Cadmium Toxicity in Caenorhabditis elegans: Mechanisms and Interventions by Vitamin C and Fruit Juices
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. C. elegans Synchronous Cultivation
2.3. Fruit Juice Preparation
2.4. Detection of the Vitality of C. elegans
2.5. Analysis of ROS
2.6. Analysis of NO
2.7. Analysis of the Roles of ROS and NO in Cadmium Toxicity
2.8. The Intervention of VC on Cadmium Toxicity
2.9. The Intervention of Fruit Juices on Cadmium Toxicity
2.10. Statistical Analysis
3. Results
3.1. The Vitality of C. elegans Decreased Under CdCl2 Stress
3.2. The Accumulation of ROS and NO Under CdCl2 Stress
3.3. Reducing ROS and NO Levels in C. elegans Alleviates CdCl2 Toxicity
3.4. ROS Accumulation Drives NO Build-Up and Compromises Nematode Vitality
3.5. Vitamin C and Fruit Juices Alleviate CdCl2 Poisoning
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nordberg, M.; Nordberg, G.F. Metallothionein and cadmium toxicology-historical review and commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef]
- Urbano, T.; Filippini, T.; Wise, L.A.; Lasagni, D.; De Luca, T.; Sucato, S.; Polledri, E.; Malavolti, M.; Rigon, C.; Santachiara, A.; et al. Associations of urinary and dietary cadmium with urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine and blood biochemical parameters. Environ. Res. 2022, 210, 112912. [Google Scholar] [CrossRef]
- Gattea, A.Z.; Abbas, A.H.; Kadhum, O.H.; Sajer, N.H.; Ali, S.A. Histopathological study of liver and kidney tissues in C57 mice via chronic exposure to Cadmium and Zinc. Arch. Razi Inst. 2021, 76, 1501–1508. [Google Scholar] [CrossRef]
- Marini, H.R.; Bellone, F.; Catalano, A.; Squadrito, G.; Micali, A.; Puzzolo, D.; Freni, D.; Pallio, G.; Minutoli, L. Nutraceuticals as alternative approach against cadmium-induced kidney damage: A narrative review. Metabolites 2023, 13, 722. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shi, Z.Q.; Hu, L.; Xu, X.; Han, F.X.; Zhou, L.; Chen, J. Thymol ameliorates cadmium-induced phytotoxicity in the root of rice (Oryza sativa) seedling by decreasing endogenous nitric oxide generation. J. Agric. Food Chem. 2017, 65, 7396–7405. [Google Scholar] [CrossRef] [PubMed]
- Yaermaimaiti, S.; Wu, T.; Aisa, H.A. Bioassay-guided isolation of antioxidant, antimicrobial, and antiviral constituents of cordia dichotoma fruits. Ind. Crops Prod. 2021, 172, 113977. [Google Scholar] [CrossRef]
- Calder, P.C.; Kreider, R.B.; McKay, D.L. Enhanced Vitamin C delivery: A systematic literature review assessing the efficacy and safety of alternative supplement forms in healthy adults. Nutrients 2025, 17, 279. [Google Scholar] [CrossRef]
- Block, G.; Jensen, C.D.; Morrow, J.D.; Holland, N.; Norkus, E.P.; Milne, G.L.; Hudes, M.; Dalvi, T.B.; Crawford, P.B.; Fung, E.B. The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic. Biol. Med. 2008, 45, 377–384. [Google Scholar] [CrossRef]
- Rafique, S.; Hassan, S.M.; Mughal, S.S.; Hassan, S.K.; Shabbir, N.; Perveiz, S.; Mushtaq, M.; Farman, M. Biological attributes of lemon: A review. J. Addict. Med. Ther. Sci. 2020, 6, 030–034. [Google Scholar] [CrossRef]
- Bai, X.; Wang, M.; Xu, T.; Zhou, S.; Chu, W. Antioxidant and anti-aging activities of Acanthopanax senticosus polysaccharide CQ-1 in nematode Caenorhabditis elegans. Int. J. Biol. Macromol. 2025, 297, 139925. [Google Scholar] [CrossRef]
- Gonzalez-Moragas, L.; Roig, A.; Laromaine, A. C. elegans as a tool for in vivo nanoparticle assessment. Adv. Colloid Interface 2015, 219, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Xu, K.; Li, Y.; Wong, G.; Wang, D. Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci. Total Environ. 2018, 643, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Le, W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp. Neurol. 2013, 250, 94–103. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, X.P.; Peng, C.W.; Luo, H.Y.; Liu, A.L. Effect of haloacetic acid water disinfection byproducts on intestinal barrier function in nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2025, 44, 2233–2243. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Chen, H.; Krasteva, N.; Liu, Q.; Wang, D. Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J. Nanobiotechnol. 2018, 16, 45. [Google Scholar] [CrossRef]
- Dong, S.; Qu, M.; Rui, Q.; Wang, D. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2018, 165, 444–450. [Google Scholar] [CrossRef]
- Roth, B.L.; Poot, M.; Yue, S.T.; Millard, P.J. Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Appl. Environ. Microbiol. 1997, 63, 2421–2431. [Google Scholar] [CrossRef]
- Shen, Q.S.; Zhou, W.; Li, H.B.; Hu, L.B.; Mo, H.Z. ROS involves the fungicidal actions of thymol against spores of Aspergillus flavus via the induction of nitric oxide. PLoS ONE 2016, 11, e0155647. [Google Scholar] [CrossRef]
- Kojima, H.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Hirata, Y.; Nagano, T. Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. 1999, 21, 3209–3212. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Hu, L.; Shi, Z. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide. Chemosphere 2013, 93, 283–293. [Google Scholar] [CrossRef]
- Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of dna repair and genotoxic consequences (A review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhang, J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ. 2003, 26, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Strotmann, U.; Durand, M.J.; Thouand, G.; Eberlein, C.; Heipieper, H.J.; Gartiser, S.; Pagga, U. Microbiological toxicity tests using standardized ISO/OECD methods-current state and outlook. Appl. Microbiol. Biotechnol. 2024, 108, 454. [Google Scholar] [CrossRef]
- Höss, S.; Schlottmann, K.; Traunspurger, W. Toxicity of ingested cadmium to the nematode Caenorhabditis elegans. Environ. Sci. Technol. 2011, 45, 10219–10225. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, J.A.; Hasanuzzaman, M.; Nahar, K.; Bhuyan, M.H.M.B.; Fujita, M. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol. Environ. Saf. 2018, 147, 990–1001. [Google Scholar] [CrossRef]
- Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020, 30, 167–176. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J.; Gwóźdź, E.A. The message of nitric oxide in cadmium challenged plants. Plant Sci. 2011, 181, 612–620. [Google Scholar] [CrossRef]
- Ma, W.; Xu, W.; Xu, H.; Chen, Y.; He, Z. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 2010, 232, 325–335. [Google Scholar] [CrossRef]
- Bolkent, S.; Sacan, O.; Yanardag, R.; Bolkent, S. Effects of vitamin E, vitamin C, and selenium on gastric fundus in cadmium toxicity in male rats. Int. J. Toxicol. 2008, 27, 217–222. [Google Scholar] [CrossRef]
- Zacarías-García, J.; Pérez-Través, L.; Gil, J.-V.; Rodrigo, M.-J.; Zacarías, L. Bioactive compounds, nutritional quality and antioxidant capacity of the red-fleshed Kirkwood Navel and Ruby Valencia oranges. Antioxidants 2022, 11, 1905. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Han, Y.; Zhang, Y.; Ma, H.; Zhang, L.; Huo, J.; Wang, P.; Liang, M.; Gao, M. Protective role of citric acid against oxidative stress induced by heavy metals in Caenorhabditis elegans. Environ. Sci. Pollut. Res. 2019, 26, 36820–36831. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, S.; Zhang, H.; Lu, X.; Sun, H.; Hu, H.; Hu, L.; Zhai, L.; Zhou, W.; Mo, H. Cadmium Toxicity in Caenorhabditis elegans: Mechanisms and Interventions by Vitamin C and Fruit Juices. Foods 2025, 14, 3106. https://doi.org/10.3390/foods14173106
Zhao Y, Wang S, Zhang H, Lu X, Sun H, Hu H, Hu L, Zhai L, Zhou W, Mo H. Cadmium Toxicity in Caenorhabditis elegans: Mechanisms and Interventions by Vitamin C and Fruit Juices. Foods. 2025; 14(17):3106. https://doi.org/10.3390/foods14173106
Chicago/Turabian StyleZhao, Yanyan, Shan Wang, Hongyan Zhang, Xingru Lu, Hengxi Sun, Huiling Hu, Liangbin Hu, Ligong Zhai, Wei Zhou, and Haizhen Mo. 2025. "Cadmium Toxicity in Caenorhabditis elegans: Mechanisms and Interventions by Vitamin C and Fruit Juices" Foods 14, no. 17: 3106. https://doi.org/10.3390/foods14173106
APA StyleZhao, Y., Wang, S., Zhang, H., Lu, X., Sun, H., Hu, H., Hu, L., Zhai, L., Zhou, W., & Mo, H. (2025). Cadmium Toxicity in Caenorhabditis elegans: Mechanisms and Interventions by Vitamin C and Fruit Juices. Foods, 14(17), 3106. https://doi.org/10.3390/foods14173106