Widely Targeted Metabolomic Analysis of Two Chinese Traditional Herbal Imperial Chrysanthemum Teas and In Vitro Evaluation of Their Hyperglycemia and Inflammation Enzyme Inhibitory Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Collection and Chemical Reagents
2.2. Flower Morphology Analysis
2.3. Analysis of Non-Volatile Metabolites in Imperial Chrysanthemum Teas
2.3.1. Sample Preparation
2.3.2. UPLC Conditions and ESI-Q TRAP-MS/MS
2.4. Analysis of Volatile Metabolites in Imperial Chrysanthemum Teas
2.4.1. Sample Pretreatment
2.4.2. GC-MS/MS Analysis
2.5. Measurement of Total Flavonoids and Polysaccharide Content
2.6. Preparation of Imperial Chrysanthemum Tea Extracts
2.7. Determination of Antioxidant Capacity
2.8. Anti-Diabetic Assays In Vitro
2.8.1. α-Amylase Activity Determination
2.8.2. α-Glucosidase Activity Determination
2.9. Anti-Inflammatory Assays In Vitro
2.9.1. Xanthine Oxidase (XOD) Activity Determination
2.9.2. Lipoxygenase (LOX) Activity Determination
2.10. Date Processing and Statistical Analysis
3. Results and Discussion
3.1. Analysis of Fresh Flower Morphology in Imperial Chrysanthemum Tea
3.2. Analysis and Identification of Non-Volatile Metabolites in Imperial Chrysanthemum Teas
3.2.1. Mass Spectrometric Analysis of Non-Volatile Metabolites in Imperial Chrysanthemum Teas
3.2.2. Significantly Different Non-Volatile Metabolites Between Two Imperial Chrysanthemum Teas
- (1)
- Flavonoids
- (2)
- Terpenoids
- (3)
- Phenolic acids
- (4)
- Alkaloids
- (5)
- Others
3.3. Analysis and Identification of Volatile Metabolites in Imperial Chrysanthemum Teas
3.3.1. Volatile Metabolite Profiles in Imperial Chrysanthemum Teas
3.3.2. Significantly Different Volatile Metabolites Between the Two Imperial Chrysanthemum Teas
3.3.3. Differential of Potential Volatile Flavor Metabolites in the Two Imperial Chrysanthemum Teas
3.4. Antioxidant Activity
3.5. α-Amylase and α-Glucosidase Inhibitory Effects
3.6. XOD and LOX Inhibitory Effects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Liu, C.Y.; Meng, J.; Qiu, J.Y.; Geng, X.Q.; Sun, H.Q.; Zhu, Z.Y. Structural characterization and prebiotic potential of an acidic polysaccharide from Imperial Chrysanthemum. Nat. Prod. Res. 2020, 36, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Lin, L.; Zhao, M.; Sun, B. Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte. Food Res. Int. 2019, 123, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Pan, L.C.; Yun, T.; Zhang, Y.M. Structural analysis and antioxidant activity of the glycoside from Imperial Chrysanthemum. Bioorg. Med. Chem. Lett. 2018, 28, 1581–1590. [Google Scholar] [CrossRef]
- Liu, Y. Comparative Study on Agronomic Characters, Chemical Components and Pharmacological Effects of Different Chrysanthemum Germplasm Resources. Master’s Thesis, Hubei University of Chinese Medicine, Wuhan, China, 2020. [Google Scholar]
- Shahrajabian, M.; Sun, W.; Zandi, P.; Cheng, Q. A review of Chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl. Ecol. Environ. Res. 2019, 17, 13355–13369. [Google Scholar] [CrossRef]
- Zhang, N.; He, Z.; He, S.; Jing, P. Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (Lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties. Food Res. Int. 2019, 116, 810–818. [Google Scholar] [CrossRef]
- Hao, D.C.; Song, Y.; Xiao, P.; Zhong, Y.; Wu, P.; Xu, L. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. Front. Plant Sci. 2022, 13, 973197. [Google Scholar] [CrossRef]
- Uysal, S.; Ugurlu, A.; Zengin, G.; Baloglu, M.C.; Altunoglu, Y.C.; Mollica, A.; Custodio, L.; Neng, N.R.; Nogueira, J.M.; Mahomoodally, M.F. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem. Toxicol. 2018, 111, 525–536. [Google Scholar] [CrossRef]
- Loh, K.E.; Chin, Y.S.; Safinar Ismail, I.; Tan, H.Y. Rapid characterisation of xanthine oxidase inhibitors from the flowers of Chrysanthemum morifolium Ramat. using metabolomics approach. Phytochem. Anal. 2021, 33, 12–22. [Google Scholar] [CrossRef]
- Lončarić, M.; Strelec, I.; Moslavac, T.; Šubarić, D.; Pavić, V.; Molnar, M. Lipoxygenase inhibition by plant extracts. Biomolecules 2021, 11, 152. [Google Scholar] [CrossRef]
- Li, P.; Huang, Z.; She, Y.; Qin, S.; Gao, W.; Cao, Y.; Liu, X. An assessment of the interaction for three Chrysanthemum indicum flavonoids and α-amylase by surface plasmon resonance. Food Sci. Nutr. 2019, 8, 620–628. [Google Scholar] [CrossRef]
- Liu, L.L.; Ha, T.K.Q.; Ha, W.; Oh, W.K.; Yang, J.L.; Shi, Y.P. Sesquiterpenoids with various carbocyclic skeletons from the flowers of Chrysanthemum indicum. J. Nat. Prod. 2017, 80, 298–307. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019, 286, 8–16. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, Y.; Hong, B.; Zhao, X.; Gu, Z. Characteristic volatile fingerprints of four chrysanthemum teas determined by HS-GC-IMS. Molecules 2021, 26, 7113. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Lin, L.; Zhao, M.; Sun, B. Identifying mechanisms underlying the amelioration effect of Chrysanthemum morifolium Ramat. ‘Boju’ extract on hyperuricemia using biochemical characterization and UPLC-ESI-QTOF/MS-based metabolomics. Food Funct. 2019, 10, 8042–8055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, Y.; Chen, S.; Chen, F.; Chen, F. Concentration-dependent emission of floral scent terpenoids from diverse cultivars of Chrysanthemum morifolium and their wild relatives. Plant Sci. 2021, 309, 110959. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Q.; Liu, R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem. 2022, 375, 131908. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Conti, G.O.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef]
- Song, F.; Tang, M.; Wang, H.; Zhang, Y.; Zhu, K.; Chen, X.; Chen, H.; Zhao, X. UHPLC-MS/MS identification, quantification of flavonoid compounds from Areca catechu L. extracts and in vitro evaluation of antioxidant and key enzyme inhibition properties involved in hyperglycemia and hypertension. Ind. Crops Prod. 2022, 189, 115787. [Google Scholar] [CrossRef]
- Xu, Y.; Niu, X.; Liu, N.; Gao, Y.; Wang, L.; Xu, G.; Li, X.; Yang, Y. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chem. 2018, 243, 26–35. [Google Scholar] [CrossRef]
- Reguigui, A.; Bouajila, J.; Juppeau, A.; Beaufort, S.; Gorai, M.; Taillandier, P.; Debouba, M.; Romdhane, M. Changes in the chemical profile and bioactive potentialities of Kombucha fermented Salvia aegyptiaca tea. Food Biosci. 2023, 56, 103024. [Google Scholar] [CrossRef]
- Rahmani, R.; Bouajila, J.; Jouaidi, M.; Debouba, M. African mustard (Brassica tournefortii) as source of nutrients and nutraceuticals properties. J. Food Sci. 2020, 85, 1856–1871. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, J.; Dong, G.; Zhang, X.; Liu, Y.; Sun, W.; Liu, A. Flavonoids and caffeoylquinic acids in Chrysanthemum morifolium Ramat flowers: A potentially rich source of bioactive compounds. Food Chem. 2021, 344, 128733. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Jia, H.; Jin, Y.; Wang, M.; Kou, J.; Wang, C.; Rong, X.; Xie, X.; Han, G.; Pang, X. Chrysanthemum extract attenuates hepatotoxicity via inhibiting oxidative stress in vivo and in vitro. Food Nutr. Res. 2019, 63, 1667. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.Y.; Qu, J.L.; Wang, Q.L.; Wang, Y.; Yoshikawa, M.; Yuan, D. Comparative evaluation of cultivars of chrysanthemum morifolium flowers by HPLC-DAD-ESI/MS analysis and antiallergic assay. J. Agric. Food Chem. 2012, 60, 12574–12583. [Google Scholar] [CrossRef]
- Wang, S.; Hao, L.J.; Zhu, J.J.; Wang, Z.M.; Zhang, X.; Song, X.M. Comparative evaluation of Chrysanthemum Flos from different origins by HPLC-DAD-MS and relative response factors. Food Anal. Method. 2014, 8, 40–51. [Google Scholar] [CrossRef]
- Mao, C. Study on Quality Evaluation Standard of the Flower of Chrysanthemum Morifolium Ramat Based on the Correlation of Ingredients and Efficacy. Ph.D. Thesis, China Academy of Chinese Medical Sciences, Beijing, China, 2021. [Google Scholar]
- Jiang, S.; Wang, M.; Jiang, Z.; Zafar, S.; Xie, Q.; Yang, Y.; Liu, Y.; Yuan, H.; Jian, Y.; Wang, W. Chemistry and pharmacological activity of sesquiterpenoids from the Chrysanthemum genus. Molecules 2021, 26, 3038. [Google Scholar] [CrossRef]
- Xue, H.; Jiang, Y.; Zhao, H.; Köllner, T.G.; Chen, S.; Chen, F.; Chen, F. Characterization of composition and antifungal properties of leaf secondary metabolites from thirteen cultivars of Chrysanthemum morifolium Ramat. Molecules 2019, 24, 4202. [Google Scholar] [CrossRef]
- Xue, G.M.; Li, X.Q.; Chen, C.; Chen, K.; Wang, X.B.; Gu, Y.C.; Luo, J.G.; Kong, L.Y. Highly oxidized guaianolide sesquiterpenoids with potential anti-inflammatory activity from Chrysanthemum indicum. J. Nat. Prod. 2018, 81, 378–386. [Google Scholar] [CrossRef]
- Lu, Y.F.; Li, D.X.; Zhang, R.; Zhao, L.L.; Qiu, Z.; Du, Y.; Ji, S.; Tang, D.Q. Chemical antioxidant quality markers of Chrysanthemum morifolium using a spectrum-effect approach. Front. Pharmacol. 2022, 13, 809482. [Google Scholar] [CrossRef]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Yang, P.F.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Neuroprotective caffeoylquinic acid derivatives from the flowers of Chrysanthemum morifolium. J. Nat. Prod. 2017, 80, 1028–1033. [Google Scholar] [CrossRef]
- Zou, Q.; Guo, Q.; Wang, T.; Chen, J.; Yang, F.; Yang, C. Comparison of metabolome characteristics and screening of chemical markers in Chrysanthemum indicum from different habitats. Physiol. Mol. Biol. Plants 2022, 28, 65–76. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Han, S.; Zhang, J.; Shen, X.; Zhou, J.; Han, B. Differences in amino acid contents in fresh flowers and manufactured goods among four Chrysanthemum cultivars in Tongxiang City, Zhejiang Province. J. Anhui Agric. Univ. 2016, 43, 1024–1028. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; Chen, H.; Lu, J.; Chen, D.; Luo, C.; Cheng, X.; Jia, Y.; Huang, C. Transcriptome and metabolome analyses of the flowers and leaves of Chrysanthemum dichrum. Front. Genet. 2021, 12, 716163. [Google Scholar] [CrossRef]
- Ukiya, M.; Akihisa, T.; Yasukawa, K.; Kasahara, Y.; Kimura, Y.; Koike, K.; Nikaido, T.; Takido, M. Constituents of compositae plants. 2. triterpene diols, triols, and their 3-o-fatty acid esters from edible Chrysanthemum flower extract and their anti-inflammatory effects. J. Agric. Food Chem. 2001, 49, 3187–3197. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, W.; Li, J.; Xu, H.; Hu, J.; Zhao, L.; Ma, Y. Comparative metabolomics analysis revealed biomarkers and distinct flavonoid biosynthesis regulation in Chrysanthemum mongolicum and C. rhombifolium. Phytochem. Anal. 2021, 33, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wei, D.; Su, S.; Guo, S.; Qian, S.; Yan, H.; Zhao, M.; Shang, E.; Qian, D.; Sun, X.; et al. An integrated strategy for rapid discovery and prediction of nucleobases, nucleosides and amino acids as quality markers in different flowering stages of Flos Chrysanthemi using UPLC–MS/MS and FT-NIR coupled with multivariate statistical analysis. Microchem. J. 2020, 153, 104500. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, Z.; Yan, H.; Su, S.; Wei, D.; Guo, S.; Shang, E.; Sun, X.; Gui, S.; Duan, J. Discovery of quality markers of nucleobases, nucleosides, nucleotides and amino acids for Chrysanthemi Flos from different geographical origins using UPLC–MS/MS combined with multivariate statistical analysis. Front. Chem. 2021, 9, 689254. [Google Scholar] [CrossRef]
- Zhao, D.; Tao, J. Recent advances on the development and regulation of flower color in ornamental plants. Front. Plant Sci. 2015, 6, 261. [Google Scholar] [CrossRef]
- Khalil, H.E.; Abdelwahab, M.F.; Ibrahim, H.I.M.; AlYahya, K.A.; Altaweel, A.A.; Alasoom, A.J.; Burshed, H.A.; Alshawush, M.M.; Waz, S. Cichoriin, a biocoumarin, mitigates oxidative stress and associated adverse dysfunctions on high-fat diet-induced obesity in rats. Life 2022, 12, 1731. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, T.; Fan, Q.; Qi, X.; Zhang, F.; Fang, W.; Jiang, J.; Chen, F.; Chen, S. Identification of floral scent in Chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry. Molecules 2015, 20, 5346–5359. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Chen, J.; Wu, J.; Suzuki, Y.; Ma, L.; Kumazawa, K. Potent odorants of characteristic floral/sweet odor in Chinese Chrysanthemum flower tea infusion. J. Agric. Food Chem. 2017, 65, 10058–10063. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Fan, B.; Niu, Y.; Wu, M.; Liu, J.; Ma, S. Characterization of odor-active compounds of various Chrysanthemum essential oils by gas chromatography–olfactometry, gas chromatography–mass spectrometry and their correlation with sensory attributes. J. Chromatogr. B 2016, 1009–1010, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Miao, M.; Xia, H.; Yang, L.G.; Wang, S.K.; Sun, G.J. Antioxidant activities of aqueous extracts from 12 Chinese edible flowers in vitro and in vivo. Food Nutr. Res. 2016, 61, 1265324. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef]
- Ali, I.B.E.; Tajini, F.; Boulila, A.; Jebri, M.-A.; Boussaid, M.; Messaoud, C.; Sebaï, H. Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Ind. Crops Prod. 2020, 158, 112951. [Google Scholar] [CrossRef]
- Zhang, L.L.; Han, L.; Yang, S.Y.; Meng, X.M.; Ma, W.F.; Wang, M. The mechanism of interactions between flavan-3-ols against α-glucosidase and their in vivo antihyperglycemic effects. Bioorg. Chem. 2019, 85, 364–372. [Google Scholar] [CrossRef]
- Mufti, A.; Tir, M.; Zarei, A.; del Mar Contreras, M.; Gómez-Cruz, I.; Feriani, A.; Ghazouani, L.; Saadaoui, E.; Allagui, M.S.; Harrath, A.H.; et al. Phytochemical Profiling of Ephedra alata subsp. Alenda seeds by High-Performance Liquid Chromatography—Electrospray Ionization—Quadrupole-Time-of-Flight-Mass Spectrometry (HPLC-ESI-QTOF-MS), Molecular Docking, and Antioxidant, Anti-diabetic, and Acetylcholinesterase Inhibition. Anal. Lett. 2022, 55, 2450–2466. [Google Scholar] [CrossRef]
- Cheng, N.; Yi, W.B.; Wang, Q.Q.; Peng, S.M.; Zou, X.Q. Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives. Chin. Chem. Lett. 2014, 25, 1094–1098. [Google Scholar] [CrossRef]
- Su, H.; Ruan, Y.T.; Li, Y.; Chen, J.G.; Yin, Z.P.; Zhang, Q.F. In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. Int. J. Biol. Macromol. 2020, 150, 31–37. [Google Scholar] [CrossRef]
- Qu, L.; Ruan, J.Y.; Jin, L.J.; Shi, W.Z.; Li, X.X.; Han, L.F.; Zhang, Y.; Wang, T. Xanthine oxidase inhibitory effects of the constituents of Chrysanthemum morifolium stems. Phytochem. Lett. 2017, 19, 39–45. [Google Scholar] [CrossRef]
- Peng, A.; Lin, L.; Zhao, M. Screening of key flavonoids and monoterpenoids for xanthine oxidase inhibitory activity-oriented quality control of Chrysanthemum morifolium Ramat. ‘Boju’ based on spectrum-effect relationship coupled with UPLC-TOF-MS and HS-SPME-GC/MS. Food Res. Int. 2020, 137, 109448. [Google Scholar] [CrossRef]
- Burlec, A.F.; Cioancă, O.; Mircea, C.; Arsene, C.; Tuchiluş, C.; Corciovă, A.; Hăncianu, M. Antioxidant and antimicrobial properties of Chrysanthemum and Tagetes selective extracts. Farmacia 2019, 67, 405–410. [Google Scholar] [CrossRef]
Species | Weight (g) | Diameter (cm) | Length of Ligulate Florets (cm) | Number of Ligulate Florets |
---|---|---|---|---|
WYHJ | 1.82 ± 0.35 | 5.49 ± 0.24 | 1.57 ± 0.33 | 262 ± 10 |
JSHJ | 8.21 ± 0.89 ** | 11.02 ± 0.45 ** | 5.73 ± 0.57 ** | 247 ± 12 |
Sample | TFC (mg QE/g) | TPC (mg GE/g) | Radical Scavenging Activities (IC50) | Reducing Power Assay | ||
---|---|---|---|---|---|---|
DPPH·(mg/mL) | ABTS+ (mg/mL) | OH− (mg/mL) | FRAP (µmol Trolox/mL) | |||
WYHJ | 96.43 ± 1.63 ** | 43.96 ± 0.32 | 1.04 ± 0.01 b | 1.27 ± 0.04 b | 4.58 ± 0.07 b | 73.99 ± 2.56 b |
JSHHJ | 73.16 ± 2.04 | 43.94 ± 1.17 | 1.96 ± 0.15 c | 2.18 ± 0.02 c | 6.98 ± 0.08 c | 39.18 ± 1.79 c |
VC | - | - | 0.09 ± 0.01 a | 0.18 ± 0.02 a | 2.68 ± 0.41 a | 620.91 ± 8.38 a |
Sample | Anti-Hyperglycemia Assays (IC50, μg/mL) | Anti-Inflammatory Assays (IC50, μg/mL) | ||
---|---|---|---|---|
Anti-α-Amylase | Anti-α-Glucosidase | Anti-XOD | Anti-LOX | |
WYHJ | 1403.63 ± 166.49 b | 307.94 ± 37.32 a | 818.51 ± 43.26 b | 533.78 ± 30.12 b |
JSHJ | 1521.48 ± 20.42 c | 858.58 ± 92.18 c | 1441.66 ± 62.51 c | 1184.11 ± 80.63 c |
acarbose | 166.43 ± 19.71 a | 654.35 ± 54.36 b | - | - |
allopurinol | - | - | 30.19 ± 7.48 a | - |
NDGA | - | - | - | 48.63 ± 9.37 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, D.; Mei, L.; Liang, J.; Xu, Y.; Teng, J. Widely Targeted Metabolomic Analysis of Two Chinese Traditional Herbal Imperial Chrysanthemum Teas and In Vitro Evaluation of Their Hyperglycemia and Inflammation Enzyme Inhibitory Activities. Foods 2025, 14, 3142. https://doi.org/10.3390/foods14173142
Liu Y, Wang D, Mei L, Liang J, Xu Y, Teng J. Widely Targeted Metabolomic Analysis of Two Chinese Traditional Herbal Imperial Chrysanthemum Teas and In Vitro Evaluation of Their Hyperglycemia and Inflammation Enzyme Inhibitory Activities. Foods. 2025; 14(17):3142. https://doi.org/10.3390/foods14173142
Chicago/Turabian StyleLiu, Yang, Di Wang, Liqing Mei, Jiaying Liang, Yuqin Xu, and Jie Teng. 2025. "Widely Targeted Metabolomic Analysis of Two Chinese Traditional Herbal Imperial Chrysanthemum Teas and In Vitro Evaluation of Their Hyperglycemia and Inflammation Enzyme Inhibitory Activities" Foods 14, no. 17: 3142. https://doi.org/10.3390/foods14173142
APA StyleLiu, Y., Wang, D., Mei, L., Liang, J., Xu, Y., & Teng, J. (2025). Widely Targeted Metabolomic Analysis of Two Chinese Traditional Herbal Imperial Chrysanthemum Teas and In Vitro Evaluation of Their Hyperglycemia and Inflammation Enzyme Inhibitory Activities. Foods, 14(17), 3142. https://doi.org/10.3390/foods14173142