Acid-Adapted Polyphenol Oxidases from Agricultural Wastes: Extraction, Characterization, and Application in Plant Protein Crosslinking
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Crude PPO Extraction
2.3. Protein Quantification and Enzyme Activity Assay
2.4. Optimal pH and pH Stability
2.5. Optimal Temperature and Thermal Stability
2.6. Electrophoresis Study
2.7. Substrate Specificity and Kinetic Assay
2.8. Soymeal Enzymatic Hydrolysates Crosslinking
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of pH on Activity of Polyphenol Oxidase from Agricultural Waste
3.2. Optimal Temperature and Thermal Stability of the Acid-Adapted Polyphenol Oxidase
3.3. Protein Profile of the Acid-Adapted Polyphenol Oxidase
3.4. Substrate Specificity and Kinetic Assay of the Acid-Adapted Polyphenol Oxidase
3.5. Crosslinking of Soymeal Enzymatic Hydrolysates with Acid-Adapted Polyphenol Oxidase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PPO | Polyphenol oxidase |
L-DOPA | 3,4-Dihydroxy-L-phenylalanine |
EGCG | Epigallocatechin gallate |
SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
UV-VIS | Ultraviolet–visible spectrophotometry |
β-ME | β-Mercaptoethanol |
U | Unit |
nU | Nanounit |
kDa | Kilodalton |
References
- John, J.A.; Riaz, S.; Taihid Ali, S.K.; Selvarajan, E. Chapter 3—Laccase and Polyphenol Oxidase: Biochemistry and Biotechnological Applications. In Laccase and Polyphenol Oxidase; Leung, I.K.H., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 69–83. ISBN 978-0-443-13301-5. [Google Scholar]
- Jukanti, A. Polyphenol Oxidases (PPO) in Plants; Springer: Singapore, 2017; ISBN 9789811057472. [Google Scholar]
- Li, X.; Li, S.; Liang, X.; McClements, D.J.; Liu, X.; Liu, F. Applications of Oxidases in Modification of Food Molecules and Colloidal Systems: Laccase, Peroxidase and Tyrosinase. Trends Food Sci. Technol. 2020, 103, 78–93. [Google Scholar] [CrossRef]
- Pretzler, M.; Rompel, A. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. ChemBioChem 2024, 25, e202400050. [Google Scholar] [CrossRef]
- Vamos-Vigyázó, L. Polyphenol Oxidase and Peroxidase in Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 1981, 15, 49–127. [Google Scholar] [CrossRef]
- Weemaes, C.A.; Ludikhuyze, L.R.; Van Den Broeck, I.; Hendrickx, M.E.; Tobback, P.P. Activity, Electrophoretic Characteristics and Heat Inactivation of Polyphenoloxidases from Apples, Avocados, Grapes, Pears and Plums. Food Sci. Technol. 1998, 31, 44–49. [Google Scholar] [CrossRef]
- Han, Q.Y.; Liu, F.; Wen, X.; Ni, Y.Y. Kinetic, Spectroscopic, and Molecular Docking Studies on the Inhibition of Membrane-Bound Polyphenol Oxidase from Granny Smith Apples (Malus domestica Borkh.). Food Chem. 2021, 338, 127928. [Google Scholar] [CrossRef]
- Espín, J.C.; García-Ruiz, P.A.; Tudela, J.; Varón, R.; García-Cá, F.; Grupo, G. Monophenolase and Diphenolase Reaction Mechanisms of Apple and Pear Polyphenol Oxidases. J. Agric. Food Chem. 1998, 46, 2968–2975. [Google Scholar] [CrossRef]
- Selinheimo, E.; NiEidhin, D.; Steffensen, C.; Nielsen, J.; Lomascolo, A.; Halaouli, S.; Record, E.; O’Beirne, D.; Buchert, J.; Kruus, K. Comparison of the Characteristics of Fungal and Plant Tyrosinases. J. Biotechnol. 2007, 130, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; Ramon, V.; Morales, M.; Tudela, J.; Garcia-Canovas, F. Monophenolase Activity of Polyphenol Oxidase from Blanquilla Pear. Phytochemistry 1997, 44, 17–22. [Google Scholar] [CrossRef]
- Demir, D.; Çağlayan, K.; Eken, C. Polyphenol Oxidase Activities in Japanese Pear (Pyrus pyrifolia (Burm.) Nakai) Fruit at Different Development Stages. Biol. Bull. 2023, 50, 1115–1124. [Google Scholar] [CrossRef]
- Gomes, M.H.; Vieira, T.; Fundo, J.F.; Almeida, D.P.F. Polyphenoloxidase Activity and Browning in Fresh-Cut “Rocha” Pear as Affected by PH, Phenolic Substrates, and Antibrowning Additives. Postharvest Biol. Technol. 2014, 91, 32–38. [Google Scholar] [CrossRef]
- Kahn, V.; Pomerantz, S.H. Monophenolase Activity of Avocado Polyphenol Oxidase. Phytochemistry 1980, 19, 379–385. [Google Scholar] [CrossRef]
- Espín, J.C.; Trujano, M.F.; Tudela, J.; García-Cá, F. Monophenolase Activity of Polyphenol Oxidase from Haas Avocado. J. Agric. Food Chem. 1997, 45, 1091–1096. [Google Scholar] [CrossRef]
- Blazejczyk, A. More than Half of Apples Available for U.S. Consumption Are Used in Juices. Available online: https://www.ers.usda.gov/data-products/charts-of-note/chart-detail?chartId=107383 (accessed on 1 August 2025).
- Reiland, H.; Slavin, J. Systematic Review of Pears and Health. Nutr. Today 2015, 50, 301–305. [Google Scholar] [CrossRef]
- Jaclyn, K.; Linda, C.U.S. Avocado Demand Is Climbing Steadily. Available online: https://www.ers.usda.gov/data-products/charts-of-note/chart-detail?chartId=98071 (accessed on 1 August 2025).
- Caliceti, C.; Malaguti, M.; Marracino, L.; Barbalace, M.C.; Rizzo, P.; Hrelia, S. Agri-Food Waste from Apple, Pear, and Sugar Beet as a Source of Protective Bioactive Molecules for Endothelial Dysfunction and Its Major Complications. Antioxidants 2022, 11, 1786. [Google Scholar] [CrossRef]
- Kauser, S.; Murtaza, M.A.; Hussain, A.; Imran, M.; Kabir, K.; Najam, A.; An, Q.U.; Akram, S.; Fatima, H.; Batool, S.A.; et al. Apple Pomace, a Bioresource of Functional and Nutritional Components with Potential of Utilization in Different Food Formulations: A Review. Food Chem. Adv. 2024, 4, 100598. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M. A Review of Avocado Waste-Derived Adsorbents: Characterizations, Adsorption Characteristics, and Surface Mechanism. Chemosphere 2022, 296, 134036. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Wang, F.; Xu, Z.; Feng, C.; Fang, Y.; Tang, X.; Shen, X. Characterization and Performance of Soybean Protein Modified by Tyrosinase. Int. J. Adhes. Adhes. 2019, 92, 111–118. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, X.; Li, X.; Zhang, S.; Huang, Y.; Zhang, D.; Li, Y.; Qi, B. Soy Protein–Phlorizin Conjugate Prepared by Tyrosinase Catalysis: Identification of Covalent Binding Sites and Alterations in Protein Structure and Functionality. Food Chem. 2023, 404, 134610. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D. Enzymatic Hydrolysis of Soy Proteins and the Hydrolysates Utilisation. Int. J. Food Sci. Technol. 2011, 46, 2447–2459. [Google Scholar] [CrossRef]
- Isaschar-Ovdat, S.; Rosenberg, M.; Lesmes, U.; Fishman, A. Characterization of Oil-in-Water Emulsions Stabilized by Tyrosinase-Crosslinked Soy Glycinin. Food Hydrocoll. 2015, 43, 493–500. [Google Scholar] [CrossRef]
- Mehaya, F.M.; El-Shazly, A.I.; El-Dein, A.N.; Farid, M.A. Evaluation of Nutritional and Physicochemical Characteristics of Soy Yogurt by Lactobacillus plantarum KU985432 and Saccharomyces boulardii CNCMI-745. Sci. Rep. 2023, 13, 13026. [Google Scholar] [CrossRef]
- Kim, M.S.; Nattress, L.; Simons, C.T. Investigating the Effect of Protein Type and Protein Concentration on Texture and Mouthfeel Sensory Properties of Plant and Animal-Based Beverages. Food Qual. Prefer. 2025, 126, 105399. [Google Scholar] [CrossRef]
- Heikal, Y.A.R.; Hassan, A.A.; Abou-Arab, A.A.; Abu-Salem, F.M.; Azab, D.E.S.H. Nano Formulated Soy Proteins as a Fat Replacer in Low Fat Mayonnaise Formula. J. Saudi Soc. Agric. Sci. 2023, 22, 469–479. [Google Scholar] [CrossRef]
- Liao, T.; Liu, J.; Sun, Y.; Zou, L.; Zhou, L.; Liu, C.; Terefe, N.S.; Liu, W. Differential Inhibitory Effects of Organic Acids on Pear Polyphenol Oxidase in Model Systems and Pear Puree. Food Sci. Technol. 2020, 118, 108704. [Google Scholar] [CrossRef]
- Selinheimo, E.; Gasparetti, C.; Mattinen, M.L.; Steffensen, C.L.; Buchert, J.; Kruus, K. Comparison of Substrate Specificity of Tyrosinases from Trichoderma reesei and Agaricus bisporus. Enzym. Microb. Technol. 2009, 44, 1–10. [Google Scholar] [CrossRef]
- Pei, Y.; Yuan, L.; Zhou, W.; Yang, J. Tyrosinase-Catalyzed Soy Protein and Tannic Acid Interaction: Effects on Structural and Rheological Properties of Complexes. Gels 2025, 11, 195. [Google Scholar] [CrossRef]
- Vate, N.K.; Benjakul, S. Combined Effect of Squid Ink Tyrosinase and Tannic Acid on Heat Induced Aggregation of Natural Actomyosin from Sardine. Food Hydrocoll. 2016, 56, 62–70. [Google Scholar] [CrossRef]
- Tian, S.; Ma, J.; Ahmed, I.; Lv, L.; Li, Z.; Lin, H. Effect of Tyrosinase-Catalyzed Crosslinking on the Structure and Allergenicity of Turbot Parvalbumin Mediated by Caffeic Acid. J. Sci. Food Agric. 2019, 99, 3501–3508. [Google Scholar] [CrossRef] [PubMed]
- Sigma-Aldrich Enzymatic Assay of Tyrosinase (EC 1.14.18.1). 1994. Available online: https://share.google/W4FiBV0kI2nxFIEmg (accessed on 1 August 2025).
- Pretzler, M.; Bijelic, A.; Rompel, A. Heterologous Expression and Characterization of Functional Mushroom Tyrosinase (AbPPO4). Sci. Rep. 2017, 7, 1810. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. In Basic Protein and Peptide Protocols; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2022; pp. 11–14. ISBN 978-1-59259-519-8. [Google Scholar]
- Han, Q.Y.; Liu, F.; Li, M.; Wang, K.L.; Ni, Y.Y. Comparison of Biochemical Properties of Membrane-Bound and Soluble Polyphenol Oxidase from Granny Smith Apple (Malus × domestica Borkh.). Food Chem. 2019, 289, 657–663. [Google Scholar] [CrossRef]
- Kolcuoǧlu, Y. Purification and Comparative Characterization of Monophenolase and Diphenolase Activities from a Wild Edible Mushroom (Macrolepiota gracilenta). Process Biochem. 2012, 47, 2449–2454. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Glusac, J.; Davidesko-Vardi, I.; Isaschar-Ovdat, S.; Kukavica, B.; Fishman, A. Gel-like Emulsions Stabilized by Tyrosinase-Crosslinked Potato and Zein Proteins. Food Hydrocoll. 2018, 82, 53–63. [Google Scholar] [CrossRef]
- Liu, W.E.I.; Jianhua, L.I.U.; Mingyong, X.I.E.; Chengmei, L.I.U.; Weilin, L.I.U.; Wan, J.I.E. Characterization and High-Pressure Microfluidization-Induced Activation of Polyphenoloxidase from Chinese Pear (Pyrus pyrifolia Nakai). J. Agric. Food Chem. 2009, 57, 5376–5380. [Google Scholar] [CrossRef]
- Siddiq, M.; Cash, J.N. Physico-Chemical Properties of Polyphenol Oxidase from d’Anjou and Bartlett Pears (Pyrus communis L.). J. Food Process. Preserv. 2000, 24, 353–364. [Google Scholar] [CrossRef]
- Siddiq, M.; Cash, J.N.; Sinha, N.K.; Akhter, P. Characterization and Inhibition of Polyphenol Oxidase from Pears (Pyrus communis L. Cv Bosc and Red). J. Food Biochem. 1993, 17, 327–337. [Google Scholar] [CrossRef]
- Wissemann, K.W.; Montgomery, M.W. Purification of d’Anjou Pear (Pyrus communis L.) Polyphenol Oxidase’. J. Plant Physiol. 1985, 78, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Smith, N.L.; Lee, C.Y. Potential Purification and Some Properties of Monroe Apple Peel Oxidase. Food Chem. 1993, 41, 532–536. [Google Scholar] [CrossRef]
- Liu, F.; Han, Q.; Ni, Y. Comparison of Biochemical Properties and Thermal Inactivation of Membrane-Bound Polyphenol Oxidase from Three Apple Cultivars (Malus domestica Borkh). Int. J. Food Sci. Technol. 2018, 53, 1005–1012. [Google Scholar] [CrossRef]
- Janovitz-Klapp, A.; Richard, F.; Nicolas, J. Polyphenoloxidase from Apple, Partial Purification and Some Properties. Phytochemistry 1989, 28, 2903–2907. [Google Scholar] [CrossRef]
- Soysal, Ç. Effects of Green Tea Extract on “Golden Delicious” Apple Polyphenoloxidase and Its Browning. J. Food Biochem. 2009, 33, 134–148. [Google Scholar] [CrossRef]
- Dabas, D.; Elias, R.J.; Lambert, J.D.; Ziegler, G.R. A Colored Avocado Seed Extract as a Potential Natural Colorant. J. Food Sci. 2011, 76, C1335–C1341. [Google Scholar] [CrossRef]
- Gomez-Lopez, V.M. Some Biochemical Properties of Polyphenol Oxidase from Two Varieties of Avocado. Food Chem. 2002, 77, 163–169. [Google Scholar] [CrossRef]
- Tian, Y.; Yan, W.; Tang, Y.; Yang, R.; Zhao, W. Inactivation of Membrane-Bound and Soluble Polyphenol Oxidases in Apple (Malus domestica Borkh) by Radio Frequency Processing for Improved Juice Quality. J. Food Process Eng. 2018, 41, e12923. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Liu, D.; Yang, L.; Hu, W.; Kuang, L.; Teng, J.; Liu, Y. Comparison of the Biochemical Properties and Enzymatic Synthesis of Theaflavins by Soluble and Membrane-Bound Polyphenol Oxidases from Tea (Camellia sinensis) Leaves. Food Sci. Technol. 2022, 42, e117321. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, H.; Cheng, F.; Niu, H.; Yuan, L.; Yi, J.; Zhou, L. Comparison of the Characterization and the Temperature/Pressure Stability of Soluble and Membrane-Bound Polyphenol Oxidase from ‘Lijiang’ Snow Peach. Food Sci. Technol. 2021, 146, 111401. [Google Scholar] [CrossRef]
- Cabanes, J.; Escribano, J.; Gandía-Herrero, F.; García-Carmona, F.; Jiménez-Atiénzar, M. Partial Purification of Latent Polyphenol Oxidase from Peach (Prunus persica L. Cv. Catherina). Molecular Properties and Kinetic Characterization of Soluble and Membrane-Bound Forms. J. Agric. Food Chem. 2007, 55, 10446–10451. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.Y.; Liu, P.; Meng, A.-L.; Deng, L.; Xue, W.; Chen, F.; Che, Z. Comparative Study of the Biochemical Properties of Membrane-Bound and Soluble Polyphenol Oxidase from Prunus Mume. Food Sci. Technol. 2022, 171, 114156. [Google Scholar] [CrossRef]
- Zaini, N.A.M.; Osman, A.; Hamid, A.A.; Ebrahimpour, A.; Saari, N. Purification and Characterization of Membrane-Bound Polyphenoloxidase (MPPO) from Snake Fruit [Salacca zalacca (Gaertn.) Voss]. Food Chem. 2013, 136, 407–414. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, J.H.; Gan, Z.L.; Ni, Y.Y. Comparison of Membrane-Bound and Soluble Polyphenol Oxidase in Fuji Apple (Malus domestica Borkh. Cv. Red Fuji). Food Chem. 2015, 173, 86–91. [Google Scholar] [CrossRef]
- Halim, D.H.; Montgomery, M.W. Purification of d’Anjou Pear (Pyrus communis L.). J. Food Sci. 1978, 43, 603–608. [Google Scholar] [CrossRef]
- Williams, M.W. Pear Production; No. 526; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Gauillard, F.; Richard-Forget, F. Polyphenoloxidases from Williams Pear (Pyrus communis L, Cv Williams): Activation, Purification and Some Properties. J. Sci. Food Agric. 1997, 74, 49–56. [Google Scholar] [CrossRef]
- Zhou, X.; Xiao, Y.; Meng, X.; Liu, B. Full Inhibition of Whangkeumbae Pear Polyphenol Oxidase Enzymatic Browning Reaction by L-Cysteine. Food Chem. 2018, 266, 1–8. [Google Scholar] [CrossRef]
- Ziyan, E.; Pekyardimci, Ş. Purification and Characterization of Pear (Pyrus communis) Polyphenol Oxidase. Turk. J. Chem. 2004, 28, 547–558. [Google Scholar]
- Hong, S.; Schaber, C.F.; Dening, K.; Appel, E.; Gorb, S.N.; Lee, H. Air/Water Interfacial Formation of Freestanding, Stimuli-Responsive, Self-Healing Catecholamine Janus-Faced Microfilms. Adv. Mater. 2014, 26, 7581–7587. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Park, J.P.; Hong, S.H.; Lee, H. Biologically Inspired Materials Exhibiting Repeatable Regeneration with Self-Sealing Capabilities without External Stimuli or Catalysts. Adv. Mater. 2016, 28, 9961–9968. [Google Scholar] [CrossRef]
- Isaschar-Ovdat, S.; Fishman, A. Crosslinking of Food Proteins Mediated by Oxidative Enzymes—A Review. Trends Food Sci. Technol. 2018, 72, 134–143. [Google Scholar] [CrossRef]
- Xu, W.; Chen, W.; Wang, Q.; McClements, D.J.; Chen, S.; Wang, Y.; Liu, X.; Wang, C.; Liu, F. Physicochemical and Preservative Properties of Tyrosinase-Crosslinked Sodium Caseinate-EGCG-Carboxymethyl Chitosan Composite Packaging: Comparison of Blended and Layer-by-Layer Films. Food Biosci. 2023, 54, 102831. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Ma, C.; Chen, S.; Liu, X.; Liu, F. Enzymatic Synthesis of Sodium Caseinate-EGCG-Carboxymethyl Chitosan Ternary Film: Structure, Physical Properties, Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2022, 222, 509–520. [Google Scholar] [CrossRef]
Substrate | Source | Wavelength (nm) | Vmax (U/min) | Km (mM) | Catalytic Efficiency (Vmax/Km) |
---|---|---|---|---|---|
L-DOPA | Anjou | 475 | 0.056 | 12.9 | 0.004 |
Bartlett | 475 | 0.029 | 5.5 | 0.005 | |
EGCG | Anjou | 425 | 0.012 | 4.2 | 0.003 |
Bartlett | 425 | 0.042 | 81.8 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.; Xu, Z.; Coupland, J.; Zhang, Y. Acid-Adapted Polyphenol Oxidases from Agricultural Wastes: Extraction, Characterization, and Application in Plant Protein Crosslinking. Foods 2025, 14, 3312. https://doi.org/10.3390/foods14193312
Tran T, Xu Z, Coupland J, Zhang Y. Acid-Adapted Polyphenol Oxidases from Agricultural Wastes: Extraction, Characterization, and Application in Plant Protein Crosslinking. Foods. 2025; 14(19):3312. https://doi.org/10.3390/foods14193312
Chicago/Turabian StyleTran, Trang, Zhe Xu, John Coupland, and Yi Zhang. 2025. "Acid-Adapted Polyphenol Oxidases from Agricultural Wastes: Extraction, Characterization, and Application in Plant Protein Crosslinking" Foods 14, no. 19: 3312. https://doi.org/10.3390/foods14193312
APA StyleTran, T., Xu, Z., Coupland, J., & Zhang, Y. (2025). Acid-Adapted Polyphenol Oxidases from Agricultural Wastes: Extraction, Characterization, and Application in Plant Protein Crosslinking. Foods, 14(19), 3312. https://doi.org/10.3390/foods14193312