 0.050 |
C10:1 | 0.37 B | 0.41 A | 0.011 | 0.050 |
C12:0 | 4.06 B | 4.51 A | 0.021 | 0.001 |
C12:1 | 0.14 B | 0.17 A | 0.001 | 0.001 |
C14:0 | 10.67 b | 11.39 a | 0.176 | 0.028 |
C14:0 iso | 0.09 B | 0.10 A | 0.002 | 0.007 |
C14:1 | 0.75 | 0.78 | 0.014 | 0.154 |
C15:0 | 0.94 B | 1.04 A | 0.017 | 0.006 |
C15:0 iso | 0.22 a | 0.21 b | 0.004 | 0.050 |
C15:1 | 0.19 | 0.21 | 0.003 | 0.089 |
C16:0 | 24.10 b | 25.41 a | 0.368 | 0.045 |
C16:1 | 1.97 | 1.61 | 0.286 | 0.407 |
C17:0 | 0.59 | 0.61 | 0.007 | 0.073 |
C17:1 | 0.15 | 0.16 | 0.003 | 0.457 |
C18:0 | 8.02 A | 6.89 B | 0.027 | 0.001 |
C18:1 t11, TVA | 3.71 | 3.67 | 0.018 | 0.206 |
C18:1 c9 | 14.39 A | 11.90 B | 0.071 | 0.001 |
C18:1 others | 4.49 | 4.37 | 0.051 | 0.156 |
C18:2 n 6, LA | 1.65 | 1.64 | 0.016 | 0.611 |
C18:2 c9 t11 CLA | 1.68 A | 1.59 B | 0.009 | 0.005 |
C18:3 n-6 | 0.06 | 0.06 | 0.001 | 0.330 |
C18:3 n-3, ALA | 1.01 B | 1.26 A | 0.008 | 0.001 |
C19:0 | 0.46 | 0.49 | 0.019 | 0.351 |
C20:0 | 0.24 A | 0.18 B | 0.003 | 0.001 |
C20:4 n-6, AA | 0.09 | 0.08 | 0.002 | 0.213 |
C20:5 n-3, EPA | 0.09 | 0.09 | 0.001 | 0.105 |
C21:0 | 0.05 B | 0.06 A | 0.001 | 0.001 |
C22:0 | 0.11 A | 0.09 B | 0.004 | 0.010 |
Saturated FA | 66.20 B | 68.80 A | 0.374 | 0.002 |
Monounsaturated FA | 27.63 A | 24.69 B | 0.370 | 0.001 |
Polyunsaturated FA | 6.18 B | 6.51 A | 0.051 | 0.003 |
n-6 PUFA | 1.98 a | 1.93 b | 0.014 | 0.045 |
n-3 PUFA | 1.11 A | 1.34 B | 0.008 | 0.001 |
n-6/n-3 | 1.79 A | 1.44 B | 0.010 | 0.001 |
Chemical Compounds | DIET | |
---|---|---|
CTR | EXP | |
Alcohols | 14.76 | 7.89 |
Carbonylic Compounds (Ketones and Aldehydes) | 1.30 | 1.29 |
Esters | 17.01 | 7.80 |
Fatty acids | 36.60 | 70.93 |
Hydrocarbons | 28.57 | 10.54 |
Terpenes | 0.33 | 0.34 |
Unknow | 1.42 | 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gannuscio, R.; Gifuni, G.; Maniaci, G.; Bongiorno, D.; Indelicato, S.; Lino, C.; Bilucaglia, M.; Fici, A.; Zito, M.; Russo, V.; et al. Fresh Pecorino Cheese Produced by Ewes Fed Silage with Prickly Pear By-Products: VOC, Chemical, and Sensory Characteristics Detected with a Neuro-Sensory Approach Combining EEG and TDS. Foods 2025, 14, 3334. https://doi.org/10.3390/foods14193334
Gannuscio R, Gifuni G, Maniaci G, Bongiorno D, Indelicato S, Lino C, Bilucaglia M, Fici A, Zito M, Russo V, et al. Fresh Pecorino Cheese Produced by Ewes Fed Silage with Prickly Pear By-Products: VOC, Chemical, and Sensory Characteristics Detected with a Neuro-Sensory Approach Combining EEG and TDS. Foods. 2025; 14(19):3334. https://doi.org/10.3390/foods14193334
Chicago/Turabian StyleGannuscio, Riccardo, Giuseppina Gifuni, Giuseppe Maniaci, David Bongiorno, Serena Indelicato, Claudia Lino, Marco Bilucaglia, Alessandro Fici, Margherita Zito, Vincenzo Russo, and et al. 2025. "Fresh Pecorino Cheese Produced by Ewes Fed Silage with Prickly Pear By-Products: VOC, Chemical, and Sensory Characteristics Detected with a Neuro-Sensory Approach Combining EEG and TDS" Foods 14, no. 19: 3334. https://doi.org/10.3390/foods14193334
APA StyleGannuscio, R., Gifuni, G., Maniaci, G., Bongiorno, D., Indelicato, S., Lino, C., Bilucaglia, M., Fici, A., Zito, M., Russo, V., Todaro, M., & Avellone, G. (2025). Fresh Pecorino Cheese Produced by Ewes Fed Silage with Prickly Pear By-Products: VOC, Chemical, and Sensory Characteristics Detected with a Neuro-Sensory Approach Combining EEG and TDS. Foods, 14(19), 3334. https://doi.org/10.3390/foods14193334