Comprehensive Evaluation of Toxicological Profile and Immunomodulatory Impact of an Immune Enhancing Oral Liquid
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Reagents
2.2. Animal Experiments
2.3. Preparation and Analysis of the Immune-Enhancing Oral Liquid
2.4. Toxicology Evaluation of the Health-Enhancing Oral Liquid
2.4.1. Acute Toxicity Test
2.4.2. Genotoxicity Assays
2.4.3. 28 Day Repeat Oral Toxicity Study
2.5. Effects on Murine Immunity
2.5.1. Detection of Cellular Immune Function
2.5.2. Detection of the Humoral Immune Function
2.5.3. Detection of Nonspecific Immune Function
2.5.4. Detection of the Immune-Cell-Killing Function
2.6. Statistical Analysis
3. Results and Discussion
3.1. Toxicology Evaluation of Immune Enhancing Oral Liquid
3.1.1. The Analysis of Acute Toxicity Test
3.1.2. The Analysis of Genotoxicity Assays
3.1.3. 28-Day Oral Toxicity Study
3.2. Effects of Health Enhancing Oral Liquid on the Immune Function in Mice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCHM | Traditional Chinese herbal medicine |
PM | Polygonum multiflorum Thunb. |
MO | Morinda officinalis How |
OECD | Organisation for Economic Co-operation and Development |
FDA | Food and Drug Administration |
NMPA | National Medical Products Administration |
SPF | Specific Pathogen Free |
PCEs | polychromatic erythrocytes |
MCN | Micronucleus Count |
LDH | lactate dehydrogenase |
Appendix A
Appendix B
Raw Material | The Immune Enhancing Oral Liquid |
---|---|
Polygonum multiflorum Thunb. (PM) | 50% |
Morinda officinalis How (MO) | 50% |
Ingredient | The Immune Enhancing Oral Liquid |
Total sugar (mg/mL) | 18.42 ± 0.49 |
Proteins (mg/mL) | 0.98 ± 0.20 |
Flavonoids (mg/mL) | 2.22 ± 0.05 |
Polyphenols (mg/mL) | 2.98 ± 0.05 |
Name | Manufacturer |
---|---|
Genotoxicity Testing | |
Salmonella Typhimurium TA97 | Shanghai Baolu Biotechnology Co., Ltd. (Shanghai, China) |
Salmonella Typhimurium TA98 | Shanghai Baolu Biotechnology Co., Ltd. (Shanghai, China) |
Salmonella Typhimurium TA100 | Shanghai Baolu Biotechnology Co., Ltd. (Shanghai, China) |
Salmonella Typhimurium TA102 | Shanghai Baolu Biotechnology Co., Ltd. (Shanghai, China) |
Dexon | Maclin Biochemical Technology Co., Ltd. (Shanghai, China) |
Sodium azide | Maclin Biochemical Technology Co., Ltd. (Shanghai, China) |
2-Aminofluorene | Maclin Biochemical Technology Co., Ltd. (Shanghai, China) |
1,8-Dihydroxyanthraquinone | Maclin Biochemical Technology Co., Ltd. (Shanghai, China) |
Cyclophosphamide | Maclin Biochemical Technology Co., Ltd. (Shanghai, China) |
Giemsa Stain | Sigma-Aldrich (Darmstadt, Germany) |
Eosin Y | Sigma-Aldrich (Darmstadt, Germany) |
Immunological Assays | |
RPMI 1640 Medium | Thermo Fisher Scientific (Waltham, MA, USA) |
Fetal Bovine Serum | Thermo Fisher Scientific (Waltham, MA, USA) |
Concanavalin A | Sigma-Aldrich (Darmstadt, Germany) |
Sheep Red Blood Cells | Shanghai Yuanye Bio-Technology Co., Ltd. (shanghai, China) |
Chicken Red Blood Cells | Shanghai Yuanye Bio-Technology Co., Ltd.(shanghai, China) |
Complement | Sigma-Aldrich (Darmstadt, Germany) |
Percoll | Cytiva (Marlborough, MA, USA) |
Hanks Balanced Salt Solution | Thermo Fisher Scientific (Waltham, MA, USA) |
MTT | Sigma-Aldrich (Darmstadt, Germany) |
DMSO | Sigma-Aldrich (Darmstadt, Germany) |
LDH Kit | Nanjing Jiancheng Bioengineering Institute (Nanjing, China) |
General Toxicology and Histology | |
Indian Ink | Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China) |
Sodium Carbonate | Sigma-Aldrich (Darmstadt, Germany) |
Methanol | Sigma-Aldrich (Darmstadt, Germany) |
Acetone | Sigma-Aldrich (Darmstadt, Germany) |
References
- Parveen, A.; Parveen, B.; Parveen, R.; Ahmad, S. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci. 2015, 7, 329. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, M.; Sun, P.; Liang, W.; Hornbeck, R.G.; Che, X.; Rao, C.; Zhao, Y.; Guo, L.; Huang, Y.; et al. Market access for Chinese herbal medicinal products in Europe—A ten-year review of relevant products, policies, and challenges. Phytomedicine 2022, 103, 154237. [Google Scholar] [CrossRef]
- Choi, D.W.; Kim, J.H.; Cho, S.Y.; Kim, D.H.; Chang, S.Y. Regulation and quality control of herbal drugs in Korea. Toxicology 2002, 181, 581–586. [Google Scholar] [CrossRef]
- Du, L.; Sun, Y.; Wang, Q.; Wang, L.; Zhang, Y.; Li, S.; Jin, H.; Yan, S.; Xiao, X. Integrated metabolomics and 16S rDNA sequencing to investigate the mechanism of immune-enhancing effect of health Tonic oral liquid. Food Res. Int. 2021, 144, 110323. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Zhou, L.; Zhou, X.; Xie, B.; Zhang, W.; Sun, J. Prevention and treatment of COVID-19 using Traditional Chinese Medicine: A review. Phytomedicine 2021, 85, 153308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Pi, X.; Li, X.; Huo, J.; Wang, W. Edible herbal source-derived polysaccharides as potential prebiotics: Composition, structure, gut microbiota regulation, and its related health effects. Food Chem. 2024, 458, 140267. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Chang, I. An Overview of Traditional Chinese Herbal Formulae and a Proposal of a New Code System for Expressing the Formula Titles. Evid.-Based Complement. Altern. Med. 2004, 1, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Kajavadara, C.K.; Shukla, R.M.; Valani, D.T.; Bhatt, L.K.; Sundar, R.; Jain, M.R. Assessing the impact of different solvents in the bacterial reverse mutation test. Environ. Mol. Mutagen. 2025, 66, 69–76. [Google Scholar] [CrossRef]
- Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: A review. J. Ethnopharmacol. 2015, 159, 158–183. [Google Scholar] [CrossRef]
- Yue, J.; Xia, W.; Wang, Y.; Zhang, Y.; Zhang, Y.; Li, Y.; Wang, L.; Li, C.; Li, T.; Fu, X. Isolation, phytochemistry, characterization, biological activity, and application of Morinda officinalis How oligosaccharide: A review. J. Pharm. Pharmacol. 2024, 76, 437–461. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Zhang, H.; Guo, H.; Kang, L.; Li, H.; Li, K. A systematic review on polysaccharides from Morinda officinalis How: Advances in the preparation, structural characterization and pharmacological activities. J. Ethnopharmacol. 2024, 328, 118090. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Jiang, N.; Lin, M.; He, X.; Li, B.; Dong, Y.; Chen, S.; Lv, G. The Mechanisms of Polysaccharides from Tonic Chinese Herbal Medicine on the Enhancement Immune Function: A Review. Molecules 2023, 28, 7355. [Google Scholar] [CrossRef]
- Gong, L.; Shen, X.; Huang, N.; Wu, K.; Li, R.; Liu, Y.; Zhang, H.; Chen, S.; Sun, R. Research progress on hepatotoxicity mechanism of polygonum multiflorum and its main components. Toxicon 2024, 248, 108040. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.; Liu, Y.; Zeng, X.; Li, C.; Ou-Yang, D. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol. Sin. 2021, 42, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.; Clippinger, A.J.; Brown, J.; Allen, D.; Jacobs, A.; Matheson, J.; Lowit, A.; Reinke, E.N.; Johnson, M.S.; Quinn, M.J.; et al. Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regul. Toxicol. Pharm. 2018, 94, 183–196. [Google Scholar] [CrossRef]
- Tang, Z.; Dai, S.; Wang, W.; Ning, N.; Lei, T.; He, Z.; Qiao, F.; Zheng, J.; Ma, S. Identification of Polygoni Multiflori Radix, Dipsaci Radix, Morindae Officinalis Radix and Atractylodis Macrocephalae Rhizoma in Zishen Yutai pills by solid-phase extraction combined with thin layer chromatography. Chin. J. Pharm. Anal. 2022, 42, 1306–1311. [Google Scholar]
- Xiao, R.; Chen, H.; Han, H.; Luo, G.; Lin, Y. The in vitro fermentation of compound oral liquid by human colonic microbiota altered the abundance of probiotics and short-chain fatty acid production. RSC Adv. 2022, 46, 30076–30084. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, Q.; Cui, W.; Jia, X.; Li, N. Evaluation of the in vitro and in vivo genotoxicity of almond skins. Biomed. Environ. Sci. 2011, 24, 415–421. [Google Scholar]
- Benedek, B.; Ziegler, A.; Ottersbach, P. Absence of mutagenic effects of a particular Symphytum officinale L. liquid extract in the bacterial reverse mutation assay. Phytother. Res. 2010, 24, 466–468. [Google Scholar] [CrossRef]
- Han, E.H.; Lim, M.K.; Lee, S.H.; Rahman, M.M.; Lim, Y. An oral toxicity test in rats and a genotoxicity study of extracts from the stems of Opuntia ficus-indica var. saboten. BMC Complement. Altern. Med. 2019, 19, 31. [Google Scholar] [CrossRef]
- Zhang, K.; Weng, H.; Yang, J.; Wu, C. Protective effect of Liuwei Dihuang Pill on cisplatin-induced reproductive toxicity and genotoxicity in male mice. J. Ethnopharmacol. 2020, 247, 112269. [Google Scholar] [CrossRef]
- Li, W.; Jiang, H.; Ablat, N.; Wang, C.; Guo, Y.; Sun, Y.; Zhao, X.; Xu, J.; Zhang, K.; Ren, R.; et al. Evaluation of the acute and sub-chronic oral toxicity of the herbal formula Xiaoer Chaigui Tuire Oral Liquid. J. Ethnopharmacol. 2016, 189, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, H.; Zhong, Y.; Li, S.; Wang, H.; Wang, H.; Chen, L.; Tang, X.; Li, Y.; Qian, Z.; et al. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice. BMC Cancer 2021, 21, 37. [Google Scholar] [CrossRef]
- Sewell, F.; Ragan, I.; Horgan, G.; Andrew, D.; Holmes, T.; Manou, I.; Müller, B.P.; Rowan, T.; Schmitt, B.G.; Corvaro, M. New supporting data to guide the use of evident toxicity in acute oral toxicity studies (OECD TG 420). Regul. Toxicol. Pharm. 2024, 146, 105517. [Google Scholar] [CrossRef]
- Strickland, J.; Haugabrooks, E.; Allen, D.G.; Balottin, L.B.; Hirabayashi, Y.; Kleinstreuer, N.C.; Kojima, H.; Nishizawa, C.; Prieto, P.; Ratzlaff, D.E.; et al. International regulatory uses of acute systemic toxicity data and integration of new approach methodologies. Crit. Rev. Toxicol. 2023, 53, 385–411. [Google Scholar] [CrossRef]
- Qian, J.; Feng, C.; Wu, Z.; Yang, Y.; Gao, X.; Zhu, L.; Liu, Y.; Gao, Y. Phytochemistry, pharmacology, toxicology and detoxification of Polygonum multiflorum Thunb.: A comprehensive review. Front. Pharmacol. 2024, 15, 1427019. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Yang, M.; Kim, B.; Yoo, J.E.; Park, J.; Yang, H.J.; Joo, J.; Joo, B.S.; Heo, J.; Ha, K. Acute and Repeated Toxicological Study of Anti-Inflammatory Herbal Formula, Yeosinsan, in Rats. Appl. Sci. 2021, 11, 9325. [Google Scholar] [CrossRef]
- Bringezu, F.; Simon, S. Salmonella typhimurium TA100 and TA1535 and E. coli WP2 uvrA are highly sensitive to detect the mutagenicity of short Alkyl-N-Nitrosamines in the Bacterial Reverse Mutation Test. Toxicol. Rep. 2022, 9, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Seo, C.; Ha, H.; Han, S.; Lee, M.; Shin, H. Genotoxicity of Asiasari Radix et Rhizoma (Aristolochiaceae) ethanolic extract in vitro and in vivo. J. Ethnopharmacol. 2021, 276, 114122. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, C.; Hu, Y.; Yang, J.; Wu, C. Network pharmacology reveals pharmacological effect and mechanism of Panax notoginseng (Burk.) F. H. Chen on reproductive and genetic toxicity in male mice. J. Ethnopharmacol. 2021, 270, 113792. [Google Scholar] [CrossRef]
- Long, H.; Wu, Z. Immunoregulatory effects of Huaier (Trametes robiniophila Murr) and relevant clinical applications. Front. Immunol. 2023, 14, 1147098. [Google Scholar] [CrossRef]
- Nejatbakhsh, F.; Zareian, M.A.; Yaseliani, M.; Abolhassani, H. Evidence-Based Immunotherapeutic Effects of Herbal Compounds on Humoral Immunity: Ancient and New Approaches. Chin. J. Integr. Med. 2021, 27, 313–320. [Google Scholar] [CrossRef]
- Meng, D.; Yang, Y.; Li, L.; Qian, X.; Wang, Q.; Xu, J.; Zhao, H.; Liu, H.; Xiao, H.; Ding, Z. Immunomodulatory effects of Blaps rynchopetera extract. Acta Cir. Bras. 2022, 37, e370205. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Toepfer, E.; Italiani, P. Innate and germline immune memory: Specificity and heritability of the ancient immune mechanisms for adaptation and survival. Front. Immunol. 2024, 15, 1386578. [Google Scholar] [CrossRef] [PubMed]
Treatment | Dose (µg/Plate) | With S9 | Without S9 | ||||||
---|---|---|---|---|---|---|---|---|---|
TA97/num | TA98/num | TA100/num | TA102/num | TA97/num | TA98/num | TA100/num | TA102/num | ||
Sample 1 | 5000 | 173.5 ± 9.5 b | 47.5 ± 7.5 b | 156.5 ± 4.5 b | 236.5 ± 11.5 b | 183.0 ± 11.0 b | 46.0 ± 6.0 b | 144.5 ± 5.5 b | 267.5 ± 10.5 b |
Sample 2 | 2500 | 174.5 ± 12.5 b | 42.0 ± 4.0 b | 135.0 ± 4.0 b | 245.5 ± 22.5 b | 179.5 ± 8.5 b | 37.5 ± 3.5 b | 149.5 ± 9.5 b | 272.0 ± 6.0 b |
Sample 3 | 1250 | 180.5 ± 6.5 b | 45.5 ± 2.5 b | 142.0 ± 5.0 b | 271.5 ± 14.5 b | 169.0 ± 9.0 b | 42.5 ± 2.5 b | 135.0 ± 17.0 b | 284.5 ± 10.5 b |
Sample 4 | 625 | 176.0 ± 14.0 b | 46.5 ± 2.5 b | 134.0 ± 10.0 b | 277.5 ± 16.5 b | 178.0 ± 9.0 b | 43.0 ± 3.0 b | 134.0 ± 10.0 b | 266.0 ± 9.0 b |
distilled water | 5000 | 171.5 ± 9.5 b | 46.5 ± 3.5 b | 141.0 ± 10.0 b | 255.5 ± 15.5 b | 176.5 ± 11.5 b | 49.0 ± 4.0 b | 146.0 ± 11.0 b | 278.5 ± 6.5 b |
2-aminobacteria | 50 | 1573.5 ± 95.5 a | 2123.0 ± 122.0 a | 1905.0 ± 87.0 a | - | - | - | - | - |
1,8 dihydroxyandone | 50 | - | - | - | 755.5 ± 64.5 a | - | - | - | - |
dexon | 1.5 | - | - | - | - | 1664.5 ± 143.5 a | 957.0 ± 132.0 a | - | 1016.5 ± 112.5 a |
sodium azide | 10 | - | - | - | - | - | - | 2607.5 ± 101.5 a | - |
Index | Blank Group | Sample |
---|---|---|
Hemoglobin (g/L) | 139.00 ± 8.34 | 142.50 ± 12.65 |
Red Blood Cell Count (×1012/L) | 9.35 ± 0.68 | 9.30 ± 1.04 |
White Blood Cell Count (×109/L) | 1.91 ± 0.75 | 1.95 ± 0.58 |
Neutrophil Percentage (%) | 3.07 ± 1.22 | 2.77 ± 1.81 |
Absolute Neutrophil Count (×109/L) | 0.06 ± 0.07 | 0.05 ± 0.06 |
Lymphocyte Percentage (%) | 85.46 ± 5.53 | 91.33 ± 10.21 |
Absolute Lymphocyte Count (×109/L) | 1.70 ± 0.59 | 1.69 ± 0.69 |
Monocyte Percentage (%) | 4.01 ± 5.36 | 4.17 ± 3.26 |
Absolute Monocyte Count (×109/L) | 0.09 ± 0.15 | 0.11 ± 0.07 |
Eosinophil Percentage (%) | 0 | 0 |
Absolute Eosinophil Count (×109/L) | 0 | 0 |
Basophil Percentage (%) | 2.33 ± 1.94 | 2.53 ± 1.77 |
Absolute Basophil Count (×109/L) | 0.08 ± 0.07 | 0.09 ± 0.05 |
Platelet Count (×109/L) | 331.70 ± 265.5 | 405.50 ± 162.72 |
Glucose (GLU) mmol/L | 6.58 ± 0.78 | 13.65 ± 1.66 |
Blood Urea Nitrogen (BUN) mmol/L | 10.01 ± 0.94 | 11.64 ± 2.30 |
Creatinine (CREA) μmol/L | 13.67 ± 1.35 | 15.32 ± 2.22 |
Alanine Aminotransferase (ALT) U/L | 41.12 ± 6.54 | 47.52 ± 16.47 |
Aspartate Aminotransferase (AST) U/L | 198.27 ± 38.75 | 101.25 ± 38.14 * |
Total Protein (TP) g/L | 59.85 ± 4.12 | 48.65 ± 3.02 |
Albumin (ALB) g/L | 23.37 ± 2.10 | 16.39 ± 1.24 ** |
Gamma-Globulin (GLB) g/L | 39.88 ± 3.45 | 32.79 ± 1.16 ** |
Total Cholesterol (TCHOL) mmol/L | 3.54 ± 0.77 | 2.01 ± 0.25 ** |
Triglycerides (TG) mmol/L | 3.31 ± 1.63 | 1.18 ± 0.33 ** |
Sample | Phagocytic Count K | Correct the Clearance Index of A | Percentage (%) | Phagocytic Count |
---|---|---|---|---|
blank | 0.025 ± 0.0071 | 4.528 ± 0.74 | 2.69 ± 1.74 | 0.025 ± 0.020 |
L | 0.021 ± 0.0081 | 4.133 ± 0.376 | 14.81 ± 5.66 ** | 0.203 ± 0.194 ** |
M | 0.020 ± 0.0094 | 4.102 ± 0.454 | 20.79 ± 5.86 ** | 0.305 ± 0.106 ** |
H | 0·020 ± 0·0065 | 4.307 ± 0.275 | 25.10 ± 5.41 ** | 0.330 ± 0.094 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ye, Z.; Chen, S.; Huang, W.; Lin, Y.; Kan, Q. Comprehensive Evaluation of Toxicological Profile and Immunomodulatory Impact of an Immune Enhancing Oral Liquid. Foods 2025, 14, 3166. https://doi.org/10.3390/foods14183166
Chen H, Ye Z, Chen S, Huang W, Lin Y, Kan Q. Comprehensive Evaluation of Toxicological Profile and Immunomodulatory Impact of an Immune Enhancing Oral Liquid. Foods. 2025; 14(18):3166. https://doi.org/10.3390/foods14183166
Chicago/Turabian StyleChen, Hongzhang, Zhuming Ye, Sihe Chen, Wenquan Huang, Ying Lin, and Qixin Kan. 2025. "Comprehensive Evaluation of Toxicological Profile and Immunomodulatory Impact of an Immune Enhancing Oral Liquid" Foods 14, no. 18: 3166. https://doi.org/10.3390/foods14183166
APA StyleChen, H., Ye, Z., Chen, S., Huang, W., Lin, Y., & Kan, Q. (2025). Comprehensive Evaluation of Toxicological Profile and Immunomodulatory Impact of an Immune Enhancing Oral Liquid. Foods, 14(18), 3166. https://doi.org/10.3390/foods14183166