Applicability of Raman Spectroscopy for the Assessment of Wheat Flour Quality and Functionality in Bakery Applications
Abstract
1. Introduction
2. Working Principle of Raman Spectroscopy
3. Instrumentation
4. Wheat Starch
Sample Type | Raman Device | Laser Wavelength (nm) and Power (mW) | Resolution (cm−1) | Number of Scans/Accumulations | Raman Shift Range (cm−1) | (Pre-)Processing Steps | Reference |
---|---|---|---|---|---|---|---|
Starch/water suspensions | FT-Raman | 1064 3000 | 16 | 256 | 400–4000 | Area normalization, baseline correction | [28] |
Starch/water mixtures | LCM 1-Raman | 785 N.S. 2 | 7 | 8 | 100–3200 | N.S. | [31] |
Starch/water systems | LCM-Raman | 785 N.S. | N.S. | 5 | 100–3200 | N.S. | [32] |
Starch/water mixtures | LCM-Raman | 785 N.S. | 7 | N.S. | 100–3200 | N.S. | [33] |
Starch/water mixtures | LCM-Raman | 785 N.S. | 7 | N.S. | 100–3200 | Baseline correction | [34] |
Starch/water mixtures | LCM-Raman | 785 N.S. | N.S. | 5 | 100–3200 | N.S. | [35] |
Starch/ fatty acid mixtures | LCM-Raman | 785 N.S. | 7 | N.S. | 100–3200 | N.S. | [37] |
Starch/water mixtures | FT-Raman | 1064 250 | 4 | 400 | N.S. | Blackman–Harris 4 apodization | [38] |
Starch/water mixtures | Portable Raman | 785 300,000 | N.S. | 3 | 200–2000 | Calibration, baseline correction | [39] |
5. Gluten Proteins
Raman (cm−1) | Band Assignment—Abbreviation | Reference |
---|---|---|
450–550; 500–560; 490–545 | SS bonds | [45,50,51] |
470–515; 500; 502–512 | SSg–g–g | [45,50,51] |
515–525; 510–520; 514–526 | SSg–g–t or SSt–g–g | [45,50,51] |
535–545; 540–545; 531–539 | SSt–g–t | [45,50,51] |
760 | Tryptophan—Trp | [45] |
1340; 1360 | Tryptophan doublet (I360/I340) | [50] |
830; 850 | Tyrosine—Tyr Tyrosine doublet (I850/I830) | [45,50,51] |
1004 | Phenylalanine—Phe | [45] |
1200–1330 | Amide III | [50] |
1220–1250 | β-sheet—βS | [50] |
1250–1270 | Random coil—RC | [50] |
1270–1295 | β-turn—βT | [50] |
1295–1330 | α-helix—αH | [50] |
1600–1700; 1570–1720 | Amide I | [45,46,50,51] |
1604; 1594–1604 | Aggregates—AGR | [46,51] |
1607–1609 | Hydrated β-sheet—hβS | [51] |
1615–1625 | Pseudo-β-sheet—pβS | [51] |
1613–1625; 1630–1640; 1630–1636 | β-sheet—βS | [45,50,51] |
1625–1637 | Solvated helix | [45] |
1637–1645; 1640–1650 | Random coil—RC | [45,50] |
1639–1665 | Hydrogen-bonded β-turn—HbβT | [51] |
1650–1658; 1648–1658 | α-helix—αH | [45,50,51] |
1666–1673; 1670–1678; 1667–1675 | β-turn—βT | [45,50,51] |
1677–1683 | Hydrogen-bonded antiparallel β-sheet—HbaβS | [51] |
1675–1695; 1690–1700; 1691–1696 | Antiparallel β-sheet—aβS | [45,50,51] |
2800–3000 | CH stretching—ν 1(C–H) | [45] |
3100–3400 | OH stretching—ν(O–H) | [52] |
Sample Type | Raman Device | Laser Wavelength (nm) and Power (mW) | Resolution (cm−1) | Number of Scans/Accumulations | Raman Shift Range (cm−1) | (Pre-)Processing Steps | Reference |
---|---|---|---|---|---|---|---|
(Thermal-treated) gluten/WEAX 1 | FT-Raman | N.S. 2 | N.S. | N.S. | N.S. | Baseline correction, normalization | [42] |
Washed-out gluten/SSL 3/DATEM 4/SSL + DATEM | FT-Raman | 1064 500 | 6 | 1000 | N.S. | Baseline correction, normalization, deconvolution | [45] |
Washed-out gluten/dietary fibers | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [46] |
(Thermal-treated) gluten/WEAX | FT-Raman | 1064 251 | 4 | 256 | 50–3500 | Baseline correction, normalization | [47] |
Kernel endosperm, gliadin | FT-Raman | 1064 500 and 800 | N.S. | 500 and 2000 | 300–200 and 300–4000 | Normalization, deconvolution | [48] |
Washed-out gluten/phenolic acids | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, difference spectra | [51] |
Washed-out gluten/phenolic acids | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, difference spectra | [53] |
(Thermal-treated) gluten, glutenin, gliadin | Raman imaging spectrometer | 785 15 | 4.7–8.7 | 2 | 400–3000 | Baseline correction, smoothing, normalization | [54] |
(Thermal-treated) fresh and frozen-stored gluten | FT-Raman | 1064 N.S. | 4 | 800 | 400–4000 | Baseline correction, normalization | [55] |
Thermal-treated gluten, glutenin, gliadin | Confocal Raman spectrometer | 1064 N.S. | 1 | N.S. | 400–3500 | Baseline correction, normalization, deconvolution | [56] |
Gliadin/salt/salt + Q 5 | Raman microscope | 785 N.S. | N.S. | N.S. | 500–4000 | Baseline correction, smoothing, normalization, standardization | [57] |
Gluten/salt | Microscopic Raman imaging spectrometer | 785 35 | 4.7–8.7 | 3 | N.S. | Baseline correction, normalization, deconvolution | [58] |
Washed-out gluten/salts | FT-Raman | N.S. | N.S. | N.S. | 400–4000 | Baseline correction, normalization | [59] |
Gliadin/glutenin/gluten/salt/salt + CMC 6 | Raman spectrometer | 785 | N.S. | N.S. | N.S. | Baseline correction, normalization | [60] |
Washed-out gluten/SSL | FT-Raman | 1064 500 | 6 | 1000 | N.S. | Baseline correction, normalization, deconvolution | [61] |
Extracted gliadin/anthocyanins | FT-Raman | 1064 60 | 4 | 15000 | N.S. | Baseline correction, deconvolution | [62] |
Washed-out gluten/phenolic acids | FT-Raman | 1064 1000 | 8 | 256 | N.S. | Baseline correction, normalization, difference spectra | [63] |
Washed-out gluten/phenolic acids | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, difference spectra | [64] |
Washed out gluten/phenolic acids | Raman microscope | 1064 N.S. | 8 | 256 | 500–4000 | Baseline correction, normalization, difference spectra | [65] |
Washed-out gluten/flavonoids/glycosides | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [66] |
Extracted gliadin/flavonoids/glycosides | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [67] |
Washed-out gluten/hydro-colloids | FT-Raman | 1064 500 | 6 | 1000 | 500–4000 | Baseline correction, normalization | [68] |
Washed-out gluten/dietary fibers | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, deconvolution, difference spectra | [69] |
Washed-out gluten/dietary fibers | FT-Raman | 1064 1000 | N.S. | N.S. | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [70] |
Washed-out gluten/dietary fibers | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [71] |
Washed-out gluten/dietary fibers | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [72] |
Washed-out gluten/dietary fibers | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [73] |
Washed-out gluten/moisturized dietary fibers/non-moisturized dietary fibers | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [74] |
Washed-out gluten/oil pomaces | FT-Raman | 1064 1000 | 8 | 256 | 150–3500 | Baseline correction, normalization, deconvolution, difference spectra | [75] |
Gluten/wheat bran dietary fiber | FT-Raman | 532 10 | 0.6 | 32 | 400–4000 | N.S. | [76] |
Washed-out gluten/KGM 7 | FT-Raman | 1064 370 | 4 | 256 | 100–3700 | Baseline correction, normalization | [77] |
6. Complex Matrices
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCD | Charge-coupled device |
PAT | Process Analytical Technology |
VIS | Visual light |
UV | Ultra-violet |
NIR | Near-infrared |
FT-Raman | Fourier-transform Raman |
RPO | Rapeseed oil |
CRW | Carnauba wax |
XRD | X-ray diffraction |
SAXS | Small-angle X-ray scattering |
DSC | Differential scanning calorimetry |
FTIR | Fourier transform infrared spectroscopy |
NMR | Nuclear magnetic resonance |
To | Onset temperature |
Tp | Peak temperature |
Tc | Conclusion temperature |
FWHM | Full width at half maximum |
NWS | Normal wheat starch |
WWS | Waxy wheat starch |
2D-COS | Two-dimensional correlation spectroscopy |
LCM-Raman | Laser confocal micro-Raman |
N.S. | Not specified |
HMW | High molecular weight |
LMW | Low molecular weight |
-SH | Thiol |
S-S | Disulfide bonds |
SE-HPLC | Size-exclusion high-performance liquid chromatography |
RP-HPLC | Reversed-phase high-performance liquid chromatography |
LC-MS | Liquid chromatography–mass spectrometry |
CD | Circular dichroism |
IR | Infra-red |
g–g–g or SSg–g–g | Gauche–gauche–gauche |
g–g–t or SSg–g–t | Gauche–gauche–trans |
t–g–g | Trans–gauche–gauche |
t–g–t or SSt–g–t | Trans–gauche–trans |
AGR | Aggregate |
pβS | pseudo-β-sheet |
βS | β-sheet |
αH | α-helix |
βT | β-turn |
aβS | Antiparallel-β-sheet |
Trp | Tryptophan |
Tyr | Tyrosine |
Phe | Phenylalanine |
RC | Random coil |
hβS | Hydrated β-sheet |
HbβT | Hydrogen-bonded β-turn |
HbaβS | Hydrogen-bonded antiparallel β-sheet |
SSL | Sodium stearoyl lactylate |
DATEM | Diacetyl tartaric acid esters of monoglycerides |
WEAX | Water-extractable arabinoxylan |
Q | Quercetin |
KGM | Konjac glucomannan |
DF | Dietary fiber |
SYN | Sinapic acid |
CRB | Cranberry |
FLX | Flax |
IN | Inulin |
MCC | Microcrystalline cellulose |
CP | Citrus pectin |
AP | Apple pectin |
LBG | Locust bean gum |
XG | Xanthan gum |
GG | Guar gum |
P | Pectin |
TCEP | Tris(2-carboxyethyl)phosphine |
MIR | Mid-infrared |
Appendix A
Appendix A.1. Materials and Methods
Appendix A.1.1. Materials
Appendix A.1.2. Dough-Making Procedure
Appendix A.1.3. Raman Measurement and Data Processing
References
- Das, R.S.; Agrawal, Y.K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Wu, L.; Tang, X.; Wu, T.; Zeng, W.; Zhu, X.; Hu, B.; Zhang, S. A Review on Current Progress of Raman-Based Techniques in Food Safety: From Normal Raman Spectroscopy to SESORS. Food Res. Int. 2023, 169, 112944. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Wang, W.; Ni, X.Z.; Chu, X.; Yoon, S.C.; Lawrence, K.C. Detection of Mycotoxins and Toxigenic Fungi in Cereal Grains Using Vibrational Spectroscopic Techniques: A Review. World Mycotoxin J. 2020, 13, 163–178. [Google Scholar] [CrossRef]
- Petersen, M.; Yu, Z.; Lu, X. Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors 2021, 11, 187. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Jerome, R.E.; Singh, S.K.; Dwivedi, M. Process Analytical Technology for Bakery Industry: A Review. J. Food Process Eng. 2019, 42, e13143. [Google Scholar] [CrossRef]
- Vandenabeele, P. Practical Raman Spectroscopy—An Introduction; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2013. [Google Scholar] [CrossRef]
- Fakayode, S.O.; Baker, G.A.; Bwambok, D.K.; Bhawawet, N.; Elzey, B.; Siraj, N.; Macchi, S.; Pollard, D.A.; Perez, R.L.; Duncan, A.V.; et al. Molecular (Raman, NIR, and FTIR) Spectroscopy and Multivariate Analysis in Consumable Products Analysis. Appl. Spectrosc. Rev. 2020, 55, 647–723. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C.; Pidkova, S.; Bartoli, M.; Rovere, M.; Tagliaferro, A. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors 2021, 9, 262. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Sruthi, N.U.; Kumar, A.; Kothakota, A.; Thirumdas, R.; Ramesh, S.V.; Cozzolino, D. Recent Applications of Vibrational Spectroscopic Techniques in the Grain Industry. Food Rev. Int. 2023, 39, 209–239. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.; Ayvaz, H. Infrared and Raman Spectroscopy. In Nielsen’s Food Analysis; Springer International Publishing: Cham, Switzerland, 2024; pp. 95–116. [Google Scholar]
- Hardy, M.; Chu, H.O.M. Laser Wavelength Selection in Raman Spectroscopy. Analyst 2025, 150, 1986–2008. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J. Spectroscopic Technique: Fourier Transform Raman (FT-Raman) Spectroscopy. In Modern Techniques for Food Authentication; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–217. [Google Scholar]
- Treado, P.J.; Priore, R.J.; Nelson, M.P. Raman Spectroscopic Imaging. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; Volume 5. [Google Scholar]
- Giridhar, G.; Manepalli, R.R.K.N.; Apparao, G. Confocal Raman Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 141–161. ISBN 978-0-323-46146-7. [Google Scholar]
- Stewart, S.; Priore, R.J.; Nelson, M.P.; Treado, P.J. Raman Imaging. Annu. Rev. Anal. Chem. 2012, 5, 337–360. [Google Scholar] [CrossRef]
- Li, N.; Hussain, N.; Ding, Z.; Qu, C.; Li, Y.; Chu, L.; Liu, H. Guidelines for Raman Spectroscopy and Imaging Techniques in Food Safety Analysis. Food Saf. Health 2024, 2, 221–237. [Google Scholar] [CrossRef]
- Finnie, S.; Atwell, W.A. Composition of Commercial Flour. In Wheat Flour, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 31–48. ISBN 978-1-891127-90-8. [Google Scholar]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat Starch Production, Structure, Functionality and Applications—A Review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Hellemans, T.; Nekhudzhiga, H.; Van Bockstaele, F.; Wang, Y.J.; Emmambux, M.N.; Eeckhout, M. Variation in Amylose Concentration to Enhance Wheat Flour Extrudability. J. Cereal Sci. 2020, 95, 102992. [Google Scholar] [CrossRef]
- Van Rooyen, J.; Simsek, S.; Oyeyinka, S.A.; Manley, M. Wheat Starch Structure–Function Relationship in Breadmaking: A Review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2292–2309. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, J.; Liu, X.; Yu, J.; Copeland, L.; Wang, S. Methods for Characterizing the Structure of Starch in Relation to Its Applications: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4799–4816. [Google Scholar] [CrossRef] [PubMed]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat Flour Constituents: How They Impact Bread Quality, and How to Impact Their Functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Tribuzio, G.; Vittadini, E. Bread Staling: Effect of Gluten on Physico-Chemical Properties and Molecular Mobility. LWT-Food Sci. Technol. 2014, 59, 418–425. [Google Scholar] [CrossRef]
- Cauvain, S. Technology of Breadmaking; Springer: Cham, Switzerland, 2015; pp. 1–408. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Chen, W.; Xu, W.; Junejo, S.A.; Feng, Y.; Gao, T.; Huang, Q.; Jiang, Y.; Zhang, B.; Jia, X.; Huang, Q. Analytical Methods for Starch Retrogradation Assessment. Food Biomacromolecules 2024, 1, 107–126. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J. Discrimination of Irradiated Starch Gels Using FT-Raman Spectroscopy and Chemometrics. J. Agric. Food Chem. 2006, 54, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched Cassava Starch Crystallinity Determination by Raman Spectroscopy: Correlation of Features in Raman Spectra with X-Ray Diffraction and 13C CP/MAS NMR Spectroscopy. Carbohydr. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Sivam, A.S.; Sun-Waterhouse, D.; Perera, C.O.; Waterhouse, G.I.N. Application of FT-IR and Raman Spectroscopy for the Study of Biopolymers in Breads Fortified with Fibre and Polyphenols. Food Res. Int. 2013, 50, 574–585. [Google Scholar] [CrossRef]
- Liu, X.; Luan, H.; Jinglin, Y.; Wang, S.; Wang, S.; Copeland, L. A Method for Characterizing Short-Range Molecular Order in Amorphous Starch. Carbohydr. Polym. 2020, 242, 116405. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Xiang, F.; Zhang, X.; Wang, S.; Copeland, L. New Insights into Gelatinization Mechanisms of Cereal Endosperm Starches. Sci. Rep. 2018, 8, 3011. [Google Scholar] [CrossRef]
- Huang, S.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. New Insight into Starch Retrogradation: The Effect of Short-Range Molecular Order in Gelatinized Starch. Food Hydrocoll. 2021, 120, 106921. [Google Scholar] [CrossRef]
- Liu, Z.; Chao, C.; Liu, X.; Yu, J.; Copeland, L.; Wang, S. A Novel Method for Quantifying the Short-Range Order in Non-Crystalline Starch by Raman Spectroscopy. Carbohydr. Polym. 2024, 332, 121890. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Zhang, X.; Copeland, L.; Wang, S. Retrogradation Enthalpy Does Not Always Reflect the Retrogradation Behavior of Gelatinized Starch. Sci. Rep. 2016, 6, 20965. [Google Scholar] [CrossRef]
- Liu, X.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. Mechanistic Studies of Starch Retrogradation and Its Effects on Starch Gel Properties. Food Hydrocoll. 2021, 120, 106914. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yu, J.; Wang, S. Effect of Fatty Acids on Functional Properties of Normal Wheat and Waxy Wheat Starches: A Structural Basis. Food Chem. 2016, 190, 285–292. [Google Scholar] [CrossRef]
- Fechner, P.M.; Wartewig, S.; Kleinebudde, P.; Neubert, R.H.H. Studies of the Retrogradation Process for Various Starch Gels Using Raman Spectroscopy. Carbohydr. Res. 2005, 340, 2563–2568. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Ma, Q.; Zhang, F.; Zhai, C.; Sun, J.; Tang, Y.; Wang, W. Insight into Microstructure Evolution during Starch Retrogradation by Infrared and Raman Spectroscopy Combined with Two-Dimensional Correlation Spectroscopy Analysis. Food Hydrocoll. 2024, 146, 109174. [Google Scholar] [CrossRef]
- Khalid, A.; Hameed, A.; Tahir, M.F. Wheat Quality: A Review on Chemical Composition, Nutritional Attributes, Grain Anatomy, Types, Classification, and Function of Seed Storage Proteins in Bread Making Quality. Front. Nutr. 2023, 10, 1053196. [Google Scholar] [CrossRef] [PubMed]
- Ooms, N.; Delcour, J.A. How to Impact Gluten Protein Network Formation during Wheat Flour Dough Making. Curr. Opin. Food Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, X.; Yang, R.; Zhou, Y.; Zhou, Q.; Gu, Z.; Jiang, D. Water-Extractable Arabinoxylan-Induced Changes in the Conformation and Polymerization Behavior of Gluten upon Thermal Treatment. J. Agric. Food Chem. 2020, 68, 4005–4016. [Google Scholar] [CrossRef]
- Kłosok, K.; Welc, R.; Fornal, E.; Nawrocka, A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021, 26, 508. [Google Scholar] [CrossRef]
- Lan, T.; Dong, Y.; Jiang, L.; Zhang, Y.; Sui, X. Analytical Approaches for Assessing Protein Structure in Protein-Rich Food: A Comprehensive Review. Food Chem. X 2024, 22, 101365. [Google Scholar] [CrossRef]
- Gómez, A.V.; Ferrer, E.G.; Añón, M.C.; Puppo, M.C. Changes in Secondary Structure of Gluten Proteins Due to Emulsifiers. J. Mol. Struct. 2013, 1033, 51–58. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Ptaszyńska, A.A.; Kowalski, R.; Waśko, P.; Gruszecki, W.I. Influence of Dietary Fibre on Gluten Proteins Structure—A Study on Model Flour with Application of FT-Raman Spectroscopy. J. Raman Spectrosc. 2015, 46, 309–316. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Li, J.; Li, F.; Teng, C.; Li, X. Effects of Water-Extractable Arabinoxylan on the Physicochemical Properties and Structure of Wheat Gluten by Thermal Treatment. J. Agric. Food Chem. 2017, 65, 4728–4735. [Google Scholar] [CrossRef]
- Stawoska, I.; Wesełucha-Birczyńska, A.; Skoczowski, A.; Dziurka, M.; Waga, J. FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules 2021, 26, 5388. [Google Scholar] [CrossRef]
- Correa, M.J.; Ferrer, E.; Añón, M.C.; Ferrero, C. Interaction of Modified Celluloses and Pectins with Gluten Proteins. Food Hydrocoll. 2014, 35, 91–99. [Google Scholar] [CrossRef]
- Lancelot, E.; Fontaine, J.; Grua-Priol, J.; Assaf, A.; Thouand, G.; Le-Bail, A. Study of Structural Changes of Gluten Proteins during Bread Dough Mixing by Raman Spectroscopy. Food Chem. 2021, 358, 129916. [Google Scholar] [CrossRef] [PubMed]
- Kłosok, K.; Welc, R.; Szymańska-Chargot, M.; Nawrocka, A. Phenolic Acids-Induced Aggregation of Gluten Proteins. Structural Analysis of the Gluten Network Using FT-Raman Spectroscopy. J. Cereal Sci. 2022, 107, 103503. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wang, H.; Liu, X.; Zhang, Y.; Zhang, H. In-Situ Analysis of the Water Distribution and Protein Structure of Dough during Ultrasonic-Assisted Freezing Based on Miniature Raman Spectroscopy. Ultrason. Sonochem. 2020, 67, 105149. [Google Scholar] [CrossRef]
- Krekora, M.; Szymańska-Chargot, M.; Niewiadomski, Z.; Miś, A.; Nawrocka, A. Effect of Cinnamic Acid and Its Derivatives on Structure of Gluten Proteins—A Study on Model Dough with Application of FT-Raman Spectroscopy. Food Hydrocoll. 2020, 107, 105935. [Google Scholar] [CrossRef]
- Xu, K.; Kuang, J. Effects of Thermal Treatment on the Physicochemical and Structural Properties of Wheat Gluten Proteins: Insights from Gluten, Glutenin, and Gliadin Fractions. Int. J. Food Sci. Technol. 2024, 59, 2275–2285. [Google Scholar] [CrossRef]
- Wang, P.; Zou, M.; Li, D.; Zhou, Y.; Jiang, D.; Yang, R.; Gu, Z. Conformational Rearrangement and Polymerization Behavior of Frozen-Stored Gluten during Thermal Treatment. Food Hydrocoll. 2020, 101, 105502. [Google Scholar] [CrossRef]
- Liu, H.; Liang, Y.; Zhang, S.; Yan, X.; Wang, J.; Liu, M.; He, B.; Zhang, X.; Wang, J. Cooking Mediated Wheat Gluten Aggregation Behavior: Physicochemical Properties and Component Changes. Food Hydrocoll. 2023, 144, 108957. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y.; Yang, Y.; Lei, L.; Zhao, J.; Zhang, Y.; Li, L.; Wang, Q.; Ming, J. Combined Effects of Quercetin and Sodium Chloride Concentrations on Wheat Gliadin Structure and Physicochemical Properties. J. Sci. Food Agric. 2020, 101, 2511–2518. [Google Scholar] [CrossRef]
- Kuang, J.; Xu, K. Comparative Molecular Conformation, Interaction, and Network Characteristics of Wheat Gluten Modulated by Sodium Chloride and Sodium Carbonate. Int. J. Food Sci. Technol. 2023, 58, 6621–6632. [Google Scholar] [CrossRef]
- Yang, T.; Wang, B.; Lv, T.; Wang, P.; Zhou, Q.; Jiang, D.; Jiang, H. Influence of High-Molecular-Weight Glutenin Subunits and Salt Types on Dough Rheology and Gluten Aggregation: A Combined Experimental and Computational Approach. Food Hydrocoll. 2025, 160, 110827. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, Y.; Wang, Q.; Tang, Y.; Li, F.; Zhao, J.; Zhang, Y.; Ming, J. Combined Effect of Carboxymethylcellulose and Salt on Structural Properties of Wheat Gluten Proteins. Food Hydrocoll. 2019, 97, 105189. [Google Scholar] [CrossRef]
- Ferrer, E.G.; Gómez, A.V.; Añón, M.C.; Puppo, M.C. Structural Changes in Gluten Protein Structure after Addition of Emulsifier. A Raman Spectroscopy Study. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2011, 79, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Zanna, N.; Tozzi, S. Raman Characterization of the Interactions between Gliadins and Anthocyanins. J. Raman Spectrosc. 2013, 44, 1435–1439. [Google Scholar] [CrossRef]
- Krekora, M.; Nawrocka, A. The Influence of Selected Polyphenols on the Gluten Structure—A Study on Gluten Dough with Application of FT-IR and FT-Raman Spectroscopy. J. Cereal Sci. 2022, 108, 103570. [Google Scholar] [CrossRef]
- Krekora, M.; Nawrocka, A. Effect of a Polyphenol Molecular Size on the Gluten Proteins—Polyphenols Interactions Studied with FT-Raman Spectroscopy. Food Biophys. 2022, 17, 535–544. [Google Scholar] [CrossRef]
- Welc, R.; Kłosok, K.; Szymańska-Chargot, M.; Nawrocka, A. Effect of Chemical Structure of Selected Phenolic Acids on the Structure of Gluten Proteins. Food Chem. 2022, 389, 133109. [Google Scholar] [CrossRef]
- Krekora, M.; Markiewicz, K.H.; Wilczewska, A.Z.; Nawrocka, A. Raman and Thermal (TGA and DSC) Studies of Gluten Proteins Supplemented with Flavonoids and Their Glycosides. J. Cereal Sci. 2023, 111, 103672. [Google Scholar] [CrossRef]
- Krekora, M.; Nawrocka, A. Interactions of Gliadins with Flavonoids and Their Glycosides Studied with Application of FT-Raman Spectroscopy. J. Cereal Sci. 2024, 117, 103915. [Google Scholar] [CrossRef]
- Linlaud, N.; Ferrer, E.; Puppo, M.C.; Ferrero, C. Hydrocolloid Interaction with Water, Protein, and Starch in Wheat Dough. J. Agric. Food Chem. 2011, 59, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, A.; Miś, A.; Szymańska-Chargot, M. Characteristics of Relationships Between Structure of Gluten Proteins and Dough Rheology—Influence of Dietary Fibres Studied by FT-Raman Spectroscopy. Food Biophys. 2016, 11, 81–90. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Dietary Fiber-Induced Changes in the Structure and Thermal Properties of Gluten Proteins Studied by Fourier Transform-Raman Spectroscopy and Thermogravimetry. J. Agric. Food Chem. 2016, 64, 2094–2104. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Kowalski, R.; Gruszecki, W.I. Raman Studies of Gluten Proteins Aggregation Induced by Dietary Fibres. Food Chem. 2016, 194, 86–94. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Effect of Dietary Fibre Polysaccharides on Structure and Thermal Properties of Gluten Proteins—A Study on Gluten Dough with Application of FT-Raman Spectroscopy, TGA and DSC. Food Hydrocoll. 2017, 69, 410–421. [Google Scholar] [CrossRef]
- Nawrocka, A.; Szymańska-Chargot, M.; Miś, A.; Wilczewska, A.Z.; Markiewicz, K.H. Aggregation of Gluten Proteins in Model Dough after Fibre Polysaccharide Addition. Food Chem. 2017, 231, 51–60. [Google Scholar] [CrossRef]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Szymańska-Chargot, M.; Krawęcka, A.; Sobota, A.; Miś, A. Effect of Moisturizing Pre-Treatment of Dietary Fibre Preparations on Formation of Gluten Network during Model Dough Mixing—A Study with Application of FT-IR and FT-Raman Spectroscopy. LWT 2020, 121, 108959. [Google Scholar] [CrossRef]
- Rumińska, W.; Szymańska-Chargot, M.; Wiącek, D.; Sobota, A.; Markiewicz, K.H.; Wilczewska, A.Z.; Miś, A.; Nawrocka, A. FT-Raman and FT-IR Studies of the Gluten Structure as a Result of Model Dough Supplementation with Chosen Oil Pomaces. J. Cereal Sci. 2020, 93, 102961. [Google Scholar] [CrossRef]
- Li, M.; Ma, S.; Zheng, X.; Li, L. Studies on the Formation Mechanism and Multiscale Structure of Wheat Bran Dietary Fiber-Gluten Protein Complex. Food Biosci. 2025, 66, 106219. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, D.; Foster, T.J.; Liu, Y.; Wang, Y.; Nirasawa, S.; Tatsumi, E.; Cheng, Y. Konjac Glucomannan-Induced Changes in Thiol/Disulphide Exchange and Gluten Conformation upon Dough Mixing. Food Chem. 2014, 143, 163–169. [Google Scholar] [CrossRef]
- Verbeke, C.; Debonne, E.; Versele, S.; Van Bockstaele, F.; Eeckhout, M. Technological Evaluation of Fiber Effects in Wheat-Based Dough and Bread. Foods 2024, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dhital, S.; Zhao, C.; Ye, F.; Chen, J.; Zhao, G. Dietary Fiber-Gluten Protein Interaction in Wheat Flour Dough: Analysis, Consequences and Proposed Mechanisms. Food Hydrocoll. 2021, 111, 106203. [Google Scholar] [CrossRef]
- Carcione, R.; Lanzetta, L.; D’Orsi, B.; Sarcina, I.D.; Mansi, E.; Scifo, J.; Cemmi, A. Gamma Irradiation for Agrifood: Non-Destructive Approaches to Study the Secondary Effects Produced in Italian Wheat Matrices. Polysaccharides 2025, 6, 39. [Google Scholar] [CrossRef]
- Piccinini, M.; Fois, S.; Secchi, N.; Sanna, M.; Roggio, T.; Catzeddu, P. The Application of NIR FT-Raman Spectroscopy to Monitor Starch Retrogradation and Crumb Firmness in Semolina Bread. Food Anal. Methods 2012, 5, 1145–1149. [Google Scholar] [CrossRef]
- Huen, J.; Weikusat, C.; Bayer-Giraldi, M.; Weikusat, I.; Ringer, L.; Lösche, K. Confocal Raman Microscopy of Frozen Bread Dough. J. Cereal Sci. 2014, 60, 555–560. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Feng, X.; Bai, W.; Zhou, K.; Zhang, Y.; Xu, D. Influence of Highland Barley Flour on Nutritional Quality, Dough Characteristics, and Volatile Aroma Compounds in Cakes. J. Food Process. Preserv. 2025, 2025, 9969215. [Google Scholar] [CrossRef]
- Rodriguez, A.; Kurouski, D. Raman Spectroscopy Enables Non-invasive and Quantitative Assessment of Macronutrients in Baked Foods. J. Raman Spectrosc. 2023, 54, 899–904. [Google Scholar] [CrossRef]
- An, H.; Zhai, C.; Zhang, F.; Ma, Q.; Sun, J.; Tang, Y.; Wang, W. Quantitative Analysis of Chinese Steamed Bread Staling Using NIR, MIR, and Raman Spectral Data Fusion. Food Chem. 2023, 405, 134821. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Temiz, H.T.; Geniş, H.E.; Acar Soykut, E.; Yazgan, N.N.; Güven, B.; Uysal, R.S.; Bozkurt, A.G.; İlaslan, K.; Torun, O.; et al. Dispersive and FT-Raman Spectroscopic Methods in Food Analysis. RSC Adv. 2015, 5, 56606–56624. [Google Scholar] [CrossRef]
Raman (cm−1) | Band Assignment 1 | Reference |
---|---|---|
411, 443, 480, 530, 576, 618 | ν(C–C–O), δ(C–C–O) pyranose ring skeletal modes | [29] |
721, 770, 779 | ν(C–C) ring mode | [13,29] |
840; 848–868 | C-1–H, CH2 deformation, X–C-1–H group stretching and bending (with X = C-2, O-1, or O-5) | [13,30] |
865, 868 | νs(C-1–O–C-5), δ(CH2), δ(C–H) | [29,30] |
910 (shoulder) | δ(C–OH), δ(CH2), δ(C-1–H) | [29] |
942 | CH2 vibrations | [30] |
943 | νs(C-1–O–C-4′) | [29] |
941–944 | X–C-1–H group stretching and bending (with X = C-2, O-1, or O-5) | [30] |
1003 | CH2-related mode | [29] |
1053 | ν(C–OH), δ(C–OH) modes, ν(C–C) | [29] |
1083 | C–O group, X–C-1–H group stretching and bending (with X = C-2, O-1, or O-5) | [30] |
1076, 1084 | δ(C–OH) bending | [13,29] |
1110 (shoulder) | C–C, C–O, C–H-related mode | [29] |
1127 | ν(C–OH), δ(C–OH), ν(C–O) | [29] |
1155 (shoulder) | νa(C-1–O–C-4′) α-1,4-glycosidic linkage | [29] |
1205 | δ(C–H) | [29] |
1255–1263 | C-1–O–H and/or C-6–O–H vibrations, CH2OH vibrations | [30] |
1264, 1272 | δ(CH2), C–OH, CH2OH (side chain)-related mode | [13,29] |
1305 | δ(C–H) | [29] |
1331–1339 | C–H and CH2-related modes | [30] |
1335 | C–O–H bend, CH2 twist | [13] |
1341 | δ(CH2) twisting, δ(C–OH) bending | [29] |
1350 | CO stretching, COH bending | [30] |
1381; 1370–1410 | δ(C–OH), δ(C–H) bending, δ(CH2) scissoring | [13,29] |
1403 (shoulder) | δ(C–H) bending | [29] |
1460, 1462 | δs(CH2) twisting, C–H bending | [13,29,30] |
1355–1599 | C–H and CH2-related modes | [30] |
2910; 2800–3000 | ν(C–H) | [13,22,28,29] |
3000–3600 | ν(O–H) | [13,22,28] |
Sample Type | Disulfide Region (%) | Tryptophan (Intensity) | Tyrosine Doublet Ratio | Amide I 1 (%) | Reference |
---|---|---|---|---|---|
Washed-out gluten/phenolic acids | ↑ t–g–g, ↓ g–g–g | Mostly insignificantly changed | ↑ | ↑ AGR, pβS and βS, ↓ αH and βT | [51] |
Washed-out gluten/phenolic acids | ↑ t–g–t and t–g–g, ↓ g–g–g | Mostly insignificantly changed | Mostly insignificantly changed | ↑ AGR, pβS and hβS, ↓ αH and βT | [53] |
Washed-out gluten/phenolic acids | ↓ or insignificantly changed g–g–g, ↑ and ↓ t–g–g, and mostly insignificantly changed t–g–t | ↑ | Mostly insignificantly changed | Measured with FTIR | [63] |
Washed-out gluten/phenolic acids | ↑ t–g–t and t–g–g, ↓ g–g–g | ↑ | Mostly insignificantly changed | ↑ pβS and hβS, ↓ αH and aβS | [64] |
Washed-out gluten/phenolic acids | Mostly insignificantly changed | Mostly insignificantly changed (exception: ↓ for highest concentration of SYN 2) | ↓ | ↑ AGR, ↓ βS and βT | [65] |
Gliadin/salt/salt + Q 3 | ↑ t–g–t and t–g–g, ↓ g–g–g | ↓ caused by salt, ↑ or insignificantly changed by salt + Q | ↑ caused by salt, ↓ or insignificantly changed by salt + Q | Measured by FTIR | [57] |
Gliadin/anthocyanins | ↑ t–g–g, ↓ g–g–g | N.S. 4 | ↓ | ↑ βS, ↓ βT | [62] |
Washed-out gluten/flavonoids/glycosides | ↑ t–g–g, ↓ t–g–t | ↑ or insignificantly changed | ↓ or insignificantly changed | ↓ AGR, αH, βT and aβS caused by flavonoids, ↑ AGR, pβS, and βS, ↓ βT and aβS caused by glycosides | [66] |
Gliadin/flavonoids/glycosides | ↑ g–g–g, ↓ t–g–t and t–g–g | Mostly insignificantly changed | Mostly insignificantly changed | ↑ αH, HbaβS, HbβT and aβS, ↓ AGR and pβS | [67] |
Gluten/WEAX 5 | ↑ g–g–g and t–g–g, ↓ t–g–t at 25 °C, ↑ and ↓ (very compound, concentration and temperature dependent) | ↓ <50 °C, ↑ >70 °C | ↓ at different temperatures (25–95 °C) | Measured with FTIR | [42] |
Washed-out gluten/DF | ↑ t–g–t, ↓ g–g–g | ↑ and ↓ (very compound dependent) | Slight changes | ↑ aβS, ↓ pβS | [46] |
Gluten/WEAX | ↓ t–g–t | ↑ at 25 °C, slight changes > 55 °C | ↑ and ↓ (temperature dependent) | Measured with FTIR | [47] |
Washed-out gluten/hydrocolloids | ↑ t–g–t and t–g–g, ↓ g–g–g | ↑ for LBG 12, ↓ for XG 13, GG 14 and P 15 | ↑ for P and LBG, ↓ for XG and GG | ↑ αH, solvated helix, and βS, ↓ aβS and βT for LBG, ↑ aβS, βS, βT, solvated helix, and RC, ↓ αH for XG, GG and P | [68] |
Washed-out gluten/DF | ↑ t–g–t and t–g–g, ↓ g–g–g | N.S. | ↓ (exception: ↑ for oat fiber) | ↑ αH and pβS, ↓ βS and βT | [69] |
Washed-out gluten/DF | ↑ t–g–t, ↓ g–g–g (exception: ↑ g–g–g caused by CRB 6 and FLX 7) | ↑ | ↓ | ↑ and ↓ (very compound and concentration dependent) | [70] |
Washed-out gluten/DF | ↑ and ↓ (very compound and concentration dependent) | ↑ and ↓ (very compound and concentration dependent, however mostly increasing intensity with increasing concentration) | ↓ | ↑ aβS, ↓ αH | [71] |
Washed-out gluten/DF | ↑ g–g–g (exception: for ↓ IN), ↑ and ↓ t–g–t and t–g–g (very compound and concentration dependent) | ↓ (exception: ↑ for highest concentration of MCC and CP 10) | ↓ for MCC and IN, ↑ for AP 11 and CP | ↑ aβS, HbaβS, AGR (in case of high contents of pectin), ↓ αH, pβS, βS, HbβT | [72] |
Washed-out gluten/DF | ↑ g–g–g (exception: ↓ for IN 8), ↓ or absence of t–g–t (except for MCC 9) | ↑ | ↓ | ↑ AGR, HbaβS, and βT, ↓ αH, pβS, βS, hβS and HbβT | [73] |
Washed-out gluten/moisturized DF/non-moisturized DF | ↑ t–g–t, ↓ g–g–g | ↓ | Mostly insignificantly changed | Measured with FTIR | [74] |
Washed-out gluten/oil pomaces | ↑ t–g–t and t–g–g, ↓ g–g–g | ↓ | Mostly insignificantly changed | Measured with FTIR | [75] |
Gluten/wheat bran DF | N.S. | ↑ | ↓ | Measured with FTIR | [76] |
Washed-out gluten/KGM 16 | ↑ t–g–t and t–g–g, ↓ g–g–g (except for 81% hydration, g-g-g remains dominant structure) | N.S. | ↑ for 81% hydration, ↓ 55% hydration | ↑ βS, ↓ αH | [77] |
Sample Type | Raman Device | Laser Wavelength (nm) and Power (mW) | Resolution (cm−1) | Number of Scans/Accumulations | Raman Shift Range (cm−1) | (Pre-)Processing Steps | Reference |
---|---|---|---|---|---|---|---|
Bread (with/without polyphenols and pectins) | LCM-Raman 1 | 785 5 | N.S. 2 | 40 | 200–3200 | N.S. | [30] |
Dough (with/without salt, celluloses, and pectins) | FT-Raman | 1064 500 | 6 | 1000 | N.S. | Baseline correction, normalization, deconvolution | [49] |
Dough (with/without TCEP 3) | Raman microscope | 785 40 | 9 | 12 | 400–1800 | Calibration, baseline correction, normalization, deconvolution | [50] |
Frozen dough | Micro-miniature Raman spectrometer | 785 N.S. | 3 | N.S. | 175–4000 | Baseline calibration, deconvolution | [52] |
Wheat flour (soft, hard) | LCM-Raman | 785 50 | N.S. | N.S. | N.S. | Baseline correction | [80] |
Semolina bread crumb | FT-Raman | 1064 N.S. | 4 | 128 | 250–3500 | Blackmann–Harris 3-term apodization, baseline correction, normalization, zero filling | [81] |
Frozen bread dough | Confocal Raman (imaging protocol) | N.S. N.S. | 200 × 200 | 40,000 | N.S. | N.S. | [82] |
Cake batter | N.S. | 633 10 | N.S. | 3 | 100–4000 | N.S. | [83] |
Baked products (e.g., bread, crackers) | Handheld Raman | 830 495 | N.S. | 20–25 | N.S. | Baseline correction, normalization, smoothing | [84] |
Chinese steamed bread | Portable Raman | 785 300,000 | N.S. | N.S. | 200–2000 | Smoothing, standard normal variate transformation | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van der Vennet, J.; De Witte, F.; Vandenabeele, P.; Eeckhout, M.; Van Bockstaele, F. Applicability of Raman Spectroscopy for the Assessment of Wheat Flour Quality and Functionality in Bakery Applications. Foods 2025, 14, 3330. https://doi.org/10.3390/foods14193330
Van der Vennet J, De Witte F, Vandenabeele P, Eeckhout M, Van Bockstaele F. Applicability of Raman Spectroscopy for the Assessment of Wheat Flour Quality and Functionality in Bakery Applications. Foods. 2025; 14(19):3330. https://doi.org/10.3390/foods14193330
Chicago/Turabian StyleVan der Vennet, Justine, Fien De Witte, Peter Vandenabeele, Mia Eeckhout, and Filip Van Bockstaele. 2025. "Applicability of Raman Spectroscopy for the Assessment of Wheat Flour Quality and Functionality in Bakery Applications" Foods 14, no. 19: 3330. https://doi.org/10.3390/foods14193330
APA StyleVan der Vennet, J., De Witte, F., Vandenabeele, P., Eeckhout, M., & Van Bockstaele, F. (2025). Applicability of Raman Spectroscopy for the Assessment of Wheat Flour Quality and Functionality in Bakery Applications. Foods, 14(19), 3330. https://doi.org/10.3390/foods14193330