Impacts of Climate Change on Grain Production in China, Japan, and South Korea Based on an Improved Economy–Climate Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data
2.3. Model Design
2.3.1. An Improved C-D-C Production Function
2.3.2. Yield Impact of Climate Change (YICC)
2.3.3. Model Validation Approaches
- (1)
- Validation approach of the improved C-D-C production function
- (2)
- Validation approach of YICC
3. Results
3.1. Validation Results
- (1)
- Validation results of the improved C-D-C production function
- (2)
- Validation results of the improved C-D-C production function
3.2. Impacts of Climate Factors on Grain Production
3.3. Impact Ratio of Climate Change (IRCC) Under Future Climate Scenarios
4. Sensitivity Test
4.1. Supplementary Control for Omitted Variables
4.2. Replacing the Explanatory Variable
5. Discussion
6. Conclusions
- (1)
- An improved model able to capture the relationship that first increases monotonically and then decreases monotonically between dry and wet conditions and grain production is established, validated, and considered to be well-performed. The model can analyze climate impacts from the perspective of real-word and practical data.
- (2)
- A non-monotonic relationship is observed between wet and dry conditions and grain production in five crop areas. Quantifying the optimal SPEI for major crop areas provides a precise scientific basis for irrigation management, suggesting that practices like alternate wetting and drying can simultaneously enhance water use efficiency and stabilize total yields.
- (3)
- The stark spatial heterogeneity in temperature responses project a coming climatic redistribution of agricultural potential. While warming exacerbates heat stress and shortens growing periods in already warm southern regions, it alleviates thermal constraints and boosts production in colder northern areas. This may precipitate a northward shift in China’s grain production region.
- (4)
- The divergent future impacts highlight varying levels of vulnerability. The negative impact on China’s wheat production, positive impact on maize and the north–south divergence in rice production signal serious may challenge for spatial pattern of traditional food supply in China. In contrast, the minimal impacts projected for Japan and South Korea suggest a more stable production outlook. The estimates provide a quantitative reference for future crop planning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Models Selection
Model | Institution |
---|---|
ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation (CSIRO), ARC Centre of Excellence for Climate System Science (ARCCSS), Australia |
BCC-CSM2-MR * | National Climate Center (Beijing), China |
CanESM5 | Canadian Centre for Climate Modelling and Analysis (CCCma), Canada |
CMCC-ESM2 | Euro-Mediterranean Center on Climate Change Foundation (CMCC Foundation), Italy |
MIROC6/MIROC-ES2L ** | Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Atmosphere and Ocean Research Institute, University of Tokyo (AORI), National Institute for Environmental Studies (NIES), RIKEN Center for Computational Science (R-CCS), Japan |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Germany |
MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan |
NESM3 * | Nanjing University of Information Science and Technology (NUIST), China |
NorESM2-LM | CICERO (Center for International Climate and Environmental Research—Oslo), MET Norway (Norwegian Meteorological Institute), NERSC (Nansen Environmental and Remote Sensing Center), NILU (Norwegian Institute for Air Research), UiB (University of Bergen), UiO (University of Oslo), and NORCE (Norwegian Research Centre AS), Norway |
NorESM2-MM | CICERO (Center for International Climate and Environmental Research—Oslo), MET Norway (Norwegian Meteorological Institute), NERSC (Nansen Environmental and Remote Sensing Center), NILU (Norwegian Institute for Air Research), UiB (University of Bergen), UiO (University of Oslo), and NORCE (Norwegian Research Centre AS), Norway |
TaiESM1 | Research Center for Environmental Changes, Academia Sinica, Taiwan, China |
Appendix B
Data Preprocessing
Crop Type | Lower Limit Temperature | Optimal Temperature | Upper Limit Temperature |
---|---|---|---|
Rice | 13.5 | 27.6 | 35.4 |
Wheat | 0 | 21.75 | 37 |
Maize | 6.2 | 30.8 | 42.0 |
Appendix C
Results of Sensitivity Test
Crop Area | γ1 | γ2 | b | a | Crop Area | γ1 | γ2 | b | a |
---|---|---|---|---|---|---|---|---|---|
Rice 1 | −0.643 *** | −0.067 | −0.044 | −0.069 * | Wheat 3 | −2.299 * | 0.577 | 0.001 | −0.008 |
Rice 2 | −0.224 *** | 0.142 ** | −0.027 ** | −0.040 *** | Wheat 4 | −0.834 | 0.094 | 0.010 | 0.062 |
Rice 3 | −0.130 | 0.702 *** | 0.052 | 0.007 | Maize 1 | −0.722 ** | −0.581 *** | 0.049 | −0.051 * |
Rice 4 | 0.364 | 0.147 | 0.074 *** | −0.013 | Maize 2 | 0.357 | −0.348 | 0.076 *** | −0.067 ** |
Rice 5 | −0.464 | −0.042 | −0.078 * | −0.012 | Maize 3 | −0.029 | 0.694 * | 0.031 | −0.094 *** |
Rice 6 | −0.869 | 0.227 | −0.036 | 0.005 | Maize 4 | 0.222 | 0.001 | 0.025 | −0.002 |
Wheat 1 | −0.063 | 0.272 ** | 0.008 | −0.018 | Maize 5 | 0.233 | 1.208 ** | 0.072 | −0.004 |
Wheat 2 | 0.489 ** | −0.017 | 0.073 *** | −0.064 ** | Maize 6 | −4.679 ** | 0.145 | −0.083 | −0.087 |
Crop Area | γ1 | γ2 | b | a | Crop Area | γ1 | γ2 | b | a |
---|---|---|---|---|---|---|---|---|---|
Rice 1 | 0.121 | −0.455 | 0.016 *** | −0.004 ** | Wheat 4 | 2.088 ** | 0.863 *** | 0.020 * | 0.011 |
Rice 2 | −0.483 *** | −0.317 *** | −0.007 | −0.003 * | Wheat 5 | 1.176 | 0.685 * | −0.027 | −0.012 |
Rice 3 | −0.162 | 0.486 *** | 0.012 * | −0.004 | Wheat 6 | 0.126 | 0.852 ** | −0.061 *** | 0.010 |
Rice 4 | −0.106 | 0.740 *** | 0.018 | −0.006 * | Maize 1 | 0.107 | −1.100 *** | 0.032 *** | 0.005 |
Rice 5 | 0.076 | 0.002 | −0.011 | −0.008 *** | Maize 2 | −0.099 | 0.126 | 0.006 | −0.013 *** |
Rice 6 | 1.173 *** | −0.473 *** | 0.003 | 0.005 | Maize 3 | 0.013 | −0.282 ** | 0.005 | −0.005 * |
Rice 7 | −0.074 | 0.723 *** | −0.023 *** | 0.003 | Maize 4 | 0.136 | 0.295 | 0.003 | 0.003 |
Rice 8 | 0.230 * | 0.108 | 0.003 | −0.001 | Maize 5 | −0.089 | 0.975 ** | 0.015 | −0.007 |
Wheat 1 | −0.727 *** | 0.287 *** | 0.014 ** | −0.007 *** | Maize 6 | −2.773 | 0.315 | 0.011 | −0.006 |
Wheat 2 | −0.041 | −0.530 *** | 0.012 * | −0.001 | Maize 7 | −0.202 | 0.190 * | −0.004 | −0.002 |
Wheat 3 | −0.387 | 1.573 ** | 0.029 | −0.001 | Maize 8 | 0.267 | −0.513 | 0.000 | −0.004 |
References
- Hu, T.; Zhang, X.; Khanal, S.; Wilson, R.; Leng, G.; Toman, E.M.; Wang, X.; Li, Y.; Zhao, K. Climate Change Impacts on Crop Yields: A Review of Empirical Findings, Statistical Crop Models, and Machine Learning Methods. Environ. Model. Softw. 2024, 179, 106119. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-009-32584-4.
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Impact of Disasters on Agriculture and Food Security 2023; FAO: Rome, Italy, 2023; ISBN 978-92-5-138194-6. [Google Scholar]
- He, D.; Fang, S.; Liang, H.; Wang, E.; Wu, D. Contrasting Yield Responses of Winter and Spring Wheat to Temperature Rise in China. Environ. Res. Lett. 2020, 15, 124038. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Müller, C.; Wang, C.; Ciais, P.; Janssens, I.; Peñuelas, J.; Asseng, S.; Li, T.; Elliott, J.; et al. Emergent Constraint on Crop Yield Response to Warmer Temperature from Field Experiments. Nat. Sustain. 2020, 3, 908–916. [Google Scholar] [CrossRef]
- Ye, J.; Gao, Z.; Wu, X.; Lu, Z.; Li, C.; Wang, X.; Chen, L.; Cui, G.; Yu, M.; Yan, G.; et al. Impact of Increased Temperature on Spring Wheat Yield in Northern China. Food Energy Secur. 2021, 10, e283. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Drebenstedt, I.; Marhan, S.; Poll, C.; Kandeler, E.; Högy, P. Annual Cumulative Ambient Precipitation Determines the Effects of Climate Change on Biomass and Yield of Three Important Field Crops. Field Crops Res. 2023, 290, 108766. [Google Scholar] [CrossRef]
- Guo, E.; Liu, X.; Zhang, J.; Wang, Y.; Wang, C.; Wang, R.; Li, D. Assessing Spatiotemporal Variation of Drought and Its Impact on Maize Yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Zhan, C.; Liang, C.; Zhao, L.; Jiang, S.; Zhang, Y. Differential Responses of Crop Yields to Multi-Timescale Drought in Mainland China: Spatiotemporal Patterns and Climate Drivers. Sci. Total Environ. 2024, 906, 167559. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [CrossRef]
- Zha, J.; Shen, C.; Zhao, D.; Feng, J.; Xu, Z.; Wu, J.; Fan, W.; Luo, M.; Zhang, L. Contributions of External Forcing and Internal Climate Variability to Changes in the Summer Surface Air Temperature over East Asia. J. Clim. 2022, 35, 5013–5032. [Google Scholar] [CrossRef]
- Chou, J.; Dong, W.; Feng, G. Application of an Economy-Climate Model to Assess the Impact of Climate Change. Adv. Atmos. Sci. 2010, 27, 957–965. [Google Scholar] [CrossRef]
- Chou, J.; Jin, H.; Xu, Y.; Zhao, W.; Li, Y.; Hao, Y. Impacts and Risk Assessments of Climate Change for the Yields of the Major Grain Crops in China, Japan, and Korea. Foods 2024, 13, 966. [Google Scholar] [CrossRef]
- Li, C. Climate Change Impacts on Rice Production in Japan: A Cobb-Douglas and Panel Data Analysis. Ecol. Indic. 2023, 147, 110008. [Google Scholar] [CrossRef]
- Lu, S.; Bai, X.; Li, W.; Wang, N. Impacts of Climate Change on Water Resources and Grain Production. Technol. Forecast. Soc. Change 2019, 143, 76–84. [Google Scholar] [CrossRef]
- Zhou, L.; Turvey, C.G. Climate Change, Adaptation and China’s Grain Production. China Econ. Rev. 2014, 28, 72–89. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias Correcting Climate Model Simulated Daily Temperature Extremes with Quantile Mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Nemani, R. NEX-GDDP-CMIP6 2021. Available online: https://de.cyverse.org/data/ds/iplant/home/shared/bio2fi/bio2fi_public/for_NASA_SEDAC (accessed on 10 September 2025).
- Araujo, D.S.A.; Enquist, B.J.; Frazier, A.E.; Merow, C.; Roehrdanz, P.R.; Moulatlet, G.M.; Zvoleff, A.; Song, L.; Maitner, B.; Nikolopoulos, E.I. Global Future Drought Layers Based on Downscaled CMIP6 Models and Multiple Socioeconomic Pathways. Sci. Data 2025, 12, 295. [Google Scholar] [CrossRef]
- Dodd, I.C.; Puértolas, J.; Huber, K.; Pérez-Pérez, J.G.; Wright, H.R.; Blackwell, M.S.A. The Importance of Soil Drying and Re-Wetting in Crop Phytohormonal and Nutritional Responses to Deficit Irrigation. J. Exp. Bot. 2015, 66, 2239–2252. [Google Scholar] [CrossRef]
- Zhou, Z.; Shi, H.; Fu, Q.; Li, T.; Gan, T.Y.; Liu, S. Assessing Spatiotemporal Characteristics of Drought and Its Effects on Climate-Induced Yield of Maize in Northeast China. J. Hydrol. 2020, 588, 125097. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, J.; Li, X.; Zhou, H.; Yang, J.; Geng, G.; An, X.; Liu, L.; Tang, Z. A Comprehensively Quantitative Method of Evaluating the Impact of Drought on Crop Yield Using Daily Multi-Scale SPEI and Crop Growth Process Model. Int. J. Biometeorol. 2017, 61, 685–699. [Google Scholar] [CrossRef]
- Urban, D.W.; Roberts, M.J.; Schlenker, W.; Lobell, D.B. The Effects of Extremely Wet Planting Conditions on Maize and Soybean Yields. Clim. Change 2015, 130, 247–260. [Google Scholar] [CrossRef]
- van der Velde, M.; Tubiello, F.N.; Vrieling, A.; Bouraoui, F. Impacts of Extreme Weather on Wheat and Maize in France: Evaluating Regional Crop Simulations against Observed Data. Clim. Change 2012, 113, 751–765. [Google Scholar] [CrossRef]
- Dong, W.; Chou, J.; Feng, G. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield. Adv. Atmos. Sci. 2007, 24, 336–342. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Huang, Y.; Peng, J.; Ling, Y. Evaluation of the CMIP6 Precipitation Simulations Over Global Land. Earth’s Future 2022, 10, e2021EF002500. [Google Scholar] [CrossRef]
- Chirokov, A. Scattered Data Interpolation and Approximation Using Radial Base Functions. Available online: https://www.mathworks.com/matlabcentral/fileexchange/10056-scattered-data-interpolation-and-approximation-using-radial-base-functions (accessed on 7 April 2025).
- Chen, X.; Wang, L.; Niu, Z.; Zhang, M.; Li, C.; Li, J. The Effects of Projected Climate Change and Extreme Climate on Maize and Rice in the Yangtze River Basin, China. Agric. For. Meteorol. 2020, 282–283, 107867. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Z.; Lyu, R.; Huang, G.; He, Q.; Cheng, T. Spatiotemporal Changes of Surface Solar Radiation: Implication for Air Pollution and Rice Yield in East China. Sci. Total Environ. 2020, 739, 140361. [Google Scholar] [CrossRef]
- Song, Y. Global Research Progress of Drought Indices. J. Appl. Meteorol. Sci. 2022, 33, 513–526. (In Chinese) [Google Scholar]
- Dai, A. Characteristics and Trends in Various Forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Sandhu, N.; Subedi, S.R.; Yadaw, R.B.; Chaudhary, B.; Prasai, H.; Iftekharuddaula, K.; Thanak, T.; Thun, V.; Battan, K.R.; Ram, M.; et al. Root Traits Enhancing Rice Grain Yield under Alternate Wetting and Drying Condition. Front. Plant Sci. 2017, 8, 1879. [Google Scholar] [CrossRef]
- Yang, J.; Huang, D.; Duan, H.; Tan, G.; Zhang, J. Alternate Wetting and Moderate Soil Drying Increases Grain Yield and Reduces Cadmium Accumulation in Rice Grains. J. Sci. Food Agric. 2009, 89, 1728–1736. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Q.; Zhang, J. Moderate Wetting and Drying Increases Rice Yield and Reduces Water Use, Grain Arsenic Level, and Methane Emission. Crop J. 2017, 5, 151–158. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Akbar, N.; Reis, A.F.B.; Li, C.; Gaudin, A.C.M.; Parikh, S.J.; Green, P.G.; Linquist, B.A. Impacts of Variable Soil Drying in Alternate Wetting and Drying Rice Systems on Yields, Grain Arsenic Concentration and Soil Moisture Dynamics. Field Crops Res. 2018, 222, 101–110. [Google Scholar] [CrossRef]
- Song, T.; Das, D.; Hu, Q.; Yang, F.; Zhang, J. Alternate Wetting and Drying Irrigation and Phosphorus Rates Affect Grain Yield and Quality and Heavy Metal Accumulation in Rice. Sci. Total Environ. 2021, 752, 141862. [Google Scholar] [CrossRef]
- Muchow, R.C.; Sinclair, T.R.; Bennett, J.M. Temperature and Solar Radiation Effects on Potential Maize Yield across Locations. Agron. J. 1990, 82, 338–343. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Y.; Han, J.; Yang, Q.; Liang, J.; Liu, X.; Wang, Y.; Huang, Z. Impacts of Future Climate Change on Rice Yield Based on Crop Model Simulation—A Meta-Analysis. Sci. Total Environ. 2024, 949, 175038. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Camac, J.; Robinson, A.; Kompas, T. Predicting Changes in Agricultural Yields under Climate Change Scenarios and Their Implications for Global Food Security. Sci. Rep. 2025, 15, 2858. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate Change Impact on Yields and Water Use of Wheat and Maize in the North China Plain under Future Climate Change Scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Liu, W.; Bai, Y.; Du, T.; Li, M.; Yang, H.; Chen, S.; Liang, C.; Kang, S. Advances in regional-scale crop growth and associated process modeling. Sci. China Earth Sci. 2025, 55, 669–685. (In Chinese) [Google Scholar]
- Rigden, A.J.; Mueller, N.D.; Holbrook, N.M.; Pillai, N.; Huybers, P. Combined Influence of Soil Moisture and Atmospheric Evaporative Demand Is Important for Accurately Predicting US Maize Yields. Nat. Food 2020, 1, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Bobea, A.; Wang, H.; Carrillo, C.M.; Ault, T.R. Unpacking the Climatic Drivers of US Agricultural Yields. Environ. Res. Lett. 2019, 14, 064003. [Google Scholar] [CrossRef]
- Gaona, J.; Benito-Verdugo, P.; Martínez-Fernández, J.; González-Zamora, Á.; Almendra-Martín, L.; Herrero-Jiménez, C.M. Predictive Value of Soil Moisture and Concurrent Variables in the Multivariate Modelling of Cereal Yields in Water-Limited Environments. Agric. Water Manag. 2023, 282, 108280. [Google Scholar] [CrossRef]
- Luan, Q.; Guo, J.; Ma, Y.; Zhang, L.; Wang, J.; Li, W. Comparison of Model’s Stability about Integrated Temperature Based on Linear Hypotheses. Chin. J. Agrometeorol. 2020, 41, 695–706. [Google Scholar]
- Porter, J.R.; Gawith, M. Temperatures and the Growth and Development of Wheat: A Review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the Growth and Development of Maize and Rice: A Review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef] [PubMed]
Crop | Code | Cropping Area 1 | Included Districts | Growing Period |
---|---|---|---|---|
Rice | 1 | Double-cropping rice area in South China (R_SC) | Guangdong, Guangxi, Hainan, Hong Kong, Macao, Taiwan | 5–7, 8–10 |
2 | Single- and double-cropping rice area in Central China (R_CC) | Jiangsu, Fujian, Shanghai, Zhejiang, Anhui, Jiangxi, Hunan, Hubei, Sichuan, Chongqing | 5–7, 8–10 | |
3 | Single- and double-cropping rice areas on the Southwest Plateau of China (R_SWPC) | Guizhou, Yunnan, Tibet, Qinghai | 5–7, 8–10 | |
4 | Single-cropping rice area in North China (R_NC) | Beijing, Tianjin, Shandong, Hebei, Henan | 6–8 | |
5 | Early maturing single-cropping rice area in Northeast China (R_NEC) | Heilongjiang, Jilin, Liaoning | 6–8 | |
6 | Single-cropping rice area in dry area of Northwest China (R_DNWC) | Xinjiang, Ningxia, Gansu, Inner Mongolia, Shanxi, Shaanxi | 6–8 | |
7 | Japan rice area (R_J) | 7–8 | ||
8 | Korea rice area (R_K) | 7–8 | ||
Wheat | 1 | Winter wheat (autumn sowing) area in northern China (WW_NC) | Shandong, Henan, Hebei, Shanxi, Beijing, Tianjin | (-) 11–5 2 |
2 | Winter wheat (autumn sowing) area in southern China (WW_SC) | Fujian, Jiangxi, Guangdong, Hainan, Guangxi, Hunan, Hubei, Guizhou, Yunnan, Sichuan, Chongqing, Jiangsu, Anhui, Hong Kong, Macao, Taiwan, Zhejiang, Shanghai | (-) 11–5 | |
3 | Spring wheat (spring sowing) area of China (SW_C) | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Ningxia, Shaanxi, Gansu | 5–8 | |
4 | Winter and spring sowing wheat areas of China (WSW_C) | Xinjiang, Tibet, Qinghai | (-) 11–5, 5–8 | |
5 | Japan wheat area (W_J) | (-) 12–5 | ||
6 | Korea wheat area (W_K) | (-) 11–5 | ||
Maize | 1 | Spring maize area in northern China (M_NC) | Heilongjiang, Jilin, Liaoning, Inner Mongolia, Shanxi, Shaanxi, Ningxia | 5–9 |
2 | Summer maize area in the Huang-Huai-Hai Plain (M_HHHP) | Hebei, Tianjin, Beijing, Henan, Shandong | 7–9 | |
3 | Maize area in the Southwest China Mountains (M_SWCM) | Sichuan, Chongqing, Guizhou, Yunnan | 6–8 | |
4 | Maize area in hilly southern China (M_HSC) | Hubei, Anhui, Jiangsu, Shanghai, Zhejiang, Hunan, Jiangxi, Fujian, Guangdong, Guangxi, Hainan, Hong Kong, Macao, Taiwan | 6–7 | |
5 | Irrigated maize area in Northwest China (M_NWC) | Xinjiang, Gansu | 6–9 | |
6 | Mazie area on the Qinghai–Tibetan Plateau of China (M_QTPC) | Qinghai, Tibet | 6–9 | |
7 | Japan maize area (M_J) | 5–8 | ||
8 | Korea maize area (M_K) | 4–8 |
Crop Area | TSS1 | TSS2 | TSS3 | Crop Area | TSS1 | TSS2 | TSS3 |
---|---|---|---|---|---|---|---|
MRE (SDRE) | MRE (SDRE) | ||||||
Rice 1 | 0.9715 | 0.9857 | 0.9857 | Wheat 4 | 0.9902 | 0.9906 | 0.9906 |
Rice 2 | 0.9678 | 0.9822 | 0.9822 | Wheat 5 | 0.1061 (0.0874) | ||
Rice 3 | 0.9885 | 0.9793 | 0.9793 | Wheat 6 | 0.1336 (0.1129) | ||
Rice 4 | 0.9945 | 0.9949 | 0.9949 | Maize 1 | 0.9402 | 0.9400 | 0.9400 |
Rice 5 | 0.9917 | 0.9916 | 0.9916 | Maize 2 | 0.9908 | 0.9644 | 0.9644 |
Rice 6 | 0.9406 | 0.9536 | 0.9536 | Maize 3 | 0.9616 | 0.9765 | 0.9765 |
Rice 7 | 0.0464 (0.0398) | Maize 4 | 0.9736 | 0.9724 | 0.9724 | ||
Rice 8 | 0.0401 (0.0340) | Maize 5 | 0.9211 | 0.9075 | 0.9075 | ||
Wheat 1 | 0.9857 | 0.9810 | 0.9810 | Maize 6 | 0.9192 | 0.9678 | 0.9678 |
Wheat 2 | 0.9716 | 0.9548 | 0.9548 | Maize 7 | 0.0124 (0.0112) | ||
Wheat 3 | 0.9420 | 0.9635 | 0.9635 | Maize 8 | 0.0599 (0.0516) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Chou, J.; Wang, Y.; Pei, H.; Xu, Y. Impacts of Climate Change on Grain Production in China, Japan, and South Korea Based on an Improved Economy–Climate Model. Foods 2025, 14, 3301. https://doi.org/10.3390/foods14193301
Jin H, Chou J, Wang Y, Pei H, Xu Y. Impacts of Climate Change on Grain Production in China, Japan, and South Korea Based on an Improved Economy–Climate Model. Foods. 2025; 14(19):3301. https://doi.org/10.3390/foods14193301
Chicago/Turabian StyleJin, Haofeng, Jieming Chou, Yaqi Wang, Hongze Pei, and Yuan Xu. 2025. "Impacts of Climate Change on Grain Production in China, Japan, and South Korea Based on an Improved Economy–Climate Model" Foods 14, no. 19: 3301. https://doi.org/10.3390/foods14193301
APA StyleJin, H., Chou, J., Wang, Y., Pei, H., & Xu, Y. (2025). Impacts of Climate Change on Grain Production in China, Japan, and South Korea Based on an Improved Economy–Climate Model. Foods, 14(19), 3301. https://doi.org/10.3390/foods14193301