Magnetic Nanoparticle-Based DNA Isolation from Refined Soybean Oil: A Cost-Effective Approach for GM Testing
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. DNA Extraction from Soybean Oil by Magnetic Bead Method
- (1)
- Cell lysis and DNA transfer to the aqueous phase:
- (2)
- DNA precipitation and resuspension:
- (3)
- Oil removal from DNA:
- (4)
- Binding of DNA to magnetic beads:
- (5)
- DNA washing:
- (6)
- DNA elution:
2.3. DNA Extraction from Soybean
2.4. Determination of the Yield and Purity of DNA Extracted from Soybeans
2.5. Real-Time PCR
2.6. Optimization of Magnetic Bead Type
2.7. Optimization of Magnetic Adsorption System
2.8. DNA Extraction from Soybean Oil Using Different Methods
2.8.1. CTAB–NucleoSpin Food Kit Method
2.8.2. CTAB-Magnetic Bead Method
2.8.3. CTAB–Hexane Method
2.8.4. CTAB Method
2.8.5. Resin Based Oil DNA Extraction Kit Method
2.9. Conversion of DNA Mass Concentration in Soybean Oil
2.10. Two-Round Nested Qualitative PCR
2.11. Agarose Gel Electrophoresis
2.12. Evaluation of DNA Recovery Rates Across Different Extraction Methods
2.13. Data Analysis
3. Results and Discussion
3.1. Design of DNA Extraction Method
3.2. Identification of Magnetic Bead Type
3.3. Identification of Magnetic Adsorption System
3.4. Validation of the Optimized Magnetic Bead Method
3.5. Cost Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- AgbioInvestor. Global GM Crop Area Review. Available online: https://gm.agbioinvestor.com/ (accessed on 27 April 2025).
- Oilseeds: World Markets and Trade. PSD Publications: Oilseeds. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (accessed on 10 August 2025).
- Zhang, J.; Luo, J. Legislation related to the EU mandatory labeling system for genetically modified foods and enlightenments drawn from it. Food Sci. 2025, 46, 290–298. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, K.; Aminedi, R.; Pal, D. A comprehensive review of key requirements and analytical methods for tracking genetically modified (GM) ingredients in processed food products. Food Biosci. 2025, 71, 107015. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, K.J.; Teo, E.H.S.; Tan, Y.Q.; Wu, Y.; Chng, K.R.; Chan, J.S.H.; Tan, L.K. Monitoring of genetically modified crops in food products in Singapore. Food Control 2025, 171, 111092. [Google Scholar] [CrossRef]
- Prins, T.; Broothaerts, W.; Burns, M.; Demsar, T.; Edelmann, S.; Papazova, N.; Peterseil, V.; Taverniers, I. Guidance on the Selection and Use of DNA Extraction Methods: Technical Report JRC134298-EUR 31809 EN; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Pauli, U.; Liniger, M.; Zimmermann, A. Detection of DNA in soybean oil. Z. Leb. Forsch. A 1998, 207, 264–267. [Google Scholar] [CrossRef]
- Bogani, P.; Minunni, M.; Spiriti, M.M.; Zavaglia, M.; Tombelli, S.; Buiatti, M.; Mascini, M. Transgenes monitoring in an industrial soybean processing chain by DNA-based conventional approaches and biosensors. Food Chem. 2009, 113, 658–664. [Google Scholar] [CrossRef]
- Costa, J.; Mafra, I.; Amaral, J.S.; Oliveira, M.B.P.P. Detection of genetically modified soybean DNA in refined vegetable oils. Eur. Food Res. Technol. 2010, 230, 915–923. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, F.; Jiang, L.; Li, S.; Zhang, J. Development of an Efficient Method to Extract DNA from Refined Soybean Oil. Food Anal. Methods 2021, 14, 196–207. [Google Scholar] [CrossRef]
- Duan, Y.; Pi, Y.; Li, C.; Jiang, K. An optimized procedure for detection of genetically modified DNA in refined vegetable oils. Food Sci. Biotechnol. 2021, 30, 129–135. [Google Scholar] [CrossRef]
- Nikolić, Z.; Vasiljević, I.; Zdjelar, G.; Đorđević, V.; Ignjatov, M.; Jovičić, D.; Milošević, D. Detection of genetically modified soybean in crude soybean oil. Food Chem. 2014, 145, 1072–1075. [Google Scholar] [CrossRef]
- Amaral, J.S.; Raja, F.Z.; Costa, J.; Grazina, L.; Villa, C.; Charrouf, Z.; Mafra, I. Authentication of Argan (Argania spinosa L.) Oil Using Novel DNA-Based Approaches: Detection of Olive and Soybean Oils as Potential Adulterants. Foods 2022, 11, 2498. [Google Scholar] [CrossRef]
- Tang, C.; He, Z.; Liu, H.; Xu, Y.; Huang, H.; Yang, G.; Xiao, Z.; Li, S.; Liu, H.; Deng, Y.; et al. Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnology 2020, 18, 62. [Google Scholar] [CrossRef]
- Mirna Lorena, S.; Coronas Cynthia, P.; Maria Isabela, A.R.; Mendieta Pamela, V.; Hernandez Gabriela, R.; Jorge, B.; Mariano, G. Nucleic Acids Isolation for Molecular Diagnostics: Present and Future of the Silica-based DNA/RNA Purification Technologies. Sep. Purif. Rev. 2023, 52, 193–204. [Google Scholar] [CrossRef]
- Priya, P.R.; Deepak, K.S.; Dubey, S.K.; Goel, S. Nucleic acid purification through nanoarchitectonics: Magnetic bead integration with microfluidic chip technology. J. Micromech. Microeng. 2024, 34, 095005. [Google Scholar] [CrossRef]
- Veyret, R.; Elaissari, A.; Delair, T. Polyelectrolyte functionalized magnetic emulsion for specific isolation of nucleic acids. Colloids Surf. B Biointerfaces 2006, 53, 78–86. [Google Scholar] [CrossRef]
- Byrne, R.L.; Cocker, D.; Alyayyoussi, G.; Mphasa, M.; Charles, M.; Mandula, T.; Williams, C.T.; Rigby, J.; Hearn, J.; Feasey, N.; et al. A novel, magnetic bead-based extraction method for the isolation of antimicrobial resistance genes with a case study in river water in Malawi. J. Appl. Microbiol. 2022, 133, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Liang, Z.; Wang, S.; Zuo, P.; Wang, Y.; Luo, Y. Size-controlled mesoporous magnetic silica beads effectively extract extracellular DNA in the absence of chaotropic solutions. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 644, 128831. [Google Scholar] [CrossRef]
- Firoozeh, F.; Neshan, A.; Khaledi, A.; Zibaei, M.; Amiri, A.; Sobhani, A.; Badmasti, F.; Nikbin, V.S. Evaluation of the effect of magnetic nanoparticles on extraction of genomic DNA of Escherichia coli. Polym. Bull. 2023, 80, 3153–3163. [Google Scholar] [CrossRef]
- Farani, P.S.G.; Lopez, J.; Faier-Pereira, A.; Hasslocher-Moreno, A.M.; Almeida, I.C.; Moreira, O.C. Utility of Magnetic Bead-Based Automated DNA Extraction to Improve Chagas Disease Molecular Diagnosis. Int. J. Mol. Sci. 2025, 26, 937. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, F.; Du, Y.; Liu, C.; Bu, G.; Xin, Y.; Liu, B. A modified SDS-based DNA extraction method from raw soybean. Biosci. Rep. 2019, 39, BSR20182271. [Google Scholar] [CrossRef]
- Guo, M.; Xia, Y.; Chen, F.; Hao, L.; Xin, Y.; Liu, B. Development of an Efficient Dye-Based qPCR System Still Functional for Low Levels of Transgenic DNA in Food Products. Food Anal. Methods 2023, 16, 445–458. [Google Scholar] [CrossRef]
- Uncu, A.O.; Torlak, E.; Uncu, A.T. A Cost-Efficient and Simple Plant Oil DNA Extraction Protocol Optimized for DNA-Based Assessment of Product Authenticity. Food Anal. Methods 2018, 11, 939–950. [Google Scholar] [CrossRef]
- Kutateladze, T.; Karchkhadze, K.; Bitskinashvili, K.; Vishnepolsky, B.; Ninidze, T.; Mikeladze, D.; Datukishvili, N. Novel PCR-Based Technology for the Detection of Sunflower in Edible and Used Cooking Oils. Foods 2024, 131, 3760. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xu, W.; Shang, Y.; Zhu, P.; Mei, X.; Tian, W.; Huang, K. Development and optimization of an efficient method to detect the authenticity of edible oils. Food Control 2013, 31, 71–79. [Google Scholar] [CrossRef]
- Lee, S.M.; Nai, Y.H.; Doeven, E.H.; Balakrishnan, H.K.; Yuan, D.; Guijt, R.M. Abridged solid-phase extraction with alkaline Poly(ethylene) glycol lysis (ASAP) for direct DNA amplification. Talanta 2024, 266, 125006. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Shi, Y.; Ping, J.; Wu, J.; Chen, H. Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. TrAC-Trends Anal. Chem. 2020, 127, 115912. [Google Scholar] [CrossRef]
- Li, P.; Li, M.; Yue, D.; Chen, H. Solid-phase extraction methods for nucleic acid separation. A review. J. Sep. Sci. 2022, 45, 172–184. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Li, Q.; Cao, D.; Li, S. The effect of the particle size and magnetic moment of the Fe3O4 superparamagnetic beads on the sensitivity of biodetection. AIP Adv. 2019, 9, 015215. [Google Scholar] [CrossRef]
- Rittich, B.; Spanova, A. SPE and purification of DNA using magnetic particles. J. Sep. Sci. 2013, 36, 2472–2485. [Google Scholar] [CrossRef]
- Sun, N.; Deng, C.; Ge, G.; Xia, Q. Application of carboxyphenylboronic acid-functionalized magnetic nanoparticles for extracting nucleic acid from seeds. Biotechnol. Lett. 2015, 37, 211–218. [Google Scholar] [CrossRef]
- Oberacker, P.; Stepper, P.; Bond, D.M.; Hoehn, S.; Focken, J.; Meyer, V.; Schelle, L.; Sugrue, V.J.; Jeunen, G.-J.; Moser, T.; et al. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol. 2019, 17, e3000107. [Google Scholar] [CrossRef]
- Raymond, C.K.; Raymond, F.C.; Hill, K. UltraPrep is a scalable, cost-effective, bead-based method for purifying cell-free DNA. PLoS ONE 2020, 15, e0231854. [Google Scholar] [CrossRef]
- Lee, J.Y.H.; Porter, J.L.; Hobbs, E.C.; Whiteley, P.; Buultjens, A.H.; Stinear, T.P. A low-cost and versatile paramagnetic bead DNA extraction method for Mycobacterium ulcerans environmental surveillance. Appl. Environ. Microbiol. 2024, 90, e01021-24. [Google Scholar] [CrossRef]
- Kang, J.; Li, Y.; Zhao, Y.; Wang, Y.; Ma, C.; Shi, C. Nucleic acid extraction without electrical equipment via magnetic nanoparticles in Pasteur pipettes for pathogen detection. Anal. Biochem. 2021, 635, 114445. [Google Scholar] [CrossRef]
- Gautam, A. General Steps During Isolation of DNA and RNA. In DNA and RNA Isolation Techniques for Non-Expert; Gautam, A., Ed.; Springer International Publisher: Cham, Switzerland, 2022; pp. 23–30. [Google Scholar]
- Li, Y.; Liu, S.; Wang, Y.; Wang, Y.; Li, S.; He, N.; Deng, Y.; Chen, Z. Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications. Biosensors 2023, 13, 903. [Google Scholar] [CrossRef]
- Gimenez, M.J.; Piston, F.; Martin, A.; Atienza, S.G. Application of real-time PCR on the development of molecular markers and to evaluate critical aspects for olive oil authentication. Food Chem. 2010, 118, 482–487. [Google Scholar] [CrossRef]
- Su, T.; Wei, P.; Wu, L.; Guo, Y.; Zhao, W.; Zhang, Y.; Chi, Z.; Qiu, L. Development of nucleic acid isolation by non-silica-based nanoparticles and real-time PCR kit for edible vegetable oil traceability. Food Chem. 2019, 300, 125205. [Google Scholar] [CrossRef]
- Shayan, P.; Nemati, G.; Kamkar, A.; Eckert, B.; Basti, A.A.; Nouri, N.; Tamai, I.A. Analysis of DNA isolated from different oil sources: Problems and solution. Iran. J. Vet. Med. 2017, 11, 311–323. [Google Scholar] [CrossRef]
- Vahdani, M.; Sahari, M.A.; Tanavar, M. Quantitative and qualitative analysis of three DNA extraction methods from soybean, maize, and canola oils and investigation of the presence of genetically modified organisms (GMOs). Food Chem. Mol. Sci. 2024, 8, 100201. [Google Scholar] [CrossRef] [PubMed]
- Kanukova, S.; Mrkvova, M.; Mihalik, D.; Kraic, J. Procedures for DNA Extraction from Opium Poppy (Papaver somniferum L.) and Poppy Seed-Containing Products. Foods 2020, 9, 1429. [Google Scholar] [CrossRef]
- Ye, X.; Lei, B. The current status and trends of DNA extraction. Bioessays 2023, 45, 2200242. [Google Scholar] [CrossRef]
- Fukuchi, M.; Hanamura, M.; Otake, K.; Nakamori, M.; Toyoda, N.; Matsuda, K. Silica-coated magnetic beads containing an Fe-based amorphous alloy are applicable for nucleic acid extraction. J. Non-Cryst. Solids 2023, 609, 122284. [Google Scholar] [CrossRef]
- Sun, N.; Deng, C.; Liu, Y.; Zhao, X.; Tang, Y.; Liu, R.; Xia, Q.; Yan, W.; Ge, G. Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles: Application to viral nucleic acid extraction from serum. J. Chromatogr. A 2014, 1325, 31–39. [Google Scholar] [CrossRef]
No. | Name | AL (bp) | AT (°C) | Sequence (5′–3′) | Round | Reference |
---|---|---|---|---|---|---|
1 | Lectin-F1 | 94 | 58.0 | ACGGCACCCCAAAACCCTC | 2 | [10] |
Lectin-R1 | GCGAAGCTGGCAACGCTAC | |||||
Lectin-F2 | 160 | 54.5 | CCTCGGGAAAGTTACAA | 1 | ||
Lectin-R2 | GGGGCATAGAAGGTGAA | |||||
2 | 35S-F2 | 195 | 55.4 | GCTCCTACAAATGCCATCA | 2 | |
35S-R2 | GATAGTGGGATTGTGCGTCA | |||||
Soybean genome/35S-F1 | 370 | 53.6 | TTCAAACCCTTCAATTTAACCGAT | 1 | ||
Soybean genome/35S-R1 | AAGGATAGTGGGATTGTGCGTC | |||||
3 | 35S/CTP-F1 | 99 | 50.1 | GACACGCTGACAAGCTGACTC | 2 | |
35S/CTP-R1 | GGAAATTGGAATTGGGATTAA | |||||
35S/CTP-F2 | 169 | 52.8 | ATCCCACTATCCTTCGCAAGA | 1 | ||
35S/CTP-R2 | TGGGGTTTATGGAAATTGGAA |
Name | CTAB–NucleoSpin Food Kit Method | CTAB-Magnetic Bead Method | CTAB–Hexane Method | CTAB Method | Resin Based Oil DNA Extraction Kit Method |
---|---|---|---|---|---|
Lectin-F1 | ++ | ++ | / | / | / |
Lectin-R1 | |||||
Lectin-F2 | |||||
Lectin-R2 | |||||
35S-F1 | ++ | ++ | / | / | / |
35S-R1 | |||||
Soybean genome/35S-F1 | |||||
Soybean genome/35S-R1 | |||||
35S/CTP-F1 | ++ | ++ | / | / | / |
35S/CTP-R1 | |||||
35S/CTP-F2 | |||||
35S/CTP-R2 |
Target | Standard Curve | Accuracy and Efficiency | ||
---|---|---|---|---|
Slope | Intercept | R2 | E (%) | |
q-Lectin | −3.237 | 31.71 | 0.9984 | 103.67 |
q-35S | −3.209 | 31.89 | 0.9937 | 104.94 |
Methods | Parallel Sample | q-Lectin | q-35S | ||||
---|---|---|---|---|---|---|---|
Ct (Mean ± SD) | DNA/ng/μL (Mean ± SD) | Ct (Mean ± SD) | DNA/ng/μL (Mean ± SD) | ||||
CTAB–NucleoSpin Food Kit method | 1 | 33.89 ± 0.36 | 0.042 | 0.023 ± 0.014 a | 33.73 ± 0.11 | 0.053 | 0.027 ± 0.018 a |
2 | 35.57 ± 0.08 | 0.013 | 35.62 ± 0.19 | 0.014 | |||
3 | 35.39 ± 0.03 | 0.015 | 35.47 ± 0.14 | 0.015 | |||
CTAB-magnetic bead method | 1 | 34.62 ± 0.14 | 0.025 | 0.032 ± 0.008 a | 34.47 ± 0.07 | 0.031 | 0.038 ± 0.012 a |
2 | 33.83 ± 0.10 | 0.044 | 33.66 ± 0.36 | 0.056 | |||
3 | 34.39 ± 0.14 | 0.029 | 34.62 ± 0.03 | 0.028 | |||
CTAB–hexane method | 1 | / | / | / | / | / | / |
2 | / | / | / | / | |||
3 | / | / | / | / | |||
CTAB method | 1 | / | / | / | / | / | / |
2 | / | / | / | / | |||
3 | / | / | / | / | |||
Resin Based Oil DNA Extraction Kit method | 1 | / | / | / | / | / | / |
2 | / | / | / | / | |||
3 | / | / | / | / |
Target | Standard Curve | Accuracy and Efficiency | ||
---|---|---|---|---|
Slope | Intercept | R2 | E (%) | |
q-35S | −3.335 | 29.365 | 0.9978 | 99.46 |
Methods | Parallel Sample | DNA/ng/μL (Mean ± SD) | DNA Spike-in Quantity/ng | Recovery Rate/% (Mean ± SD) | ||
---|---|---|---|---|---|---|
CTAB–NucleoSpin Food Kit method | 1 | 6.88 | 6.96 ± 1.22 a | 1120 | 61.43 | 62.17 ± 10.91 a |
2 | 8.50 | 75.89 | ||||
3 | 5.51 | 49.20 | ||||
CTAB-magnetic bead method | 1 | 9.31 | 8.55 ± 0.54 a | 83.13 | 76.37 ± 4.84 a | |
2 | 8.28 | 73.93 | ||||
3 | 8.07 | 72.05 | ||||
CTAB–hexane method | 1 | / | / | / | / | |
2 | / | / | ||||
3 | / | / | ||||
CTAB method | 1 | 2.21 | 2.21 ± 1.04 b | 19.76 | 6.69 ± 9 b | |
2 | / | / | ||||
3 | / | / | ||||
Resin Based Oil DNA Extraction Kit method | 1 | / | / | / | / | |
2 | / | / | ||||
3 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Guo, M.; Liu, K.; Xin, Y.; Chen, F. Magnetic Nanoparticle-Based DNA Isolation from Refined Soybean Oil: A Cost-Effective Approach for GM Testing. Foods 2025, 14, 3186. https://doi.org/10.3390/foods14183186
Xia Y, Guo M, Liu K, Xin Y, Chen F. Magnetic Nanoparticle-Based DNA Isolation from Refined Soybean Oil: A Cost-Effective Approach for GM Testing. Foods. 2025; 14(18):3186. https://doi.org/10.3390/foods14183186
Chicago/Turabian StyleXia, Yimiao, Mengru Guo, Kunlun Liu, Ying Xin, and Fusheng Chen. 2025. "Magnetic Nanoparticle-Based DNA Isolation from Refined Soybean Oil: A Cost-Effective Approach for GM Testing" Foods 14, no. 18: 3186. https://doi.org/10.3390/foods14183186
APA StyleXia, Y., Guo, M., Liu, K., Xin, Y., & Chen, F. (2025). Magnetic Nanoparticle-Based DNA Isolation from Refined Soybean Oil: A Cost-Effective Approach for GM Testing. Foods, 14(18), 3186. https://doi.org/10.3390/foods14183186