Opinion Piece: Tools for Particle-Size-Based Homogeneity Assessments in Mycotoxin Analysis
Abstract
1. Introduction
2. Particle Size Analysis Tools
2.1. Sieving
2.2. Microscopy
2.3. Laser Diffraction Particle Size Analysis
2.4. Flow Imaging Microscopy
3. Proposed Applications of Existing Particle Size Analysis Techniques
4. Concluding Remarks and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sweeney, M.J.; Dobson, A.D. Mycotoxin Production by Aspergillus, Fusarium and Penicillium Species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Bianchini, A. Stability of Mycotoxins during Food Processing. Int. J. Food Microbiol. 2007, 119, 140–146. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-Occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2023/2782 of 14 December 2023 Laying Down the Methods of Sampling and Analysis for the Control of the Levels of Mycotoxins in Food and Repealing Regulation (EC) No 401/2006. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/2782/oj (accessed on 18 September 2025).
- U.S. Food and Drug Administration (FDA). Compliance Program Guidance Manual. Chapter 07—Molecular Biology and Natural Toxins. 2024. Available online: https://www.fda.gov/media/140749/download?attachment (accessed on 18 September 2025).
- Health Canada. Food Safety—Chemical Contaminants—Natural Toxins. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/natural-toxins.html (accessed on 18 September 2025).
- Whitaker, T.B. Sampling Foods for Mycotoxins. Food Addit. Contam. 2006, 23, 50–61. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). 2025 Investigations Operations Manual (IOM), Chapter 4: Sampling. Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-references/investigations-operations-manual (accessed on 18 September 2025).
- Food and Agriculture Organization (FAO). Mycotoxin Sampling Tools. 2025. Available online: https://tools.fstools.org/mycotoxins/ (accessed on 18 September 2025).
- Shotwell, O.L.; Goulden, M.L.; Botast, R.J.; Hesseltine, C.W. Mycotoxins in hot spots in grains. 1. Aflatoxin and zearalenone occurrence in stored corn. Cereal Chem. 1975, 52, 687697. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1975/Documents/chem52_687.pdf (accessed on 18 September 2025).
- Maestroni, B.; Cannavan, A. Sampling strategies to control mycotoxins. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed; De Saeger, S., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 3–36. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). Grain Fungal Diseases and Mycotoxin Reference. Available online: https://www.ams.usda.gov/sites/default/files/media/FungalDiseaseandMycotoxinReference2017.pdf (accessed on 18 September 2025).
- AOAC. Natural Toxins. In Official Methods of Analysis, 22nd ed.; Oxford University Press: Oxford, UK, 2023; Chapter 49. [Google Scholar]
- Biselli, S.; Persin, C.; Syben, M. Investigation of the Distribution of Deoxynivalenol and Ochratoxin A Contamination within a 26 t Truckload of Wheat Kernels. Mycotoxin Res. 2008, 24, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Tian, L.; Zhang, H.; Lei, Y.; Tang, F. Fungal Community Analysis of Hot Spots in Bulk Maize under Different Storage Conditions. LWT 2023, 182, 114819. [Google Scholar] [CrossRef]
- Betina, V. Thin-Layer Chromatography of Mycotoxins. J. Chromatogr. 1985, 334, 211–276. [Google Scholar] [CrossRef]
- Greer, B.; Chevallier, O.; Quinn, B.; Botana, L.M.; Elliott, C.T. Redefining Dilute and Shoot: The Evolution of the Technique and Its Application in the Analysis of Foods and Biological Matrices by Liquid Chromatography Mass Spectrometry. TrAC Trends Anal. Chem. 2021, 141, 116284. [Google Scholar] [CrossRef]
- Malachova, A.; Krska, R.; Berthiller, F.; Sulyok, M.; Beltrán, E. Multi-Toxin Determination in Food—The Power of “Dilute and Shoot” Approaches in LC–MS–MS. LCGC Eur. 2015, 28, 542–555. Available online: https://www.chromatographyonline.com/view/multi-toxin-determination-food-power-dilute-and-shoot-approaches-lc-ms-ms (accessed on 18 September 2025).
- Zhang, K.; Schaab, M.R.; Southwood, G.; Tor, E.R.; Aston, L.S.; Song, W.; Eitzer, B.; Majumdar, S.; Lapainis, T.; Mai, H.; et al. A Collaborative Study: Determination of Mycotoxins in Corn, Peanut Butter, and Wheat Flour Using Stable Isotope Dilution Assay (SIDA) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J. Agric. Food Chem. 2017, 65, 7138–7152. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef]
- Pitard, F.F. Pierre Gy’s Sampling Theory and Sampling Practice; CRC Press, Inc.: Boca Raton, FL, USA, 1989; Volume 2. [Google Scholar]
- Gerlach, R.W.; Nocerino, J.M. EPA/600/R-03/027 Guidance for Obtaining Representative Laboratory Analytical Subsamples from Particulate Laboratory Samples; United States Environmental Protection Agency: Washington, DC, USA, 2003. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/2000GTWM.PDF?Dockey=2000GTWM.PDF (accessed on 18 September 2025).
- Phillips, M.M.; Seal, T.M.L.; Ness, J.M.; Zhang, K. Development and Characterization of a Multimycotoxin Reference Material. J. AOAC Int. 2019, 102, 1642–1650. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Getachew Lijalem, Y.; Yu, H.; Lee, S.; Baek, S.Y.; Han, J.; Choi, K.; Kim, B. Development of a Certified Reference Material for the Accurate Determination of Type B Trichothecenes in Corn. Food Chem. 2023, 404 Pt A, 134542. [Google Scholar] [CrossRef]
- Pinelo, M.; Tress, A.G.; Pedersen, M.; Arnous, A.; Meyer, A.S. Effect of Cellulases, Solvent Type and Particle Size Distribution on the Extraction of Chlorogenic Acid and Other Phenols from Spent Coffee Grounds. Am. J. Food Technol. 2007, 2, 641–651. [Google Scholar] [CrossRef]
- Brewer, L.R.; Kubola, J.; Siriamornpun, S.; Herald, T.J.; Shi, Y.C. Wheat Bran Particle Size Influence on Phytochemical Extractability and Antioxidant Properties. Food Chem. 2014, 152, 483–490. [Google Scholar] [CrossRef]
- Damiani, T.; Righetti, L.; Suman, M.; Galaverna, G.; Dall’Asta, C. Analytical issue related to fumonisins: A matter of sample comminution? Food Control. 2019, 95, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.-K.; Han, Y.-T.; Jiang, Y.; Xie, G. Effect of Grinded Particle Size on the Determination of Aflatoxin B1 in Maize Evaluated by Fractional Preparation Method. Sci. Technol. Cereals Oils Foods 2023, 31, 107–112. [Google Scholar] [CrossRef]
- Spanjer, M.C.; Scholten, J.M.; Kastrup, S.; Jörissen, U.; Schatzki, T.F.; Toyofuku, N. Sample comminution for mycotoxin analysis: Dry milling or slurry mixing? Food Addit. Contam. 2006, 23, 73–83. [Google Scholar] [CrossRef]
- Bircan, C. Comparison of homogenization techniques and incidence of aflatoxin contamination in dried figs for export. Food Addit. Contam. 2009, 2, 171–177. [Google Scholar] [CrossRef]
- Lippolis, V.; Pascale, M.; Valenzano, S.; Visconti, A. Comparison of slurry mixing and dry milling in laboratory sample preparation for determination of ochratoxin A and deoxynivalenol in wheat. J. AOAC Int. 2012, 95, 452–458. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Cramer, B.; DeRosa, M.C.; Dzuman, Z.; Kodikara, C.; Malone, R.; Maragos, C.; Suman, M.; Sumarah, M.W. Developments in Analytical Techniques for Mycotoxin Determination: An Update for 2023–24. World Mycotoxin J. 2025, 18, 3–30. [Google Scholar] [CrossRef]
- ISO 33405:2024; Reference Materials—Approaches for Characterization and Assessment of Homogeneity and Stability. International Organization for Standardization ISO: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/84226.html (accessed on 18 September 2025).
- ISO 16050:2003; Foodstuffs—Determination of Aflatoxin B1, and the Total Content of Aflatoxins B1, B2, G1 and G2 in Cereals, Nuts and Derived Products—High-Performance Liquid Chromatographic Method. International Organization for Standardization ISO: Geneva, Switzerland, 2003.
- EN 14123:2007; (Main) Foodstuffs—Determination of Aflatoxin B1 and the sum of Aflatoxin B1, B2, G1 and G2 in Hazelnuts, Peanuts, Pistachios, Figs, and Paprika Powder—High Performance Liquid Chromatographic Method with Post-Column Derivatisation and Immunoaffinity Column Cleanup. SIST: Ljubljana, Slovenia, 2007.
- Council for Agricultural Science and Technology (CAST). Mycotoxins. Economic and Health Risks. Council for Agricultural Science and Technology Task Force Report. No. 116. Ames, Iowa. 1989. Available online: https://cast-science.org/publication/mycotoxins-economic-and-health-risks/ (accessed on 18 September 2025).
- Council for Agriculture Science and Technology (CAST). Mycotoxins: Risks in Plant, Animal, and Human Systems. Task Force Report 139. Ames, Iowa. 2003. Available online: https://cast-science.org/publication/mycotoxins-risks-in-plant-animal-and-human-systems/ (accessed on 18 September 2025).
- Schatzki, T.F.; Toyofuku, N. Sample Preparation and Presampling of Pistachios. J. Agric. Food Chem. 2003, 51, 6068–6072. [Google Scholar] [CrossRef]
- Sasser, M.; Herrman, T.J.; Lee, K.M. Evaluation of Coregulation as a Governance Option to Manage Aflatoxin Risk in Texas Maize. J. Food Prot. 2018, 81, 554–560. [Google Scholar] [CrossRef]
- Kos, G.; Lohninger, H.; Mizaikoff, B.; Krska, R. Optimisation of a sample preparation procedure for the screening of fungal infection and assessment of deoxynivalenol content in maize using mid-infrared attenuated total reflection spectroscopy. Food Addit. Contam. 2007, 24, 721–729. [Google Scholar] [CrossRef]
- USP <786> Particle Size Distribution Estimation by Analytical Sieving. 2023. Available online: https://www.usp.org/harmonization-standards/pdg/general-chapters/analytical-sieving (accessed on 18 September 2025).
- ISO 3310; Test Sieves—Technical Requirements and Testing. International Organization for Standardization ISO: Geneva, Switzerland, 2013.
- Jillavenkatesa, A.; Dapkunas, S.J.; Lum, L.-S.H. Particle Size Characterization. NIST Special Publication 960–1. 2001. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication960-1.pdf (accessed on 18 September 2025).
- Bartley, P.C.; Jackson, B.E.; Fonteno, W.C. Effect of particle length to width ratio on sieving accuracy and precision. Powder Technol. 2019, 355, 349–354. [Google Scholar] [CrossRef]
- Murphy, D.B.; Davidson, M.W. Fundamentals of Light Microscopy and Electronic Imaging; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Masuda, H.; Linoya, K. Theoretical study of the scatter of experimental data due to particle size distribution. J. Chem. Eng. Jpn. 1971, 4, 60. Available online: https://www.jstage.jst.go.jp/article/jcej1968/4/1/4_1_60/_article/-char/ja/ (accessed on 18 September 2025). [CrossRef]
- De Boer, G.B.J.; de Weerd, C.; Thoenes, D.; Goossens, H.W.J. Laser Diffraction Spectrometry: Fraunhofer Diffraction Versus Mie Scattering. Part. Part. Syst. Charact. 1987, 4, 14–19. [Google Scholar] [CrossRef]
- Jones, A.R. Light scattering for particle characterization. Prog. Energy Combust. Sci. 1999, 25, 1–53. [Google Scholar] [CrossRef]
- Wriedt, T. Mie Theory: A Review. In The Mie Theory; Hergert, W., Wriedt, T., Eds.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2012; Volume 169, Available online: https://link.springer.com/chapter/10.1007/978-3-642-28738-1_2 (accessed on 18 September 2025).
- ISO/TS 5973:2024; Laser Diffraction Measurements—Good Practice. International Organization for Standardization ISO: Geneva, Switzerland, 2024.
- ISO 13320:2020; Particle Size Analysis—Laser Diffraction Methods. International Organization for Standardization ISO: Geneva, Switzerland, 2020.
- Malvern Panalytical. Mastersizer 3000. Available online: https://www.malvernpanalytical.com/en/assets/mastersizer%203000%20brochure%20(en)_tcm50-58994.pdf (accessed on 18 September 2025).
- Zhang, K.; Tan, S.; Xu, D. Determination of Mycotoxins in Dried Fruits Using LC-MS/MS—A Sample Homogeneity, Troubleshooting and Confirmation of Identity Study. Foods 2022, 11, 894. [Google Scholar] [CrossRef]
- Zhang, K.; Tran, I.; Tan, S. Characterization of Particle-Size-Based Homogeneity and Mycotoxin Distribution Using Laser Diffraction Particle Size Analysis. Toxins 2023, 15, 450. [Google Scholar] [CrossRef]
- Agimelen, O.S.; Mulholland, A.J.; Sefcik, J. Modelling of artefacts in estimations of particle size of needle-like particles from laser diffraction measurements. Chem. Eng. Sci. 2017, 158, 445–452. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; McCave, I.N.; Riley, J.B. Laser diffraction size analysis. In Principles, Methods and Applications of Particle Size Analysis; Syvitski, J.P.M., Ed.; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Blott, S.J.; Pye, K. Particle size distribution analysis of sand-sized particles by laser diffraction: An experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology 2006, 53, 671–685. [Google Scholar] [CrossRef]
- Sieracki, C.K.; Sieracki, M.E.; Yentsch, C.S. An Imaging-in-Flow System for Automated Analysis of Marine Microplankton. Mar. Ecol. Prog. Ser. 1998, 168, 285–296. Available online: http://www.jstor.org/stable/24828385 (accessed on 18 September 2025). [CrossRef]
- Zölls, S.; Weinbuch, D.; Wiggenhorn, M.; Winter, G.; Friess, W.; Jiskoot, W.; Hawe, A. Flow Imaging Microscopy for Protein Particle Analysis—A Comparative Evaluation of Four Different Analytical Instruments. AAPS J. 2013, 15, 1200–1211. [Google Scholar] [CrossRef]
- ISO 14488:2007; Particulate Materials—Sampling and Sample Splitting for the Determination of Particulate Properties. International Organization for Standardization ISO: Geneva, Switzerland, 2007.
- Gerlach, R.W.; Dobb, D.E.; Raab, G.A.; Nocerino, J.M. Gy Sampling Theory in Environmental Studies. 1. Assessing Soil Splitting Protocols. J. Chemom. 2002, 16, 321–328. [Google Scholar] [CrossRef]
- Gerlach, R.W.; Nocerino, J.M.; Ramsey, C.A.; Venner, B.C. Gy Sampling Theory in Environmental Studies: 2. Subsampling Error Estimates. Anal. Chim. Acta 2003, 490, 159–168. [Google Scholar] [CrossRef]
- Chavez, R.A.; Xianbin Cheng, X.; Herrman, T.J.; Stasiewicz, M.J. Single kernel aflatoxin and fumonisin contamination distribution and spectral classification in commercial corn. Food Control 2022, 131, 108393. [Google Scholar] [CrossRef]
- Casado, M.R.; Parsons, D.J.; Weightman, R.M.; Magan, N.; Origgi, S. Geostatistical analysis of the spatial distribution of mycotoxin concentration in bulk cereals. Food Addit. Contam. Part A 2009, 26, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Casado, M.R.; Parsons, D.J.; Weightman, R.M.; Magan, N.; Origgi, S. Modelling a two-dimensional spatial distribution of mycotoxin concentration in bulk commodities to design effective and efficient sample selection strategies. Food Addit. Contam. Part A 2009, 26, 1298–1305. [Google Scholar] [CrossRef]
Technique | Strengths | Limitations | Best Suited For | Application Range (µm) |
---|---|---|---|---|
Sieving | Large simple size Affordable Non-destructive | Low size resolution Labor/time-intensive Difficulties in agglomerated samples Shape bias | Dry powders with good flowability Large sample volume (e.g., cereal grains, spices) | <850 (No. 20 Sieve) No detailed size distribution |
Microscopy | Visual/morphological detail Shape and texture assessment | Low sample throughput Poor statistical power | Supplementary morphological insight Very small sample volume (<0.01 g) (e.g., individual particles) | >1 (Keyence VHX-7000) |
Laser Diffraction | Well-established theoretical models Broad size range Fast data acquisition rate | Assumes spherical particles Biased by large particles Estimated optical properties | Routine size distribution across food matrices Small sample volume (~0.5–1.0 g/measurement) (e.g., cereal grains, tree nuts, dried fruits) | 10-3500 (Masterszie3000) No morphological information |
Flow Imaging Microscopy | Combines morphology with particle size distribution (statistics) Good for dispersion quality control | Limited size range Requires wet dispersion Longer runtime for high size resolution | Well-dispersed samples for both particle size and imaging Small sample volume (~0.05 g/measurement) (e.g., cocoa beans) | 2-1000 (FlowCam 8100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Reichard, G. Opinion Piece: Tools for Particle-Size-Based Homogeneity Assessments in Mycotoxin Analysis. Foods 2025, 14, 3294. https://doi.org/10.3390/foods14193294
Zhang K, Reichard G. Opinion Piece: Tools for Particle-Size-Based Homogeneity Assessments in Mycotoxin Analysis. Foods. 2025; 14(19):3294. https://doi.org/10.3390/foods14193294
Chicago/Turabian StyleZhang, Kai, and Grace Reichard. 2025. "Opinion Piece: Tools for Particle-Size-Based Homogeneity Assessments in Mycotoxin Analysis" Foods 14, no. 19: 3294. https://doi.org/10.3390/foods14193294
APA StyleZhang, K., & Reichard, G. (2025). Opinion Piece: Tools for Particle-Size-Based Homogeneity Assessments in Mycotoxin Analysis. Foods, 14(19), 3294. https://doi.org/10.3390/foods14193294