Effect of Yeast Polysaccharides Replacing Sulfur Dioxide on Antioxidant Property and Quality Characteristics of Cabernet Sauvignon Wines
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Wine-Making Operations
2.3. Test Setup
2.4. Physicochemical Analysis
2.5. Antioxidant Capacity
2.6. Determination of Phenolic Substances
2.7. Quantitative Analysis of Phenolic Compounds
2.8. Color Measurement
2.9. HS-SPME-GC-MS
2.10. Wine Sensory Tasting
2.11. Statistical Analysis
3. Results
3.1. Effect of Yeast Polysaccharides on the Physicochemical Indices of Wine
3.2. Antioxidant Activity of Wines
3.3. Effect of Yeast Polysaccharides on the Phenolic Content of Cabernet Sauvignon Wines
3.3.1. Polyphenols
3.3.2. Total Flavonoids
3.3.3. Total Anthocyanin
3.3.4. Tannin
3.4. Analysis of Phenolic Compounds
3.5. Effect of Yeast Polysaccharides on the Color Index of Cabernet Sauvignon Wines
3.6. Flavor and Sensory Evaluation
3.6.1. Analysis of Volatile Substances in Wines
3.6.2. Orthogonal Partial Least Squares Discriminant Analysis of Volatiles in Two Wines
3.6.3. Wine Sensory Scoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shih, M.-K.; Lai, Y.-H.; Lin, C.-M.; Chen, Y.-W.; Hou, Z.-T.; Hou, C.-Y. A novel application of terpene compound α-pinene for alternative use of sulfur dioxide-free white wine. Int. J. Food Prop. 2020, 23, 520–532. [Google Scholar] [CrossRef]
- Costanigro, M.; Appleby, C.; Menke, S.D. The wine headache: Consumer perceptions of sulfites and willingness to pay for non-sulfited wines. Food Qual. Prefer. 2014, 31, 81–89. [Google Scholar] [CrossRef]
- Silva, F.V.; Van Wyk, S. Emerging non-thermal technologies as alternative to SO2 for the production of wine. Foods 2021, 10, 2175. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, J.; Jin, Y.; Zhao, Z.; Li, Y. SO2 reduction in distilled grape spirits by three methods. J. Inst. Brew. 2013, 119, 314–320. [Google Scholar] [CrossRef]
- Qin, G.; Meng, Z. Effects of sulfur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells. Food Chem. Toxicol. 2009, 47, 734–744. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, K.; Chen, X.; Wu, H.; Xiao, X.; Xie, L.; Wei, Z.; Xiong, R.; Zhou, X. Effects of plant-derived polyphenols on the antioxidant activity and aroma of sulfur-dioxide-free red wine. Molecules 2023, 28, 5255. [Google Scholar] [CrossRef]
- Sonni, F.; Cejudo Bastante, M.J.; Chinnici, F.; Natali, N.; Riponi, C. Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: Influence on volatile composition of white wines. J. Sci. Food Agric. 2009, 89, 688–696. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Diao, T.; Leng, Y.; Lai, X.; Wei, X. Pulsed electric field technology for the manufacturing processes of wine: A review. J. Food Process. Preserv. 2022, 46, e16750. [Google Scholar] [CrossRef]
- Torres-Díaz, L.L.; González-Lázaro, M.; de Urturi, I.S.; Murillo-Peña, R.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Assessment of fumaric acid, ascorbic acid, and glutathione as alternatives to SO2: Effects on red and white wine volatile composition. LWT 2025, 220, 117525. [Google Scholar] [CrossRef]
- Labrador Fernández, L.; Pérez-Porras, P.; Díaz-Maroto, M.C.; Gómez-Plaza, E.; Pérez-Coello, M.S.; Bautista-Ortín, A.B. The technology of high-power ultrasound and its effect on the color and aroma of rosé wines. J. Sci. Food Agric. 2023, 103, 6616–6624. [Google Scholar] [CrossRef]
- Puig-Pujol, A.; Roca-Domènech, G.; Quevedo, J.-M.; Trujillo, A.-J. Application of ultra-high pressure homogenization (UHPH) at different stages of wine production. In Proceedings of the BIO Web of Conferences, Bogor, Indonesia, 25–26 October 2023; p. 02025. [Google Scholar]
- Vicaş, S.I.; Bandici, L.; Teuşdea, A.C.; Turcin, V.; Popa, D.; Bandici, G.E. The bioactive compounds, antioxidant capacity, and color intensity in must and wines derived from grapes processed by pulsed electric field. CyTA-J. Food 2017, 15, 553–562. [Google Scholar] [CrossRef]
- Feng, X.; Dong, Y.; Feng, Y.; Zhang, A.; Huang, Z.; Wang, S.; Niu, D. Recent advances in physical/chemical methods as alternatives to SO2 for winemaking: Principles, challenges and perspectives. Innov. Food Sci. Emerg. Technol. 2024, 97, 103839. [Google Scholar] [CrossRef]
- Dong, W.; Li, Y.; Xue, S.; Wen, F.; Meng, D.; Zhang, Y.; Yang, R. Yeast polysaccharides: The environmentally friendly polysaccharides with broad application potentials. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70003. [Google Scholar] [CrossRef]
- Machová, E.; Bystrický, S. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. Int. J. Biol. Macromol. 2013, 61, 308–311. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.; Lv, M. Extraction, characterization and antioxidant activities of mannan from yeast cell wall. Int. J. Biol. Macromol. 2018, 118, 952–956. [Google Scholar] [CrossRef]
- Kogan, G.; Pajtinka, M.; Babincova, M.; Miadokova, E.; Rauko, P.; Slamenova, D.; Korolenko, T. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma 2008, 55, 387–393. [Google Scholar]
- Bertolo, A.P.; Biz, A.P.; Kempka, A.P.; Rigo, E.; Cavalheiro, D. Yeast (Saccharomyces cerevisiae): Evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. J. Food Sci. Technol. 2019, 56, 3697–3706. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, B.-R.; Chewaka, L.S. A comparative study of composition and soluble polysaccharide content between brewer’s spent yeast and cultured yeast cells. Foods 2024, 13, 1567. [Google Scholar] [CrossRef]
- Bharti, B.; Li, H.; Ren, Z.; Zhu, R.; Zhu, Z. Recent advances in sterilization and disinfection technology: A review. Chemosphere 2022, 308, 136404. [Google Scholar] [CrossRef]
- Peng, Q.-H.; Cheng, L.; Kun, K.; Gang, T.; Mohammad, A.-M.; Bai, X.; Wang, L.-Z.; Zou, H.-W.; Gicheha, M.G.; Wang, Z.-S. Effects of yeast and yeast cell wall polysaccharides supplementation on beef cattle growth performance, rumen microbial populations and lipopolysaccharides production. J. Integr. Agric. 2020, 19, 810–819. [Google Scholar] [CrossRef]
- Rinaldi, A.; Coppola, M.; Moio, L. Aging of Aglianico and Sangiovese wine on mannoproteins: Effect on astringency and colour. LWT 2019, 105, 233–241. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Q.; Zhao, D.; Duan, W.; Han, S.; Yang, X. Parameter optimization aroma enhancement fermentation technology of dry white wine. Trans. Chin. Soc. Agric. Eng. 2019, 35, 282–291. [Google Scholar]
- Analytical Methods of Wine and Fruit Wine. 2006. Available online: https://kns.cnki.net/kcms2/article/abstract?v=d7HKHDfP4kcTRRVZmol36l4rr81CjtYuc2h_Z1pvkYgvxQPHbQPk9hb5k54L9Rc_VGMqjwZUk5-F6RrZ1DndxSimyEABK7NIAxzvL63p354UGK_Lvj8X_JLeB-5XsFhUEm8OGReffvhenuSJzl64PejRwJR5o_h6PJReJ9nxv0g=&uniplatform=NZKPT&language=CHS (accessed on 8 January 2025).
- Diao, T.; Chen, X.; Leng, Y.; Wei, X.; Lai, X.; Ma, Y. Effects of plant-derived polyphenols on the antioxidant capacities and sensory qualities of pear wine. Food Ferment. Ind. 2022, 48, 93–101. [Google Scholar] [CrossRef]
- Tekos, F.; Makri, S.; Skaperda, Z.-V.; Patouna, A.; Terizi, K.; Kyriazis, I.D.; Kotseridis, Y.; Mikropoulou, E.V.; Papaefstathiou, G.; Halabalaki, M. Assessment of antioxidant and antimutagenic properties of red and white wine extracts in vitro. Metabolites 2021, 11, 436. [Google Scholar] [CrossRef]
- Fang, Y.; Meng, J.; Zhang, A.; Liu, J.; Xu, T.; Yu, W.; Chen, S.; Li, H.; Zhang, Z.; Wang, H. Influence of shriveling on berry composition and antioxidant activity of Cabernet Sauvignon grapes from Shanxi vineyards. J. Sci. Food Agric. 2011, 91, 749–757. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, K.; Lai, X.; Xiao, X.; Xiong, R.; Xie, L.; Wei, Z.; Huang, H. Effects of Tannin Addition on Changes in Color and Anthocyanin Content of Cabernet sauvignon Wine and Their Correlation. Sci. Technol. Food Ind. 2024, 45, 81–88. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, Y.; Qiu, Y.; Guo, H.; Ju, H.; Wang, Y.; Yuan, Y.; Yue, T. Chemical composition, sensorial properties, and aroma-active compounds of ciders fermented with Hanseniaspora osmophila and Torulaspora quercuum in co-and sequential fermentations. Food Chem. 2020, 306, 125623. [Google Scholar] [CrossRef]
- Strati, I.F.; Tataridis, P.; Shehadeh, A.; Chatzilazarou, A.; Bartzis, V.; Batrinou, A.; Sinanoglou, V.J. Impact of tannin addition on the antioxidant activity and sensory character of Malagousia white wine. Curr. Res. Food Sci. 2021, 4, 937–945. [Google Scholar] [CrossRef]
- Xie, L.; Yu, K.; Xiao, X.; Wei, Z.; Xiong, R.; Du, Y.; Li, Y.; Ma, Y. Study on the Kinetic Model of Mixed Fermentation by Adding Glutathione-Enriched Inactive Dry Yeast. Fermentation 2024, 10, 329. [Google Scholar] [CrossRef]
- GB/T 16291.1-2012; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. China National Standards: Beijing, China, 2012.
- Zhu, X.; Song, R.; Song, X.; Li, J.; Yang, X. Effects of mannan on growth and antioxidant activity of Saccharomyces cerevisiae. Food Ferment. Ind. 2021, 47, 49–54. [Google Scholar] [CrossRef]
- Yin, N.; Xu, Y.; Li, M.; Han, S.; Wang, J. Effect of Yeast Polysaccharide on the Quality of Wine Cabernet Gernischt Dry Red. J. Food Sci. Biotechnol. 2018, 37, 646–654. [Google Scholar]
- Gil, M.; Kontoudakis, N.; González, E.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Influence of grape maturity and maceration length on color, polyphenolic composition, and polysaccharide content of Cabernet Sauvignon and Tempranillo wines. J. Agric. Food Chem. 2012, 60, 7988–8001. [Google Scholar] [CrossRef]
- Yuan, Q.; Li, J.; Liu, B.; Yang, X.; Zhu, X. Quality of Low-alcohol Zaosu Pear-Merlot Wine under Different Yeast Polysaccharide Addition Conditions. Trans. Chin. Soc. Agric. Mach. 2024, 55, 419–430. [Google Scholar]
- Puerta-García, I.; Dueñas, M.; García-Estévez, I.; Salas, E.; Escibano-Bailón, M.T. Effect of soluble polysaccharide addition against oxidation of rose wines. Curr. Res. Food Sci. 2025, 10, 101009. [Google Scholar] [CrossRef]
- Dridi, W.; Bordenave, N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr. Polym. 2021, 274, 118670. [Google Scholar] [CrossRef]
- Weilack, I.; Mehren, L.; Weber, F. Pectic polysaccharides modulate colloidal stability and astringency perception of bottle aged Cabernet Sauvignon wines. Food Hydrocoll. 2024, 157, 110402. [Google Scholar] [CrossRef]
- Liu, X.; Xing, J.; Feng, J.; Chen, J.; Jiao, Y.; Yang, B. Research progress on copigmentation of red wine. China Brew. 2023, 42, 9–14. [Google Scholar]
- Liu, X.; Wang, J.; Wu, J.; Li, R. Research progress on the effect of polysaccharides on the color stability of red wine. Food Ferment. Ind. 2025, 51, 413–420. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, P.; Du, Y.; Lin, J.; Han, F. Effect of postharvest grape dehydration on the phenolic composition of ‘Marselan’ rose wine during aging. J. Food Compos. Anal. 2023, 123, 105630. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022, 12, 7689–7711. [Google Scholar] [CrossRef]
- Rodrigues, A.; Ricardo-da-Silva, J.M.; Lucas, C.; Laureano, O. Effect of commercial mannoproteins on wine colour and tannins stability. Food Chem. 2012, 131, 907–914. [Google Scholar] [CrossRef]
- Rinaldi, A.; Gonzalez, A.; Moio, L.; Gambuti, A. Commercial mannoproteins improve the mouthfeel and colour of wines obtained by excessive tannin extraction. Molecules 2021, 26, 4133. [Google Scholar] [CrossRef]
- Bicca, S.A.; Poncet-Legrand, C.; Williams, P.; Nguela, J.M.; Doco, T.; Vernhet, A. Structural characteristics of Saccharomyces cerevisiae mannoproteins: Impact of their polysaccharide part. Carbohydr. Polym. 2022, 277, 118758. [Google Scholar] [CrossRef] [PubMed]
- Galán, R.D.B.; Úbeda, C.; Sieczkowki, N.; Peña, Á. Different application dosages of a specific inactivated dry yeast (SIDY): Effect on the polysaccharides, phenolic and volatile contents and color of Sauvignon blanc wines. Oeno One 2018, 52, 4. [Google Scholar]
- Martínez-Lapuente, L.; Apolinar-Valiente, R.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S.; Williams, P.; Doco, T. Polysaccharides, oligosaccharides and nitrogenous compounds change during the ageing of Tempranillo and Verdejo sparkling wines. J. Sci. Food Agric. 2018, 98, 291–303. [Google Scholar] [CrossRef]
- Wang, L.; Ding, Y.; Wu, Y.; Qiu, S.; Dai, Y.; Zhou, H. Flavor analysis of blueberry wines with different residual sugar contents by headspace solid phase microextraction gas chromatography-mass spectrometry combined with electronic tongue. Food Ferment. Ind. 2024, 50, 294–300. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Xu, Y.; Huang, J.; Feng, L.; Yan, X.; Tao, Y. Apparent Matrix Effect of Yeast Polysaccharides from S. cerevisiae on the Hydrolysis of Wine Fruity Esters. Sci. Agric. Sin. 2023, 56, 1168–1176. [Google Scholar]
- Ramírez Fernández, M.; Velázquez Molinero, R.; Maqueda Gil, M.J.; Zamora de Alba, E.; López Piñeiro, A.; Hernández Martín, L.M. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Int. J. Food Microbiol. 2016, 238, 311–319. [Google Scholar] [CrossRef]
- de Castilhos, M.B.M.; Del Bianchi, V.L.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Sensory descriptive and comprehensive GC-MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part II: BRS Rúbea and BRS Cora. Food Chem. 2020, 311, 126025. [Google Scholar] [CrossRef]
- Kruis, A.J.; Levisson, M.; Mars, A.E.; van der Ploeg, M.; Daza, F.G.; Ellena, V.; Kengen, S.W.; van der Oost, J.; Weusthuis, R.A. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab. Eng. 2017, 41, 92–101. [Google Scholar] [CrossRef]
- Bai, X.; Ling, M.; Chen, B.; Yibin, L.; Cheng, C.; Duan, C.; Shi, Y. Effect of Grape Seed Tannin Addition before Barrel Aging on the Aroma of Cabernet Sauvignon and Marselan Dry Red Wine. Food Sci. 2022, 43, 251–257. [Google Scholar]
- Gürbüz, O.; Rouseff, J.M.; Rouseff, R.L. Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography− olfactometry and gas chromatography− mass spectrometry. J. Agric. Food Chem. 2006, 54, 3990–3996. [Google Scholar] [CrossRef]
- Tao, Y.; Li, H.; Wang, H.; Zhang, L. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). J. Food Compos. Anal. 2008, 21, 689–694. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Zhang, J.; Xue, J.; Zhang, X.J. Aroma characteristics of aged ‘Cabernet Sauvignon’ dry red wine from Eastern Foothill of Helan Mountain. Food Sci. 2019, 40, 203–209. [Google Scholar]
- Ríos-Reina, R.; Segura-Borrego, M.P.; Morales, M.L.; Callejón, R.M. Characterization of the aroma profile and key odorants of the Spanish PDO wine vinegars. Food Chem. 2020, 311, 126012. [Google Scholar] [CrossRef]
- Liu, J.; You, M.; Zhu, X.; Shi, W. Characterization of aroma characteristics of silver carp mince glycated with different reducing sugars. Food Chem. X 2024, 22, 101335. [Google Scholar] [CrossRef]
Serial Number | Aroma Descriptors | Reference Material |
---|---|---|
1 | Grapefruit | Le Nez du Vin~Grapefruit |
2 | Floral | Le Nez du Vin~Linden flower |
3 | Honey | Le Nez du Vin~Honey |
4 | Flavoring | Le Nez du Vin~Cinnamon |
5 | Apricot kernel | Le Nez du Vin~Apricot kernel |
6 | Toast | Le Nez du Vin~Toast |
Groups | Reducing Sugar (g/L) | Total Acid (g/L) | Soluble Solids (°Brix) | pH | Alcohol Content (% vol) |
---|---|---|---|---|---|
S | 0.62 ± 0.08 a | 5.80 ± 0.15 b | 2.83 ± 0.11 de | 3.85 ± 0.08 a | 9.13 ± 0.21 a |
TS0 | 0.69 ± 0.03 ab | 6.04 ± 0.14 a | 3.24 ± 0.14 a | 3.87 ± 0.11 a | 8.22 ± 0.33 c |
TS50 | 0.64 ± 0.04 ab | 5.86 ± 0.07 b | 2.89 ± 0.09 cde | 3.89 ± 0.09 a | 8.87 ± 0.15 ab |
TS100 | 0.62 ± 0.03 ab | 5.77 ± 0.16 b | 2.77 ± 0.14 e | 3.86 ± 0.07 a | 9.14 ± 0.24 a |
TS150 | 0.63 ± 0.04 b | 5.73 ± 0.09 b | 3.02 ± 0.11 bcd | 3.84 ± 0.13 a | 8.61 ± 0.29 bc |
TS200 | 0.64 ± 0.02 ab | 5.84 ± 0.08 b | 3.14 ± 0.16 ab | 3.83 ± 0.06 a | 8.38 ± 0.11 c |
TS250 | 0.61 ± 0.02 ab | 5.76 ± 0.06 b | 3.09 ± 0.07 abc | 3.85 ± 0.09 a | 8.41 ± 0.17 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, R.; Xiao, X.; Huang, H.; Yu, K.; Tan, J.; Wang, Y.; Li, C.; Li, S.; Ma, Y. Effect of Yeast Polysaccharides Replacing Sulfur Dioxide on Antioxidant Property and Quality Characteristics of Cabernet Sauvignon Wines. Foods 2025, 14, 3188. https://doi.org/10.3390/foods14183188
Liao R, Xiao X, Huang H, Yu K, Tan J, Wang Y, Li C, Li S, Ma Y. Effect of Yeast Polysaccharides Replacing Sulfur Dioxide on Antioxidant Property and Quality Characteristics of Cabernet Sauvignon Wines. Foods. 2025; 14(18):3188. https://doi.org/10.3390/foods14183188
Chicago/Turabian StyleLiao, Rui, Xiongjun Xiao, Huiling Huang, Kangjie Yu, Jianxia Tan, Yue Wang, Cong Li, Siyu Li, and Yi Ma. 2025. "Effect of Yeast Polysaccharides Replacing Sulfur Dioxide on Antioxidant Property and Quality Characteristics of Cabernet Sauvignon Wines" Foods 14, no. 18: 3188. https://doi.org/10.3390/foods14183188
APA StyleLiao, R., Xiao, X., Huang, H., Yu, K., Tan, J., Wang, Y., Li, C., Li, S., & Ma, Y. (2025). Effect of Yeast Polysaccharides Replacing Sulfur Dioxide on Antioxidant Property and Quality Characteristics of Cabernet Sauvignon Wines. Foods, 14(18), 3188. https://doi.org/10.3390/foods14183188