Effects of UVC Treatment on Biofilms of Escherichia coli Strains Formed at Different Temperatures and Maturation Periods
Abstract
1. Introduction
2. Materials and Methods
2.1. Metagenome Analysis of Biliary Stents
2.1.1. DNA Extraction and 16S rRNA Gene Amplification
- (341F: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′)
- (806R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′)
2.1.2. Sequencing Data Processing and Bioinformatics Analysis
2.2. API Test Method
2.3. Bacterial Cell Preparation
2.4. Coupon Preparation
2.5. Biofilm Formation Assay
2.6. Extracellular Polymeric Substance (EPS) Component Assay
2.6.1. Extraction of EPS in E. coli Biofilms
2.6.2. Quantification of Carbohydrate Concentrations in Extracted EPSs
2.7. UVC Treatment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Metagenome Analysis of Biliary Stents and Identification of Microorganisms Using the API Test
3.2. Biofilm Formation at Different Temperatures and Maturation Periods
3.3. Resistance of E. coli Biofilm to UVC Treatment
3.4. Quantification of EPSs in E. coli Biofilms at Different Temperatures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, J.Y.; Yoon, J.W.; Hovde, C.J. A brief overview of Escherichia coli O157: H7 and its plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Olsvik, Ø.; Wasteson, Y.; Lund, A.; Hornes, E. Pathogenic Escherichia coli found in food. Int. J. Food Microbiol. 1991, 12, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Mueller, M.; Tainter, C.R. Escherichia coli infection. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Tuttle, J.; Gomez, T.; Doyle, M.; Wells, J.; Zhao, T.; Tauxe, R.; Griffin, P. Lessons from a large outbreak of Escherichia coli O157 [ratio] H7 infections: Insights into the infectious dose and method of widespread contamination of hamburger patties. Epidemiol. Infect. 1999, 122, 185–192. [Google Scholar] [CrossRef]
- Baazize-Ammi, D.; Gassem, O.; Derrar, F.; Izri, K.; Brahim-Errahmani, M.; Gagnon, J.; Guetarni, D.; Chebloune, Y. Prevalence of asymptomatic carriers of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle farms in the governorate of Blida (Algeria). J. Vet. Res. 2015, 59, 23–28. [Google Scholar] [CrossRef]
- Leem, J.H.; Kim, S.-O.; Kim, S.-S. Impact of COVID-19 restrictions on incidence of foodborne diseases in South Korea, Mini-review. Korean J. Food Sci. Technol. 2024, 56, 142–147. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Foodborne Disease Outbreak. 2025. Available online: https://www.foodsafetykorea.go.kr (accessed on 23 June 2025).
- Shah, H.J. Reported incidence of infections caused by pathogens transmitted commonly through food: Impact of increased use of culture-independent diagnostic tests—Foodborne diseases active surveillance network, 1996–2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 584–593. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention (US CDC). E. coli Outbreak Linked to Onions Served at McDonald’s. 2025. Available online: https://www.cdc.gov/ecoli/outbreaks/e-coli-O157.html (accessed on 29 March 2025).
- Wang, H.; Wang, X.; Yu, L.; Gao, F.; Jiang, Y.; Xu, X. Resistance of biofilm formation and formed-biofilm of Escherichia coli O157: H7 exposed to acid stress. LWT 2020, 118, 108787. [Google Scholar] [CrossRef]
- Wilson, M. Bacterial biofilms and human disease. Sci. Prog. 2001, 84, 235–254. [Google Scholar] [CrossRef]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Cortés, M.E.; Bonilla, J.C.; Sinisterra, R.D. Biofilm formation, control and novel strategies for eradication. Sci. Against Microbial. Pathog. Commun. Curr. Res. Technol. Adv. 2011, 2, 896–905. [Google Scholar]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli biofilm: Development and therapeutic strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef]
- Wood, T.K. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ. Microbiol. 2009, 11, 1–15. [Google Scholar] [CrossRef]
- Gupta, P.; Sarkar, S.; Das, B.; Bhattacharjee, S.; Tribedi, P. Biofilm, pathogenesis and prevention—A journey to break the wall: A review. Arch. Microbiol. 2016, 198, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.Q.; Louie, J.W.; Feng, D.; Zhong, W.; Brandl, M.T. Curli fimbriae are conditionally required in Escherichia coli O157: H7 for initial attachment and biofilm formation. Food Microbiol. 2016, 57, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Jeong, K.-O.; Cheon, H.-L.; Kang, D.-H. Comparison of spindle and stomacher efficacy for detaching biofilms from stainless steel, PVC, and green leafy vegetable surfaces. Br. Food J. 2019, 122, 503–514. [Google Scholar] [CrossRef]
- Simões, M.; Simões, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT-Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef]
- Frank, J.F. Microbial attachment to food and food contact surfaces. Adv. Food Nutr. Res. 2001, 43, 319–370. [Google Scholar]
- Kim, S.S. Application of comparative genomics for the development of PCR Primers for the detection of harmful or beneficial microorganisms in food: Mini-Review. Foods 2025, 14, 1060. [Google Scholar] [CrossRef]
- Moon, H.; Kyoung, M.; Noh, J.I.; Kim, S.S. Identification of Campylobacter spp. isolated from raw chicken samples and genome characterization through complete genome sequencing analysis. Korean J. Food Sci. Technol. 2025, 57, 242–252. [Google Scholar] [CrossRef]
- Lee, J.I.; Kim, S.S.; Kim, Y.J.; Kang, D.H. Higher Susceptibility of E. coli O157: H7 and Carbapenem-Resistant E. coli Biofilm to the Amalgam Lamp Compared to the Conventional LP Lamp and Mechanism Identification Using Transcriptome Analysis. Food Bioprocess Technol. 2025, 18, 7933–7942. [Google Scholar] [CrossRef]
- Kim, H.J.; Oh, Y.G.; Kim, K.H.; Park, J.H.; Ryu, S.; Kim, H.S.; Lee, Y.Y.; Kang, M.S. Microbial growth and quality characteristics of wheat under different packaging conditions in plasma storage. Food Sci. Preserv. 2025, 32, 118–123. [Google Scholar] [CrossRef]
- Park, K.H.; Cho, J.L.; Kim, R.; Son, S.Y.; Hong, J.S.; Oh, Y.C.; Kim, J.M. The effect of aqueous chlorine dioxide on the control of Escherichia coli O157: H7 and Salmonella Typhimurium inoculated into broccoli and barley seeds. Food Sci. Preserv. 2025, 32, 96–105. [Google Scholar] [CrossRef]
- Bae, Y.M.; Lee, S.Y. Inhibitory effects of UV treatment and a combination of UV and dry heat against pathogens on stainless steel and polypropylene surfaces. J. Food Sci. 2012, 77, M61–M64. [Google Scholar] [CrossRef] [PubMed]
- Lagunas-Solar, M.C.; Piña, C.; MacDonald, J.D.; Bolkan, L. Development of pulsed UV light processes for surface fungal disinfection of fresh fruits. J. Food Prot. 2006, 69, 376–384. [Google Scholar] [CrossRef]
- Begum, M.; Hocking, A.D.; Miskelly, D. Inactivation of food spoilage fungi by ultra violet (UVC) irradiation. Int. J. Food Microbiol. 2009, 129, 74–77. [Google Scholar] [CrossRef]
- Zimmer, J.; Slawson, R. Potential repair of Escherichia coli DNA following exposure to UV radiation from both medium-and low-pressure UV sources used in drinking water treatment. Appl. Environ. Microbiol. 2002, 68, 3293–3299. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, H.; Park, H.R.; Noh, J.I.; Kim, S.S. Metagenomic Analysis of Raw Milk and the Inactivation of Foodborne Pathogens Using Ultraviolet-C. Foods 2025, 14, 1414. [Google Scholar] [CrossRef]
- Hundt, M.; Basit, H.; John, S. Physiology, Bile Secretion; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Hundt, M.; Wu, C.Y.; Young, M. Anatomy, Abdomen and Pelvis: Biliary Ducts; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Devière, J.; Reddy, D.N.; Püspök, A.; Ponchon, T.; Bruno, M.J.; Bourke, M.J.; Neuhaus, H.; Roy, A.; Lladó, F.G.-H.; Barkun, A.N. Successful management of benign biliary strictures with fully covered self-expanding metal stents. Gastroenterology 2014, 147, 385–395. [Google Scholar] [CrossRef]
- Coucke, E.M.; Akbar, H.; Kahloon, A.; Lopez, P.P. Biliary Obstruction; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Dumonceau, J.-M.; Tringali, A.; Blero, D.; Devière, J.; Laugiers, R.; Heresbach, D.; Costamagna, G. Biliary stenting: Indications, choice of stents and results: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline. Endoscopy 2012, 44, 277–298. [Google Scholar] [CrossRef]
- Van Berkel, A.; Van Marle, J.; Groen, A.; Bruno, M. Mechanisms of biliary stent clogging: Confocal laser scanning and scanning electron microscopy. Endoscopy 2005, 37, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.G.; Lee, J.J.; Kwon, S.W.; Kim, S.S. Biochemical property identification of 10 strains of Bacillus thuringiensis and 10 strains of Bacillus cereus (7 strains of non-emetic and 3 strains of emetic type) by API test. Korean J. Food Sci. Technol. 2020, 52, 678–684. [Google Scholar]
- Lee, H.K.; Yoon, K.S. Control measures to reduce Salmonella spp. and L. monocytogenes contamination in mung bean seeds and managing their growth during sprouting. Food Sci. Preserv. 2024, 31, 921–932. [Google Scholar] [CrossRef]
- Kim, S.H.; Jyung, S.; Kang, D.H. Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. LWT 2022, 154, 112700. [Google Scholar] [CrossRef]
- Lee, J.I.; Kim, S.S.; Kang, D.H. Characteristics of Staphylococcus aureus biofilm matured in tryptic soy broth, low-fat milk, or whole milk samples along with inactivation by 405 nm light combined with folic acid. Food Microbiol. 2023, 116, 104350. [Google Scholar] [CrossRef]
- Kwon, S.-W.; Kwon, E.-A.; Hong, Y.-G.; Kim, S.-S. Germination of Bacillus cereus ATCC 14579 spore at various conditions and inactivation of the germinated cells with microwave heating and UVC treatment in milk samples. LWT 2022, 154, 112702. [Google Scholar] [CrossRef]
- Cacaci, M.; De Maio, F.; Matteo, M.V.; Posteraro, B.; Di Vito, M.; Menchinelli, G.; Tringali, A.; Monzo, F.R.; Torelli, R.; Costamagna, G. Pilot study on cultural and metagenomic analysis of bile and biliary stentslead to unveiling the key players in stent occlusion. Sci. Rep. 2024, 14, 3344. [Google Scholar] [CrossRef]
- Vaishnavi, C.; Samanta, J.; Kochhar, R. Characterization of biofilms in biliary stents and potential factors involved in occlusion. World J. Gastroenterol. 2018, 24, 112. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Míguez, A.; Carloni, S.; Cardenas, C.; Dioguardi, C.C.; Lambroia, L.; Capretti, G.; Nappo, G.; Fugazza, A.; Capogreco, A.; Armanini, F. Microbial composition associated with biliary stents in patients undergoing pancreatic resection for cancer. NPJ Biofilms Microbiomes 2024, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Bumunang, E.W.; Stanford, K.; Bie, X.; Niu, Y.D.; McAllister, T.A. Biofilm formation by shiga toxin-producing Escherichia coli on stainless steel coupons as affected by temperature and incubation time. Microorganisms 2019, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, F.; Arslan, S. Molecular Characterization and biofilm formation of Escherichia coli from vegetables. Sak. Univ. J. Sci. 2021, 25, 12–21. [Google Scholar] [CrossRef]
- Nesse, L.L.; Sekse, C.; Berg, K.; Johannesen, K.C.; Solheim, H.; Vestby, L.K.; Urdahl, A.M. Potentially pathogenic Escherichia coli can form a biofilm under conditions relevant to the food production chain. Appl. Environ. Microbiol. 2014, 80, 2042–2049. [Google Scholar] [CrossRef]
- Marti, R.; Schmid, M.; Kulli, S.; Schneeberger, K.; Naskova, J.; Knøchel, S.; Ahrens, C.H.; Hummerjohann, J. Biofilm formation potential of heat-resistant Escherichia coli dairy isolates and the complete genome of multidrug-resistant, heat-resistant strain FAM21845. Appl. Environ. Microbiol. 2017, 83, e00628-17. [Google Scholar] [CrossRef]
- Ripa, R.; Shen, A.Q.; Funari, R. Detecting Escherichia coli biofilm development stages on gold and titanium by quartz crystal microbalance. ACS Omega 2020, 5, 2295–2302. [Google Scholar] [CrossRef]
- AL-Kafaween, M.A.; Khan, R.S.; Hilmi, A.B.M.; Ariff, T.M. Characterization of biofilm formation by Escherichia coli: An in vitro study. J. Appl. Biol. Biotech. 2019, 7, 17–19. [Google Scholar]
- Elpers, L.; Hensel, M. Expression and functional characterization of various chaperon-usher fimbriae, curli fimbriae, and type 4 pili of enterohemorrhagic Escherichia coli O157: H7 Sakai. Front. Microbiol. 2020, 11, 378. [Google Scholar] [CrossRef]
- Montgomery, N.L.; Banerjee, P. Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Res. Notes 2015, 8, 235. [Google Scholar] [CrossRef]
- Liu, N.T.; Nou, X.; Bauchan, G.R.; Murphy, C.; Lefcourt, A.M.; Shelton, D.R.; Lo, Y.M. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157: H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant. J. Food Prot. 2015, 78, 121–127. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, X.-S.; Hegde, M.; Bentley, W.E.; Jayaraman, A.; Wood, T.K. Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J. 2008, 2, 1007–1023. [Google Scholar] [CrossRef] [PubMed]
- Beloin, C.; Roux, A.; Ghigo, J.-M. Escherichia coli biofilms. Bact. Biofilms 2008, 322, 249–289. [Google Scholar]
- Sjollema, J.; Rustema-Abbing, M.; van der Mei, H.C.; Busscher, H.J. Generalized relationship between numbers of bacteria and their viability in biofilms. Appl. Environ. Microbiol. 2011, 77, 5027–5029. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Li, B.; Chen, H.; Cao, L.; Hu, Y.; Chen, D.; Yin, Y. Escherichia coli exopolysaccharides induced by ceftriaxone regulated human gut microbiota in vitro. Front. Microbiol. 2021, 12, 634204. [Google Scholar] [CrossRef]
- Vogeleer, P.; Tremblay, Y.D.; Mafu, A.A.; Jacques, M.; Harel, J. Life on the outside: Role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front. Microbiol. 2014, 5, 317. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Beuchat, L.R. Biofilm formation by Escherichia coli O157: H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Appl. Environ. Microbiol. 2005, 71, 247–254. [Google Scholar] [CrossRef]
Biofilm Maturation Temperature | E. coli Strain | Biofilm Maturation Time | |||
---|---|---|---|---|---|
1 Day | 3 Day | 5 Day | 7 Day | ||
37 °C | iso | 6.89 ± 0.23 Aa | 6.54 ± 0.23 Aab | 6.18 ± 0.64 Ab | 6.02 ± 0.40 Ab |
35150 | 6.04 ± 0.24 Ba | 5.81 ± 0.13 Aa | 5.73 ± 0.40 Aa | 5.65 ± 0.29 Aa | |
43889 | 6.22 ± 0.29 ABa | 5.86 ± 0.48 Aa | 5.64 ± 0.26 Aa | 5.71 ± 0.55 Aa | |
43890 | 6.13 ± 0.25 Ba | 5.91 ± 0.26 Aa | 5.93 ± 0.16 Aa | 5.77 ± 0.41 Aa | |
43895 | 6.36 ± 0.40 ABa | 6.25 ± 0.36 Aa | 6.11 ± 0.61 Aa | 6.07 ± 0.65 Aa | |
25 °C | iso | 6.54 ± 0.47 Aa | 7.14 ± 0.19 Aa | 6.65 ± 0.22 Aa | 6.79 ± 0.15 Aa |
35150 | 5.66 ± 0.33 Ba | 6.09 ± 0.18 Ba | 5.91 ± 0.21 ABa | 5.84 ± 0.38 Ba | |
43889 | 5.62 ± 0.34 Ba | 6.53 ± 0.10 ABb | 6.16 ± 0.06 ABab | 6.28 ± 0.06 Bb | |
43890 | 5.81 ± 0.07 Ba | 6.29 ± 0.28 Ba | 5.97 ± 0.50 ABa | 5.98 ± 0.51 Ba | |
43895 | 5.77 ± 0.25 Ba | 6.19 ± 0.34 Ba | 5.83 ± 0.40 Ba | 5.67 ± 0.16 Ba | |
15 °C | iso | 4.94 ± 0.07 Aa | 6.33 ± 0.21 Ab | 7.06 ± 0.13 ABc | 6.86 ± 0.12 Abc |
35150 | 3.90 ± 0.42 Ba | 5.90 ± 0.32 Ab | 6.26 ± 0.17 Bb | 6.08 ± 0.18 Ab | |
43889 | 3.75 ± 0.06 Ba | 5.10 ± 0.27 Bb | 6.29 ± 0.13 Bc | 6.21 ± 0.33 Ac | |
43890 | 3.41 ± 0.25 Ba | 5.04 ± 0.17 Bb | 6.16 ± 0.08 Bc | 6.04 ± 0.24 Ac | |
43895 | 4.13 ± 0.25 Ca | 5.68 ± 0.69 ABb | 6.30 ± 0.38 Bb | 6.24 ± 0.34 Ab |
UVC Treatment Time (s) | Biofilm Maturation Temperature | Escherichia coli Strains | ||||
---|---|---|---|---|---|---|
iso | 35150 | 43889 | 43890 | 43895 | ||
0 | 37 °C | 5.58 ± 0.43 Aa | 5.71 ± 0.10 Aa | 5.03 ± 0.47 Aa | 5.21 ± 0.54 Aa | 5.41 ± 0.30 Aa |
25 °C | 5.90 ± 0.03 Aa | 5.87 ± 0.19 Aa | 5.79 ± 0.30 Ba | 5.78 ± 0.31 ABa | 5.93 ± 0.28 Aa | |
15 °C | 6.06 ± 0.26 Aa | 5.65 ± 0.31 Aa | 5.79 ± 0.09 Ba | 5.90 ± 0.07 Ba | 5.83 ± 0.13 Aa | |
30 | 37 °C | 4.38 ± 0.17 Aa | 4.68 ± 0.62 Aa | 4.31 ± 0.61 Aa | 3.93 ± 0.41 Aa | 4.12 ± 0.39 ABa |
25 °C | 4.34 ± 0.23 Aa | 3.90 ± 0.49 Ba | 4.22 ± 0.12 Aa | 3.83 ± 0.20 Aa | 4.47 ± 0.16 Ab | |
15 °C | 5.56 ± 0.22 Ba | 4.68 ± 0.34 Ab | 4.01 ± 0.09 Ac | 3.56 ± 0.03 Ac | 3.80 ± 0.09 Bc | |
60 | 37 °C | 4.32 ± 0.28 Aa | 4.22 ± 0.44 Aa | 3.93 ± 0.40 Aa | 3.73 ± 0.51 Aa | 3.82 ± 0.33 Aa |
25 °C | 4.25 ± 0.23 Aa | 3.35 ± 0.24 Bb | 4.19 ± 0.29 Aa | 3.89 ± 0.42 Aab | 4.16 ± 0.18 Aa | |
15 °C | 5.28 ± 0.23 Ba | 3.85 ± 0.29 ABb | 3.79 ± 0.11 Ab | 3.72 ± 0.43 Ab | 3.78 ± 0.16 Ab | |
90 | 37 °C | 3.88 ± 0.42 Aa | 3.88 ± 0.56 Aa | 3.66 ± 0.31 ABa | 3.78 ± 0.45 Aa | 3.83 ± 0.05 Aa |
25 °C | 4.24 ± 0.26 ABa | 3.69 ± 0.24 Aa | 4.06 ± 0.15 Aa | 3.80 ± 0.24 Aa | 4.06 ± 0.22 Aa | |
15 °C | 4.72 ± 0.46 Ba | 3.32 ± 0.40 Ab | 3.43 ± 0.15 Bb | 3.78 ± 0.38 Ab | 3.20 ± 0.46 Bb | |
120 | 37 °C | 3.77 ± 0.67 Aa | 3.78 ± 0.12 Aa | 3.26 ± 0.14 Aa | 3.20 ± 0.22 Aa | 3.44 ± 0.38 ABa |
25 °C | 3.49 ± 0.43 Aa | 3.74 ± 0.10 Aab | 4.06 ± 0.25 Bb | 3.34 ± 0.05 ABa | 3.73 ± 0.24 Aab | |
15 °C | 4.54 ± 0.09 Ba | 3.48 ± 0.13 Ab | 3.50 ± 0.10 ABb | 3.83 ± 0.21 Bb | 3.19 ± 0.29 Bc | |
150 | 37 °C | 3.76 ± 0.23 Aa | 3.08 ± 0.19 Aa | 3.39 ± 0.22 Aa | 3.49 ± 0.18 Aa | 3.57 ± 0.41 Aa |
25 °C | 3.89 ± 0.10 ABa | 3.13 ± 0.19 Ab | 3.19 ± 0.18 Ab | 3.20 ± 0.14 Ab | 4.08 ± 0.24 Aa | |
15 °C | 4.39 ± 0.22 Ba | 3.23 ± 0.13 Ab | 3.15 ± 0.04 Ab | 3.45 ± 0.15 Ab | 2.78 ± 0.29 Bc | |
180 | 37 °C | 2.12 ± 0.16 Aa | 2.25 ± 0.30 Aa | 2.51 ± 0.59 Aa | 2.38 ± 0.23 Aa | 2.72 ± 0.13 Aa |
25 °C | 3.67 ± 0.06 Ba | 2.93 ± 0.20 Ba | 3.41 ± 0.39 Ba | 3.04 ± 0.09 Ba | 3.56 ± 0.08 Ba | |
15 °C | 4.22 ± 0.29 Ba | 3.31 ± 0.20 Bb | 3.05 ± 0.17 ABb | 2.92 ± 0.46 ABb | 2.94 ± 0.33 Ab |
Biofilm Maturation Temperature | Strain | Biofilm Carbohydrate Content in EPSs (μg/cm2) | |||
---|---|---|---|---|---|
1 Day | 3 Day | 5 Day | 7 Day | ||
37 °C | iso | 1.33 ± 0.09 Aa | 1.64 ± 0.09 Ab | 1.53 ± 0.09 Abc | 1.46 ± 0.08 Ac |
35150 | 1.14 ± 0.10 Ba | 1.45 ± 0.09 BCb | 1.46 ± 0.04 ABb | 1.41 ± 0.05 Ab | |
43889 | 1.19 ± 0.12 Aba | 1.49 ± 0.13 Bb | 1.50 ± 0.02 Ab | 1.45 ± 0.07 Ab | |
43890 | 1.17 ± 0.12 Ba | 1.34 ± 0.07 Cb | 1.40 ± 0.05 Bb | 1.43 ± 0.04 Ab | |
43895 | 1.16 ± 0.09 Ba | 1.43 ± 0.09 BCb | 1.38 ± 0.03 Bb | 1.42 ± 0.07 Ab | |
25 °C | iso | 1.72 ± 0.03 Aa | 1.74 ± 0.03 Aa | 1.73 ± 0.03 Aa | 1.73 ± 0.02 Aa |
35150 | 1.53 ± 0.02 Ba | 1.54 ± 0.03 Ba | 1.56 ± 0.02 Ba | 1.57 ± 0.03 Ba | |
43889 | 1.55 ± 0.02 Ba | 1.58 ± 0.03 Ba | 1.57 ± 0.01 Ba | 1.58 ± 0.01 Ba | |
43890 | 1.49 ± 0.02 Ba | 1.51 ± 0.02 Ba | 1.52 ± 0.02 Ba | 1.52 ± 0.03 Ba | |
43895 | 1.55 ± 0.04 Ba | 1.54 ± 0.02 Ba | 1.57 ± 0.03 Ba | 1.55 ± 0.03 Ba | |
15 °C | iso | 2.34 ± 0.02 Aa | 2.52 ± 0.06 Ab | 2.58 ± 0.03 Ab | 2.60 ± 0.03 Ab |
35150 | 1.66 ± 0.02 Ba | 1.69 ± 0.02 Ba | 1.68 ± 0.01 BCa | 1.69 ± 0.01 BCa | |
43889 | 1.70 ± 0.02 Ba | 1.72 ± 0.03 Ba | 1.72 ± 0.02 BCa | 1.70 ± 0.02 BCa | |
43890 | 1.65 ± 0.03 Ba | 1.64 ± 0.03 Ba | 1.64 ± 0.01 Ba | 1.63 ± 0.01 Ba | |
43895 | 1.74 ± 0.02 Ba | 1.76 ± 0.02 Ba | 1.74 ± 0.02 Ca | 1.73 ± 0.02 Ca |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyoung, M.; Lee, J.-I.; Kim, S.-S. Effects of UVC Treatment on Biofilms of Escherichia coli Strains Formed at Different Temperatures and Maturation Periods. Foods 2025, 14, 3091. https://doi.org/10.3390/foods14173091
Kyoung M, Lee J-I, Kim S-S. Effects of UVC Treatment on Biofilms of Escherichia coli Strains Formed at Different Temperatures and Maturation Periods. Foods. 2025; 14(17):3091. https://doi.org/10.3390/foods14173091
Chicago/Turabian StyleKyoung, Myounghyeon, Jae-Ik Lee, and Sang-Soon Kim. 2025. "Effects of UVC Treatment on Biofilms of Escherichia coli Strains Formed at Different Temperatures and Maturation Periods" Foods 14, no. 17: 3091. https://doi.org/10.3390/foods14173091
APA StyleKyoung, M., Lee, J.-I., & Kim, S.-S. (2025). Effects of UVC Treatment on Biofilms of Escherichia coli Strains Formed at Different Temperatures and Maturation Periods. Foods, 14(17), 3091. https://doi.org/10.3390/foods14173091