Determination of the Quality of Oil Obtained from Protein Hydrolysate Produced Using Rainbow Trout (Oncorhynchus mykiss) By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Hydrolysis
2.3. Proximate Composition
2.4. Determination of Oil Yield
2.5. Quality Analyses of Hydrolysate Oil
2.5.1. Determination of Peroxide Value (PV)
2.5.2. Determination of Thiobarbituric Acid (TBA) Value
2.5.3. Determination of Free Fatty Acids (FFA)
2.5.4. Fatty Acid Profile
2.6. Statistical Analysis
3. Results and Discussions
3.1. Rainbow Trout (Oncorhynchus mykiss) and Nutrient Composition of Waste
3.2. Oil Yield
3.3. Quality Analysis of Hydrolysate Oil
3.3.1. Peroxide Value (PV)
3.3.2. Tiyobarbitürik Acid Reactive Substances (TBARs)
3.3.3. Free Fatty Acids (FFA)
3.3.4. Fatty Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in Action; FAO: Rome, Italy, 2020; 244p. [Google Scholar] [CrossRef]
- FAO. Committee on Fisheries, Sub-Committee on Fish Trade, Sixteenth Session Busan, Republic of Korea, 4–8 September 2017; Reduction of Fish Food Loss and Waste; FAO: Rome, Italy, 2017. [Google Scholar]
- FAO. Food Loss and Waste in Fish Value Chains; FAO: Rome, Italy, 2020; Available online: www.fao.org/flw-in-fish-value-chains/en/ (accessed on 30 March 2022).
- FAO. The State of World Fisheries and Aquaculture 2022; Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture Opportunities and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Sharma, P.; Vimal, A.; Vishvakarma, R.; Kumar, P.; porto de Souza Vandenberghe, L.; Gaur, V.K.; Varjani, S. Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. Int. J. Food Microbiol. 2022, 372, 109691. [Google Scholar] [CrossRef]
- Rowan, N.J. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain–Quo Vadis? Aquac. Fish. 2023, 8, 365–374. [Google Scholar] [CrossRef]
- Yue, K.; Shen, Y. An overview of disruptive technologies for aquaculture. Aquac. Fish. 2022, 7, 111–120. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Al-Shatty, S.M.; Al-Mtury, A.A.A.; Gavahian, M. Infrared-assisted oil extraction for valorization of carp viscera: Effects of process parameters, mathematical modeling, and process optimization. LWT 2020, 129, 109541. [Google Scholar] [CrossRef]
- .Korkmaz, K. Production of Hydrolysates from Different Fish Species Wastes Using Commercial Enzymes and Determination of Their Quality. Ph.D. Thesis, Ordu University, Ordu, Turkey, 2018. [Google Scholar]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish waste: From problem to valuable resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Reportlinker Global. Fish Oil Market, Size, Forecast 2023–2030, Industry Trends, Growth, Share, Outlook, Impact of Inflation, Opportunity Company Analysis; Report ID: 6470987; Renub Research: Roswell, GA, USA, 2023; Available online: https://www.reportlinker.com/p06470987/?utm_source=GNW (accessed on 17 June 2025).
- Jackson, A.; Newton, R.W. Project to Model the Use of Fisheries By-Products in the Production of Marine Ingredients with Special Reference to Omega-3 Fatty Acids EPA and DHA; A Report by IFFO and the University of Stirling; IFFO: London, UK; University of Stirling: Stirling, UK, 2016; Volume 12. [Google Scholar]
- Venugopal, V. Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Ching-Velasquez, J.; Fernández-Lafuente, R.; Rodrigues, R.C.; Plata, V.; Rosales-Quintero, A.; Torrestiana-Sánchez, B.; Tacias-Pascacio, V.G. Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis. Renew. Energy 2020, 153, 1346–1354. [Google Scholar] [CrossRef]
- Korkmaz, K.; Tokur, B. Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology. Food Biosci. 2022, 45, 101312. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of the Official Analysis Chemists, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, TX, USA, 1998. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- AOAC. Official Method 920.153. Ash Content. In Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2002. [Google Scholar]
- Samaranayaka, A.G.; Li-Chan, E.C. Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 2008, 107, 768–776. [Google Scholar] [CrossRef]
- AOCS. Method Ja 8-87. Peroxide Value. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; Firestone, D.E., Ed.; AOCS Press: Champaign, IL, USA, 1994. [Google Scholar]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- AOCS. AOCS Official Method Ca 5a-40. Free Fatty Acids. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; Firestone, D.E., Ed.; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- Suvanich, V.; Ghaedian, R.; Chanamai, R.; Decker, E.A.E.A.; McClements, D.J. Prediction of proximate fish composition from ultrasonic properties: Catfish, cod, flounder, mackerel and salmon. J. Food Sci. 2006, 63, 966–968. [Google Scholar] [CrossRef]
- Yoshida, H.; Takahashi, Y.; Terashima, M. A simplified reaction model for production of oil, amino acids, and organic acids from fish meat by hydrolysis under sub-critical and supercritical conditions. J. Chem. Eng. Jpn. 2003, 36, 441–448. [Google Scholar] [CrossRef]
- Koç, S. Investigation of the Nutritional, Functional, and Bioactive Properties of Protein Hydrolysates Obtained from Anchovy (Engraulis encrasicolus) Processing By-Products. Ph.D. Thesis, Çanakkale Onsekiz Mart University, Çanakkale, Turkey, 2016. [Google Scholar]
- Roslan, J.; Kamal, S.M.; Yunos, M.K.; Abdullah, N. Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) by-product using response surface methodology. Int. Food Res. J. 2015, 22, 1117–1123. [Google Scholar]
- Esteban, M.B.; Garcia, A.J.; Ramos, P.; Marquez, M.C. Evaluation of fruit–vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Manag. 2007, 27, 193–200. [Google Scholar] [CrossRef]
- Korkmaz, K.; Tokur, B. Investigation of the quality parameters of hydrolysates obtained from fish by-products using response surface methodology. J. Food Process. Preserv. 2022, 46, e16296. [Google Scholar] [CrossRef]
- Nam, P.V.; Van Hoa, N.; Trung, T.S. Properties of hydroxyapatites prepared from different fish bones: A comparative study. Ceram. Int. 2019, 45, 20141–20147. [Google Scholar] [CrossRef]
- Kandyliari, A.; Mallouchos, A.; Papandroulakis, N.; Golla, J.P.; Lam, T.T.; Sakellari, A.; Karavoltsos, S.; Vasiliou, V.; Kapsoke-falou, M. Nutrient composition and fatty acid and protein profiles of selected fish by-products. Foods 2020, 9, 190. [Google Scholar] [CrossRef]
- Cutajar, N.; Lia, F.; Deidun, A.; Galdies, J.; Arizza, V.; Zammit Mangion, M. Turning waste into a resource: Isolation and characterization of high-quality collagen and oils from atlantic bluefin tuna discards. Appl. Sci. 2022, 12, 1542. [Google Scholar] [CrossRef]
- Purnamayati, L.; Dito, B.S.; Dewi, E.N.; Suharto, S. Optimization of tilapia (Oreochromis niloticus) viscera oil extraction using response surface methodology. Food Res. 2023, 7, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Suseno, S.H.; Rizkon, A.K.; Jacoeb, A.M.; Listiana, D. Fish oil extraction as a by-product of Tilapia (Oreochromis sp.) fish processing with dry rendering method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 679, p. 012009. [Google Scholar]
- Nazir, N.; Diana, A.; Sayuti, K. Physicochemical and fatty acid profile of fish oil from head of tuna (Thunnus albacares) extracted from various extraction method. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 709–715. [Google Scholar] [CrossRef]
- Bimbo, A.P. Fish meal and oil. In The Seafood Industry; Martin, R.E., Flick, G.J., Eds.; Springer: Boston, MA, USA, 1990. [Google Scholar]
- Taati, M.M.; Shabanpour, B.; Ojagh, M. Investigation on fish oil extraction by enzyme extraction and wet reduction methods and quality analysis. AACL Bioflux 2018, 11, 83–90. [Google Scholar]
- Özyurt, G.; Özkütük, A.S.; Uçar, Y.; Durmuş, M.; Özoğul, Y. Fatty acid composition and oxidative stability of oils recovered from acid silage and bacterial fermentation of fish (Sea bass–Dicentrarchus labrax) by-products. Int. J. Food Sci. Technol. 2018, 53, 1255–1261. [Google Scholar] [CrossRef]
- Monsiváis-Alonso, R.; Mansouri, S.S.; Román-Martínez, A. Life cycle assessment of intensified processes towards circular economy: Omega-3 production from waste fish oil. Chem. Eng. Process. Process Intensif. 2020, 158, 108171. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Standards for Fish Oils; Codex Alimentarius Commission: Rome, Italy, 1999. [Google Scholar]
- European Food Safety Authority (EFSA). Labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. EFSA J. 2010, 7, 1176. [Google Scholar]
- Kaıtaranta, J.K. Control of lipid oxidation in fish oil with various antioxidative compounds. J. Am. Oil Chem. Soc. 1992, 69, 810–813. [Google Scholar] [CrossRef]
- Schormüller, J. Handbuch der Lebensmittelchemie (Band III/2). Triesrische Lebensmittel Eier, Fleisch, Fisch, Buttermich, 1584; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1969; pp. 1561–1578. [Google Scholar]
- Özyurt, G.; Şimşek, A.; Etyemez, M.; Polat, A. Fatty acid composition and oxidative stability of fish oil products in Turkish retail market. J. Aquat. Food Prod. Technol. 2013, 22, 322–329. [Google Scholar] [CrossRef]
- Soldo, B.; Šimat, V.; Vlahović, J.; Skroza, D.; Ljubenkov, I.; GeneralićMekinić, I. High quality oil extracted from sardine by-products as an alternative to whole sardines: Production and refning. Eur. J. Lipid Sci. Technol. 2019, 121, 1800513. [Google Scholar] [CrossRef]
- Gamsız, K.; Korkut, A.Y.; Kop, A. Comparison of fatty acid compositions of commercial fish and fish by-products oils used in fish feed industry in Turkey. Turk. J. Agric. Food Sci. Technol. 2019, 7, 1941–1946. [Google Scholar] [CrossRef]
- Giogios, I.; Grigorakis, K.; Nengas, I.; Papasolomondos, S.; Papaioannou, N.; Alexis, M.N. Fatty acid composition and volatile compounds of selected marine oils and meals. J. Sci. Food Agric. 2009, 89, 88–100. [Google Scholar] [CrossRef]
- Durmuş, M. Fish oil for human health: Omega-3 fatty acid profiles of marine seafood species. Food Sci. Technol. 2018, 39, 454–461. [Google Scholar] [CrossRef]
- Alkio, M.; González, C.; Jäntti, M.; Aaltonen, O. Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography. JAOCS J. Am. Oil Chem. Soc. 2000, 77, 315–321. [Google Scholar] [CrossRef]
- Haraldsson, G.G.; Kristinsson, B. Separation of eicosapentaenoic acid and docosahexaenoic acid in fish oil by kinetic resolution using lipase. J. Am. Oil Chem. Soc. 1998, 75, 1551–1556. [Google Scholar] [CrossRef]
- Halldorsson, A.; Kristinsson, B.; Glynn, C.; Haraldsson, G.G. Separation of EPA and DHA in fish oil by lipase-catalyzed esterification with glycerol. J. Am. Oil Chem. Soc. 2003, 80, 915–921. [Google Scholar] [CrossRef]
- Suseno, S.H.; Syari, C.; Zakiyah, E.R.; Jacoeb, A.M.; Izaki, A.F.; Saraswati, H.S. Low temperature extraction and quality of oil from spotted sardinella (Amblygaster sirm) and goldstrip sardinella (Sardinella gibbosa). World J. Fish Mar. Sci. 2014, 6, 435–440. [Google Scholar]
- Selmi, S.; Mbarki, R.; Sadok, S. Seasonal change of lipid and fatty acid composition of little tuna euthynnus alletteratus-by-products. Nutr. Health 2008, 19, 189–194. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Bou, M.; Berge, G.; Baeverfjord, G.; Sigholt, T.; Østbye, T.; Romarheim, O.; Ruyter, B. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L.): Effects of different dietary levels of EPA and DHA on fish performance and tissue composi-tion and integrity. Br. J. Nutr. 2017, 117, 30–47. [Google Scholar] [CrossRef]
- Shepherd, C.J.; Monroig, O.; Tocher, D.R. Future availability of raw materialsforsalmon feeds and supply chain implications: The case of Scottish farmed salmon. Aquaculture 2017, 467, 49–62. [Google Scholar] [CrossRef]
- Jobling, M. Fish nutrition research: Past, present and future. Aquac. Int. 2016, 24, 767–786. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [PubMed]
- Shirahigue, L.D.; Silva, M.O.; Camargo, A.C.; Sucasas, L.F.D.A.; Borghesi, R.; Cabral, I.S.R.; da Silva, L.K.S.; Galvao, J.A.; Oetterer, M. The feasibility of increasing lipid extraction in Tilapia (Oreochromis niloticus) waste by proteolysis. J. Aquat. Food Prod. Technol. 2016, 25, 265–271. [Google Scholar] [CrossRef]
- Linder, M.; Fanni, J.; Parmentier, M. Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar. Biotechnol. 2005, 7, 70–76. [Google Scholar] [CrossRef]
- Yesilsu, A.F.; Özyurt, G. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment. J. Food Eng. 2019, 240, 171–182. [Google Scholar] [CrossRef]
- Goosen, N.J.; de Wet, L.F.; Görgens, J.F. Rainbow trout silage oil as immunity enhancing feed ingredient in formulated diets for South African abalone Haliotis midae. Aquaculture 2014, 430, 28–33. [Google Scholar] [CrossRef]
- Mgbechidinma, C.L.; Zheng, G.; Baguya, E.B.; Zhou, H.; Okon, S.U.; Zhang, C. Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environ. Eng. Res. 2023, 28, 220034. [Google Scholar] [CrossRef]
Nutrient Elements (%) | Rainbow Trout Meat | Rainbow Trout Waste |
---|---|---|
Lipid | 1.39 ± 0.17 a | 23.10 ± 0.72 b |
Protein | 17.78 ± 0.33 a | 14.10 ± 0.45 a |
Ash | 1.14 ± 0.34 a | 3.70 ± 0.19 a |
Moisture | 77.74 ± 0.44 b | 59.10 ± 0.87 a |
Temperature (°C) | Time (min) | Enzyme Ratio (%) | ||
---|---|---|---|---|
0.5 | 1 | 1.5 | ||
30° | 30′ | 6.80 ± 0.02 b1 | 5.83 ± 0.02 b2 | 7.18 ± 0.04 b2 |
60′ | 7.10 ± 0.04 a1 | 5.75 ± 0.02 a2 | 7.17 ± 0.05 a2 | |
90′ | 6.65 ± 0.04 a1 | 6.42 ± 0.05 a2 | 8.75 ± 0.15 a2 | |
40° | 30′ | 9.16 ± 0.15 b1 | 11.46 ± 0.40 b2 | 10.94 ± 0.05 b2 |
60′ | 9.10 ± 0.10 a1 | 10.20 ± 0.23 a2 | 11.02 ± 0.23 a2 | |
90′ | 9.68 ± 0.19 a1 | 11.12 ± 0.31 a2 | 11.20 ± 0.30 a2 | |
50° | 30′ | 9.55 ± 0.06 b1 | 8.64 ± 0.16 b2 | 9.60 ± 0.21 b2 |
60′ | 9.52 ± 0.13 a1 | 8.93 ± 0.21 a2 | 9.29 ± 0.26 a2 | |
90′ | 8.12 ± 0.22 a1 | 9.60 ± 0.03 a2 | 9.77 ± 0.09 a2 |
Temperature (°C) | Time (min) | Enzyme Ratio (%) | ||
---|---|---|---|---|
0.5 | 1 | 1.5 | ||
30° | 30′ | 2.15 ± 0.03 a1 | 2.15 ± 0.27 a1 | 2.26 ± 043 a1 |
60′ | 2.26 ± 0.14 a1 | 2.37 ± 0.29 a12 | 2.68 ± 0.14 a1 | |
90′ | 2.92 ± 0.27 a2 | 3.04 ± 0.17 a2 | 3.12 ± 0.30 a1 | |
40° | 30′ | 1.87 ± 0.12 a1 | 1.96 ± 0.29 a1 | 1.89 ± 0.42 a1 |
60′ | 2.46 ± 0.15 a2 | 2.66 ± 0.15 a2 | 2.48 ± 0.13 a12 | |
90′ | 3.41 ± 0.12 a3 | 3.46 ± 0.10 a3 | 3.22 ± 0.19 a2 | |
50° | 30′ | 2.25 ± 0.23 a1 | 1.97 ± 0.30 a1 | 1.78 ± 0.00 a1 |
60′ | 2.27 ± 0.18 a1 | 2.36 ± 0.28 a1 | 2.46 ± 0.14 a2 | |
90′ | 3.23 ± 0.08 a2 | 3.47 ± 0.13 a2 | 3.43 ± 0.11 a3 |
Temperature (°C) | Time (min) | Enzyme Ratio (%) | ||
---|---|---|---|---|
0.5 | 1 | 1.5 | ||
30° | 30′ | 0.59 ± 0.04 a2 | 0.58 ± 0.08 a1 | 0.51 ± 0.07 a2 |
60′ | 0.49 ± 0.04 a12 | 0.52 ± 0.04 a1 | 0.55 ± 0.08 a2 | |
90′ | 0.48 ± 0.10 ab1 | 0.55 ± 0.09 b1 | 0.41 ± 0.04 a1 | |
40° | 30′ | 0.74 ± 0.08 a1 | 0.55 ± 0.02 a1 | 0.75 ± 0.22 a1 |
60′ | 1.04 ± 0.30 a1 | 0.70 ± 0.08 a2 | 0.87 ± 0.58 a12 | |
90′ | 0.95 ± 0.46 a1 | 0.72 ± 0.14 a2 | 1.41 ± 0.09 b2 | |
50° | 30′ | 1.28 ± 0.23 a1 | 1.24 ± 0.51 a1 | 0.97 ± 0.09 a2 |
60′ | 0.84 ± 0.11 a1 | 1.05 ± 0.49 a1 | 0.85 ± 0.13 a12 | |
90′ | 1.12 ± 0.58 a1 | 0.73 ± 0.03 a1 | 0.71 ± 0.08 a1 |
Temperature (°C) | Time (min) | Enzyme Ratio (%) | ||
---|---|---|---|---|
0.5 | 1 | 1.5 | ||
30° | 30′ | 0.51 ± 0.14 a1 | 2.48 ± 0.11 b1 | 4.12 ± 0.54 c1 |
60′ | 0.27 ± 0.02 a1 | 3.52 ± 1.69 b1 | 3.24 ± 1.15 b1 | |
90′ | 0.25 ± 0.12 a1 | 3.46 ± 0.15 b1 | 2.26 ± 0.24 b1 | |
40° | 30′ | 3.22 ± 0.78 a1 | 3.24 ± 0.47 a1 | 2.45 ± 0.02 a1 |
60′ | 3.26 ± 0.03 c1 | 2.54 ± 0.00 b1 | 2.44 ± 0.03 a1 | |
90′ | 3.26 ± 0.35 a1 | 2.57 ± 0.08 a1 | 2.67 ± 0.41 a1 | |
50° | 30′ | 2.00 ± 0.14 a1 | 2.22 ± 0.25 b1 | 3.28 ± 0.21 b1 |
60′ | 2.25 ± 0.02 a1 | 3.30 ± 0.18 a1 | 3.32 ± 0.62 a1 | |
90′ | 2.78 ± 0.53 a1 | 2.97 ± 0.08 a1 | 2.59 ± 0.10 a1 |
Fillet | Waste | Bph By-Product | |
---|---|---|---|
ƩSFA | 20.94 ± 0.67 ab | 18.81 ± 1.54 a | 22.15 ± 0.15 b |
ƩMUFA | 31.48 ± 0.20 a | 40.72 ± 2.74 ab | 46.31 ± 0.17 b |
ƩPUFA | 39.39 ± 0.73 b | 19.11 ± 1.65 a | 23.52 ± 0.03 ab |
n6 | 18.57 ± 1.12 a | 17.83 ± 1.29 a | 22.89 ± 0.03 b |
n3 | 19.71 ± 0.78 b | 9.92 ± 1.35 a | 6.99 ± 0.05 a |
n6/n3 | 0.95 ± 0.11 a | 1.80 ± 0.92 ab | 3.27 ± 1.17 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korkmaz, K.; Öztürk, S. Determination of the Quality of Oil Obtained from Protein Hydrolysate Produced Using Rainbow Trout (Oncorhynchus mykiss) By-Products. Foods 2025, 14, 3227. https://doi.org/10.3390/foods14183227
Korkmaz K, Öztürk S. Determination of the Quality of Oil Obtained from Protein Hydrolysate Produced Using Rainbow Trout (Oncorhynchus mykiss) By-Products. Foods. 2025; 14(18):3227. https://doi.org/10.3390/foods14183227
Chicago/Turabian StyleKorkmaz, Koray, and Serpil Öztürk. 2025. "Determination of the Quality of Oil Obtained from Protein Hydrolysate Produced Using Rainbow Trout (Oncorhynchus mykiss) By-Products" Foods 14, no. 18: 3227. https://doi.org/10.3390/foods14183227
APA StyleKorkmaz, K., & Öztürk, S. (2025). Determination of the Quality of Oil Obtained from Protein Hydrolysate Produced Using Rainbow Trout (Oncorhynchus mykiss) By-Products. Foods, 14(18), 3227. https://doi.org/10.3390/foods14183227