New Frontiers in Cereal and Pseudocereal Germination: Emerging Inducers for Maximizing Bioactive Compounds
Abstract
1. Introduction
2. Search Strategies and Brief Bibliometric Analysis
3. Fundamentals of Germination and Its Impact on Bioactive Compounds
3.1. Germination Process: Physiological and Biochemical Aspects
3.2. Main Bioactive Compounds in Germinated Seeds
3.2.1. Phenolic Compounds
3.2.2. GABA
3.2.3. Bioactive Peptides
3.2.4. Melatonin and Indolic Compounds
3.2.5. Vitamins and Bioavailable Minerals
3.2.6. Antioxidant Enzymes
3.2.7. Diverse Phytochemicals
3.2.8. Dietary Fiber
4. Factors Influencing the Accumulation of Bioactive Compounds
4.1. Genetic Factors
4.2. Environmental Conditions During Growth
4.3. Germination Process Parameters
4.4. Other Processing Treatments
4.5. Abiotic Stress
5. Molecular Mechanisms of Inducers for Bioactive Compounds Enhancement
5.1. Physical Inducers: Molecular Mechanisms
5.1.1. Plasma-Activated Water (PAW)
5.1.2. Pulsed Electric Field (PEF)
5.1.3. Ultraviolet Radiation (UV)
5.1.4. Magnetic Fields (MFs)
5.1.5. Ultrasound Treatment (US)
5.1.6. Light and Photoperiod Regulation
5.1.7. High Hydrostatic Pressure (HHP)
5.1.8. Microwave Irradiation
5.1.9. Cold Plasma Technology
5.1.10. Gamma Irradiation
5.1.11. Controlled Thermal Processing
5.2. Chemical Inducers: Molecular Pathways
5.2.1. Phytohormones
5.2.2. Stress-Inducing Compounds
5.2.3. Mineral and Salt Stress
5.2.4. Plant-Derived Elicitors
5.3. Biological Inducers: Enzymatic and Microbial Mechanisms
5.3.1. Concurrent Fermentation
5.3.2. Microbial Extracts and Enzymatic Enhancement
6. Emerging Physical Inducers
6.1. Controlled Germination
6.2. Plasma-Activated Water (PAW) Treatments
6.3. High Hydrostatic Pressure (HHP) Treatments
6.4. Pulsed Electric Fields (PEFs)
6.5. High Voltage Electric Fields (HVEFs)
6.6. Magnetic Fields
6.7. High Pressure Carbon Dioxide (HPCD)
6.8. Microwave Irradiation
6.9. Light Intensity
6.10. Pulsed Light (PL)
6.11. Ultraviolet Radiation (UV)
6.12. Cold Atmospheric Plasma
6.13. Ultrasonication
7. Chemical Inducers of Germination
7.1. Plant-Derived Inducers
7.2. Minerals and Trace Elements
7.3. Plant Growth Regulators
7.4. Synthetic Chemical Inducers
7.5. Nanomaterials
8. Biological Inducers of Germination
9. Combination of Inducers and Integrated Approaches
9.1. Synergies Between Physical and Biological Inducers
9.2. Synergies Between Physical and Chemical Inducers
9.3. Synergies Between Physical Inducers
10. Applications in the Food Industry and Technological Considerations
10.1. Functional Flours
10.2. Functional Bakery Products
10.3. Functional Breakfast Cereals and Snacks
10.4. Functional Beverages
10.5. Fermented Foods
10.6. Bioactive Concentrates
10.7. Functional Foods for Glycemic Control
10.8. Infant Foods
10.9. Foods with Improved Bioavailability
10.10. Functional Malted Products
11. Bioavailability and Biological Efficacy of Enhanced Bioactive Compounds
12. Challenges and Technological Considerations
13. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakur, P.; Kumar, K.; Ahmed, N.; Chauhan, D.; Eain Hyder Rizvi, Q.U.; Jan, S.; Singh, T.P.; Dhaliwal, H.S. Effect of Soaking and Germination Treatments on Nutritional, Anti-Nutritional, and Bioactive Properties of Amaranth (Amaranthus hypochondriacus L.), Quinoa (Chenopodium quinoa L.), and Buckwheat (Fagopyrum esculentum L.). Curr. Res. Food Sci. 2021, 4, 917–925. [Google Scholar] [CrossRef]
- Tene, S.T.; Ndinteh, D.T.; Dongmo, J.R.; Adebo, O.A.; Kewuyemi, Y.O.; Kengne Kamdem, M.H.; Obilana, A.O.; Klang, J.M.; Njobeh, P.B.; Womeni, H.M. Optimization Using Response Surface Methodology of Amylolytic Capacity of Maize Atp-Y and Coca-Sr Varieties: In Vitro Digestibility Capacity, Physico-Chemical and Functional Properties of Optimal Sample. J. Agric. Food Res. 2022, 9, 100342. [Google Scholar] [CrossRef]
- Naumenko, N.; Fatkullin, R.; Popova, N.; Ruskina, A.; Kalinina, I.; Morozov, R.; Avdin, V.V.; Antonova, A.; Vasileva, E. Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients. Fermentation 2023, 9, 246. [Google Scholar] [CrossRef]
- Nsabimana, S.; Ismail, T.; Lazarte, C.E. Enhancing Iron and Zinc Bioavailability in Maize (Zea mays) through Phytate Reduction: The Impact of Fermentation Alone and in Combination with Soaking and Germination. Front. Nutr. 2024, 11, 1478155. [Google Scholar] [CrossRef] [PubMed]
- AL-Ansi, W.; Mahdi, A.A.; Al-Maqtari, Q.A.; Mushtaq, B.S.; Ahmed, A.; Karrar, E.; Mohammed, J.K.; Fan, M.; Li, Y.; Qian, H.; et al. The Potential Improvements of Naked Barley Pretreatments on GABA, β-Glucan, and Antioxidant Properties. LWT 2020, 130, 109698. [Google Scholar] [CrossRef]
- Ahmed, Z.; Manzoor, M.F.; Ahmad, N.; Zeng, X.; Din, Z.U.; Roobab, U.; Qayum, A.; Siddique, R.; Siddeeg, A.; Rahaman, A. Impact of Pulsed Electric Field Treatments on the Growth Parameters of Wheat Seeds and Nutritional Properties of Their Wheat Plantlets Juice. Food Sci. Nutr. 2020, 8, 2490–2500. [Google Scholar] [CrossRef] [PubMed]
- Al-Taher, F.; Nemzer, B. Effect of Germination on Fatty Acid Composition in Cereal Grains. Foods 2023, 12, 3306. [Google Scholar] [CrossRef]
- Altıkardeş, E.; Güzel, N. Impact of Germination Pre-Treatments on Buckwheat and Quinoa: Mitigation of Anti-Nutrient Content and Enhancement of Antioxidant Properties. Food Chem. X 2024, 21, 101182. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Xu, L.; Xie, M.; Yu, M. Non-Targeted Metabolomics Analysis of γ–Aminobutyric Acid Enrichment in Germinated Maize Induced by Pulsed Light. Foods 2024, 13, 2675. [Google Scholar] [CrossRef]
- Ding, J.; Hou, G.G.; Nemzer, B.V.; Xiong, S.; Dubat, A.; Feng, H. Effects of Controlled Germination on Selected Physicochemical and Functional Properties of Whole-Wheat Flour and Enhanced γ-Aminobutyric Acid Accumulation by Ultrasonication. Food Chem. 2018, 243, 214–221. [Google Scholar] [CrossRef]
- Ding, J.; Johnson, J.; Chu, Y.F.; Feng, H. Enhancement of γ-Aminobutyric Acid, Avenanthramides, and Other Health-Promoting Metabolites in Germinating Oats (Avena sativa L.) Treated with and without Power Ultrasound. Food Chem. 2019, 283, 239–247. [Google Scholar] [CrossRef]
- Hu, M.; Yang, J.; Zhang, J.; Fang, W.; Yin, Y. Physiology and Metabolism Alterations in Flavonoid Accumulation During Buckwheat (Fagopyrum esculentum Moench.) Sprouting. Plants 2024, 13, 3342. [Google Scholar] [CrossRef]
- Jan, R.; Saxena, D.C.; Singh, S. Effect of Germination on Nutritional, Functional, Pasting, and Microstructural Properties of Chenopodium (Chenopodium album) Flour: Gluten Free Flour and Germination Effect on Various Properties. J. Food Process. Preserv. 2017, 41, e12959. [Google Scholar] [CrossRef]
- Ge, X.; Saleh, A.S.M.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Li, W. Germination and Drying Induced Changes in the Composition and Content of Phenolic Compounds in Naked Barley. J. Food Compos. Anal. 2021, 95, 103594. [Google Scholar] [CrossRef]
- Chen, C.; Tao, Y.; Han, Y.; Ding, Y.; Jian, X.; Li, D. Preparation of Germinated Brown Rice with High γ-Aminobutyric Acid Content and Short Root by Magnetic Field Treatment. J. Cereal Sci. 2023, 112, 103720. [Google Scholar] [CrossRef]
- Lan, Y.; Wang, X.; Wang, L.; Zhang, W.; Song, Y.; Zhao, S.; Yang, X.; Liu, X. Change of Physiochemical Characteristics, Nutritional Quality, and Volatile Compounds of Chenopodium quinoa Willd. during Germination. Food Chem. 2024, 445, 138693. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, N.; Li, W.; Zhang, B.; Shi, T.; Xie, M.; Yu, M. Effect of Ultrasonic Induction on the Main Physiological and Biochemical Indicators and γ–Aminobutyric Acid Content of Maize during Germination. Foods 2022, 11, 1358. [Google Scholar] [CrossRef]
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Bioactive Compounds and Digestible Starch Variability of Rice, Maize, Green Gram, and Soy Grains with Different Levels of Germination. Int. J. Food Sci. Technol. 2024, 59, 9273–9286. [Google Scholar] [CrossRef]
- Bernate, I.; Kince, T.; Radenkovs, V.; Juhnevica-Radenkova, K.; Cinkmanis, I.; Bruveris, J.; Sabovics, M. Impact of Ozone Exposure on the Biochemical Composition of Wheat, Broccoli, Alfalfa, and Radish Seeds During Germination. Agronomy 2024, 14, 2571. [Google Scholar] [CrossRef]
- He, Y.; Song, S.; Li, C.; Zhang, X.; Liu, H. Effect of Germination on the Main Chemical Compounds and 5-Methyltetrahydrofolate Metabolism of Different Quinoa Varieties. Food Res. Int. 2022, 159, 111601. [Google Scholar] [CrossRef]
- Bassey, S.O.; Chinma, C.E.; Ezeocha, V.C.; Adedeji, O.E.; Jolayemi, O.S.; Alozie-Uwa, U.C.; Adie, I.E.; Ofem, S.I.; Adebo, J.A.; Adebo, O.A. Nutritional and Physicochemical Changes in Two Varieties of Fonio (Digitaria exilis and Digitaria iburua) during Germination. Heliyon 2023, 9, e17452. [Google Scholar] [CrossRef]
- Dey, S.; Saxena, A.; Kumar, Y.; Maity, T.; Tarafdar, A. Synergistic Effects of Germination and Ultrasonication on Nutritional and Structural Characteristics of Kodo (Paspalum scrobiculatum) and Little (Panicum sumatrense) Millet. J. Food Qual. 2024, 2024, 4951196. [Google Scholar] [CrossRef]
- Ramos-Pacheco, B.S.; Choque-Quispe, D.; Ligarda-Samanez, C.A.; Solano-Reynoso, A.M.; Palomino-Rincón, H.; Choque-Quispe, Y.; Peralta-Guevara, D.E.; Moscoso-Moscoso, E.; Aiquipa-Pillaca, Á.S. Effect of Germination on the Physicochemical Properties, Functional Groups, Content of Bioactive Compounds, and Antioxidant Capacity of Different Varieties of Quinoa (Chenopodium quinoa Willd.) Grown in the High Andean Zone of Peru. Foods 2024, 13, 417. [Google Scholar] [CrossRef]
- Mawouma, S.; Cotârleț, M.; Lazăr, N.N.; Stănciuc, N.; Râpeanu, G. Effect of Combined Germination and Spontaneous Fermentation on the Bioactive, Mineral, and Microbial Profile of Red Sorghum and Pearl Millet Flours. AUDJG—Food Technol. 2023, 47, 207–220. [Google Scholar] [CrossRef]
- Tyagi, A.; Chen, X.; Shabbir, U.; Chelliah, R.; Oh, D.H. Effect of Slightly Acidic Electrolyzed Water on Amino Acid and Phenolic Profiling of Germinated Brown Rice Sprouts and Their Antioxidant Potential. LWT 2022, 157, 113119. [Google Scholar] [CrossRef]
- Chavarín-Martínez, C.D.; Reyes-Moreno, C.; Milán-Carrillo, J.; Perales-Sánchez, J.X.K.; Canizalez-Román, V.A.; Cuevas-Rodriguez, E.-O.; López-Valenzuela, J.A.; Gutiérrez-Dorado, R. Effect of Germination and UV-B Elicitation on Chemical Compositions, Antioxidant Activities, and Phytochemical Contents of Underutilised Mexican Blue Maize Seeds. Int. Food Res. J. 2022, 29, 300–310. [Google Scholar] [CrossRef]
- Donkor, O.N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated Grains—Sources of Bioactive Compounds. Food Chem. 2012, 135, 950–959. [Google Scholar] [CrossRef]
- García-Santiesteban, A.E.; Ramírez-Corona, N.; López-Malo, A.; Palou, E.; Jiménez-Munguía, M.T. UVC Light Influence on the Sanitization of Alfalfa (Medicago sativa), Wheat (Triticum aestivum) and Chia (Salvia hispanica) Seeds, Sprout Germination and Antioxidant Properties. Postharvest Biol. Technol. 2024, 214, 112958. [Google Scholar] [CrossRef]
- Złotek, U.; Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Nowak, R.; Martinez, E. Influence of Drying Temperature on Phenolic Acids Composition and Antioxidant Activity of Sprouts and Leaves of White and Red Quinoa. J. Chem. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Yan, H.; Chen, H.; Liu, J.; Yao, T.; Xia, M.; Liao, Q.; Huang, L.; Li, W.; Song, Y.; Peng, L.; et al. Pyridoxal Phosphate Promotes the γ-Aminobutyric Acid Accumulation, Antioxidant and Anti-Hypertensive Activity of Germinated Tartary Buckwheat. J. Cereal Sci. 2024, 120, 104024. [Google Scholar] [CrossRef]
- Xia, Q.; Tao, H.; Li, Y.; Pan, D.; Cao, J.; Liu, L.; Zhou, X.; Barba, F.J. Characterizing Physicochemical, Nutritional and Quality Attributes of Wholegrain Oryza sativa L. Subjected to High Intensity Ultrasound-Stimulated Pre-Germination. Food Control 2020, 108, 106827. [Google Scholar] [CrossRef]
- Kanjevac, M.; Bojović, B.; Jakovljević, D. Improvement of Physiological Performance of Selected Cereals by Modulating Pregerminative Metabolic Activity in Seeds. Cereal Res. Commun. 2021, 50, 831–839. [Google Scholar] [CrossRef]
- Sim, U.; Sung, J.; Lee, H.; Heo, H.; Jeong, H.S.; Lee, J. Effect of Calcium Chloride and Sucrose on the Composition of Bioactive Compounds and Antioxidant Activities in Buckwheat Sprouts. Food Chem. 2020, 312, 126075. [Google Scholar] [CrossRef] [PubMed]
- Sneha, K.; Kumar, M.; Kaushik, D.; Kumar, A.; Bansal, V.; Oz, F.; Proestos, C. To Study the Germination Effect on Finger Millet, Pearl Millet and Buckwheat: It’s Impact on Phytochemical Properties and Their Prebiotic Effect. J. Food Chem. Nanotechnol. 2023, 9, S166–S173. [Google Scholar] [CrossRef]
- Jágr, M.; Hofinger-Horvath, A.; Ergang, P.; Čepková, P.H.; Schönlechner, R.; Pichler, E.C.; D′Amico, S.; Grausgruber, H.; Vagnerová, K.; Dvořáček, V. Comprehensive Study of the Effect of Oat Grain Germination on the Content of Avenanthramides. Food Chem. 2024, 437, 137807. [Google Scholar] [CrossRef]
- Johnson, M.A.; Kumar, M.; Thakur, S. Effect of Variation in Temperature and Light Duration on Morpho-Physiology and Phytochemical Content in Sprouts and Microgreens of Common Buckwheat (Fagopyrum esculentum Moench). Plant Foods Hum. Nutr. 2024, 79, 875–885. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, J.-H.; Sun, D.-W. Enhancement of Wheat Seed Germination, Seedling Growth and Nutritional Properties of Wheat Plantlet Juice by Plasma Activated Water. J. Plant Growth Regul. 2023, 42, 2006–2022. [Google Scholar] [CrossRef]
- Lee, H.-H.; Yiu, E.; Zheng, A.-L.-T.; Bong, J.-C.-F.; Loh, S.-P.; Yiu, P.H. Optimisation of Phytate Degradation in Whole Grain Rice During Germination Processing Using Response Surface Methodology. Borneo J. Resour. Sci. Technol. 2023, 13, 132–141. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, S. Effect of Exogenous Phytohormone Treatment on Antioxidant Activity, Enzyme Activity and Phenolic Content in Wheat Sprouts and Identification of Metabolites of Control and Treated Samples by UHPLC-MS Analysis. Food Res. Int. 2023, 169, 112811. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.L.; Chen, X.Y.; Yang, Y.; Wang, Z.; Xiong, F. Effects of Exogenous Gibberellic Acid and Abscisic Acid on Germination, Amylases, and Endosperm Structure of Germinating Wheat Seeds. Seed Sci. Technol. 2016, 44, 64–76. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Yu, S.-H.; Cheng, K.-W.; Liou, Y.-W.; Hsu, C.-C.; Hsieh, C.-W.; Kuo, C.-H.; Cheng, K.-C. Production and Analysis of Metabolites from Solid-State Fermentation of Chenopodium formosanum (Djulis) Sprouts in a Bioreactor. Food Res. Int. 2023, 168, 112707. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S. Anti-Nutrient & Bioactive Profile, in Vitro Nutrient Digestibility, Techno-Functionality, Molecular and Structural Interactions of Foxtail Millet (Setaria italica L.) as Influenced by Biological Processing Techniques. Food Chem. 2022, 368, 130815. [Google Scholar] [CrossRef]
- Evrendilek, G.A.; Atmaca, B.; Bulut, N.; Uzuner, S. Development of Pulsed Electric Fields Treatment Unit to Treat Wheat Grains: Improvement of Seed Vigour and Stress Tolerance. Comput. Electron. Agric. 2021, 185, 106129. [Google Scholar] [CrossRef]
- Polachini, T.C.; Norwood, E.-A.; Le-Bail, P.; Le-Bail, A.; Cárcel, J.A. Pulsed Electric Field (PEF) Application on Wheat Malting Process: Effect on Hydration Kinetics, Germination and Amylase Expression. Innov. Food Sci. Emerg. Technol. 2023, 86, 103375. [Google Scholar] [CrossRef]
- Feizollahi, E.; Jeganathan, B.; Reiz, B.; Vasanthan, T.; Roopesh, M.S. Reduction of Deoxynivalenol during Barley Steeping in Malting Using Plasma Activated Water and the Determination of Major Degradation Products. J. Food Eng. 2023, 352, 111525. [Google Scholar] [CrossRef]
- Lazukin, A.V.; Grabel’nykh, O.I.; Serdyukov, Y.A.; Pobezhimova, T.P.; Nurminskii, V.N.; Korsukova, A.V.; Krivov, S.A. The Effect of Surface Barrier Discharge Plasma Products on the Germination of Cereals. Tech. Phys. Lett. 2019, 45, 16–19. [Google Scholar] [CrossRef]
- Shin, J.; Yang, J.; Yang, J.-Y. Germination of Tartary Buckwheat at Various Light Strengths to Enhance Flavonoid Content and Scale-up of the Process Using Smart-Farm Systems. J. Cereal Sci. 2023, 112, 103727. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Gao, Z.; Wu, M.; Ren, T.; Wu, C.; Wang, J.; Geng, Y.; Lv, W.; Zhou, Q.; et al. Metabolomic Insights into the Profile, Bioaccessibility, and Transepithelial Transport of Polyphenols from Germinated Quinoa during in Vitro Gastrointestinal Digestion/Caco-2 Cell Transport, and Their Prebiotic Effects during Colonic Fermentation. Food Res. Int. 2024, 186, 114339. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hernández, A.A.; Rouzaud-Sández, O.; Frias, J.; Ayala-Zavala, F.; Astiazarán-García, H.; Salazar–López, N.J.; López-Saiz, C.M.; De La Reé-Rodríguez, S.C.; Sánchez, M.R. Antioxidant and Anti-Inflammatory Potential of a Food Produced from Irradiated (UV-A LED) Sorghum Sprouts Subjected to in Vitro Gastrointestinal Simulation. J. Funct. Foods 2023, 110, 105857. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, K.; Ahmed, N.; Pal Singh, T.; Thakur, P.; Hyder Rizvi, Q.-U.-E.; Yadav, A.N.; Dhaliwal, H.S. Effect of Processing Treatments on the Nutritional, Anti-Nutritional, and Bioactive Composition of Blue Maize (Zea mays L.). Curr. Res. Nutr. Food Sci. 2022, 10, 171–182. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, C.H. Effects of Processing Conditions on Change of Amino Acids, Reducing Sugar Andtotal Polyphenols of Caramelized Malt Produced from IR50404 Rice Variety. Food Res. 2024, 8, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Van De Velde, F.; Méndez-Galarraga, M.P.; Albarracín, M.; Garzón, A.G.; Aquino, M.; Cian, R.E.; Vinderola, G.; Drago, S.R. Exploring the Effects of Barley (Hordeum vulgare L.) Germination on Chemical Composition, Phytic Acid, and Potential Malt Prebiotic Properties. J. Food Compos. Anal. 2025, 138, 107016. [Google Scholar] [CrossRef]
- Vingrys, K.; Mathai, M.; Ashton, J.F.; Stojanovska, L.; Vasiljevic, T.; McAinch, A.J.; Donkor, O.N. The Effect of Malting on Phenolic Compounds and Radical Scavenging Activity in Grains and Breakfast Cereals. J. Food Sci. 2022, 87, 4188–4202. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ma, W.; Shen, S.; Gu, A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.; Han, N.; Bian, H.; Song, D. Effects of Germinated and Ungerminated Grains on the Production of Non-Dairy Probiotic-Fermented Beverages. Qual. Assur. Saf. Crops Foods 2022, 14, 32–39. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Lu, H.; Shu, Q.; Zhang, Y.; Chen, Q. New Perspectives on Physiological, Biochemical and Bioactive Components during Germination of Edible Seeds: A Review. Trends Food Sci. Technol. 2022, 123, 187–197. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Gu, Z.; Sun, M.; Yang, R. Effects of Germination on Physio-Biochemical Metabolism and Phenolic Acids of Soybean Seeds. J. Food Compos. Anal. 2022, 112, 104717. [Google Scholar] [CrossRef]
- Bhandari, U.; Gajurel, A.; Khadka, B.; Thapa, I.; Chand, I.; Bhatta, D.; Poudel, A.; Pandey, M.; Shrestha, S.; Shrestha, J. Morpho-Physiological and Biochemical Response of Rice (Oryza sativa L.) to Drought Stress: A Review. Heliyon 2023, 9, e13744. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, X.; Guo, L.; Yuzuak, S.; Lu, Y. Physiological and Biochemical Effects of Polystyrene Micro/Nano Plastics on Arabidopsis Thaliana. J. Hazard. Mater. 2024, 469, 133861. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Gao, G.; Ali, I.; Wu, X.; Tang, M.; Chen, L.; Jiang, L.; Liang, T. Effects of Various Seed Priming on Morphological, Physiological, and Biochemical Traits of Rice under Chilling Stress. Front. Plant Sci. 2023, 14, 1146285. [Google Scholar] [CrossRef]
- Bellache, M.; Moltó, N.; Benfekih, L.A.; Torres-Pagan, N.; Mir, R.; Verdeguer, M.; Boscaiu, M.; Vicente, O. Physiological and Biochemical Responses to Water Stress and Salinity of the Invasive Moth Plant, Araujia Sericifera Brot., during Seed Germination and Vegetative Growth. Agronomy 2022, 12, 361. [Google Scholar] [CrossRef]
- Gao, Z.-W.; Mu, Y.-G.; Ding, J.-J.; Ding, K.-J.; Li, J.-T.; Li, X.-N.; He, L.-J.; Wang, Z.-J.; Mu, C.-S.; Alharbi, S.A.; et al. The Effects of Salinity Stress on Amorpha Fruticosa Linn. Seed Germination, Physiological and Biochemical Mechanisms. Not. Bot. Horti Agrobot. 2024, 52, 13552. [Google Scholar] [CrossRef]
- Hafeez, A.; Rasheed, R.; Ashraf, M.A.; Qureshi, F.F.; Hussain, I.; Iqbal, M. Effect of Heavy Metals on Growth, Physiological and Biochemical Responses of Plants. In Plants and Their Interaction to Environmental Pollution; Elsevier: Amsterdam, The Netherlands, 2023; pp. 139–159. ISBN 978-0-323-99978-6. [Google Scholar]
- Prasad, P.; Sahu, J.K. Effect of Soaking and Germination on Grain Matrix and Glycaemic Potential: A Comparative Study on White Quinoa, Proso and Foxtail Millet Flours. Food Biosci. 2023, 56, 103105. [Google Scholar] [CrossRef]
- Popoola, O.O. Phenolic Compounds Composition and in Vitro Antioxidant Activity of Nigerian Amaranthus Viridis Seed as Affected by Autoclaving and Germination. Meas. Food 2022, 6, 100028. [Google Scholar] [CrossRef]
- Deore, A.; Athmaselvi, K.A.; Venkatachalapathy, N. Effect of Ultrasound and Microwave Pretreatment on Sprouting, GABA, Bioactive Compounds, and Other Physicochemical Properties of Sorghum. Grain Oil Sci. Technol. 2023, 6, 91–99. [Google Scholar] [CrossRef]
- Dong, L.; Yang, Y.; Zhao, Y.; Liu, Z.; Li, C.; He, L.; Liu, L. Effect of Different Conditions on the Germination of Coix Seed and Its Characteristics Analysis. Food Chem. X 2024, 22, 101332. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, J.; Wang, Y.; Hua, D.; Zhang, H.; He, Y.; Liu, Y.; Tang, A.; Liu, H.; Sun, J. A Multi-Omics Study Revealed the Effect of Pulsed Light Treatment on Germinated Brown Rice: Promotion of Sprouting Efficiency and Gamma-Aminobutyric Acid Enrichment. Food Biosci. 2024, 61, 104196. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Dai, Z.; Liu, C.; Xiao, Y.; Wei, Q.; Song, J.; Li, D. Effect of UV-B Radiation and a Supplement of CaCl2 on Carotenoid Biosynthesis in Germinated Corn Kernels. Food Chem. 2019, 278, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-S.; Lee, M.J.; Ra, J.E.; Lee, K.S.; Eom, S.; Ham, H.M.; Kim, H.Y.; Kim, S.B.; Lim, J. Growth and Bioactive Phytochemicals in Barley (Hordeum vulgare L.) Sprouts Affected by Atmospheric Pressure Plasma during Seed Germination. J. Phys. D Appl. Phys. 2020, 53, 314002. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Guo, Y. Microwave Irradiation Enhances the Germination Rate of Tartary Buckwheat and Content of Some Compounds in Its Sprouts. Pol. J. Food Nutr. Sci. 2018, 68, 195–205. [Google Scholar] [CrossRef]
- Liang, N.; Pan, Y.; Yang, D.; Zheng, X.; Liu, Z.; Shang, J. Effect of NaCl Stress Germination on Microstructure and Physicochemical Properties of Wheat Starch. Int. J. Biol. Macromol. 2025, 297, 139924. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.; Liao, C.; Liu, X. Influences of UV-B Treatment and Cooking Methods on Bioactive Components in Germinated Highland Barley. LWT 2023, 186, 115194. [Google Scholar] [CrossRef]
- Xue, J.; Hu, M.; Yang, J.; Fang, W.; Yin, Y. Optimization of Ultraviolet-B Treatment for Enrichment of Total Flavonoids in Buckwheat Sprouts Using Response Surface Methodology and Study on Its Metabolic Mechanism. Foods 2024, 13, 3928. [Google Scholar] [CrossRef]
- Shakhov, I.V.; Kokorev, A.I.; Yastreb, T.O.; Dmitriev, A.P.; Kolupaev, Y.E. Increasing germination and antioxidant activity of aged wheat and triticale grains by priming with gamma-aminobutyric acid. Ukr. Bot. J. 2024, 81, 290–304. [Google Scholar] [CrossRef]
- Chu, C.; Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. iTRAQ-Based Proteomic Analysis Reveals the Accumulation of Bioactive Compounds in Chinese Wild Rice (Zizania latifolia) during Germination. Food Chem. 2019, 289, 635–644. [Google Scholar] [CrossRef]
- Sharma, S.; Jan, R.; Riar, C.S.; Bansal, V. Analyzing the Effect of Germination on the Pasting, Rheological, Morphological and in- Vitro Antioxidant Characteristics of Kodo Millet Flour and Extracts. Food Chem. 2021, 361, 130073. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, H.; Wang, S. Application of Ultrasound, Microwaves, and Magnetic Fields Techniques in the Germination of Cereals. Food Sci. Technol. Res. 2019, 25, 489–497. [Google Scholar] [CrossRef]
- Anwar, T.; Qureshi, H.; Akhtar, M.S.; Siddiqi, E.H.; Fatimah, H.; Zaman, W.; Alhammad, B.A.; Seleiman, M.F. Enhancing Maize Growth and Resilience to Environmental Stress with Biochar, Gibberellic Acid and Rhizobacteria. Front. Plant Sci. 2024, 15, 1396594. [Google Scholar] [CrossRef] [PubMed]
- García-Mosqueda, C.; Cerón-García, A.; León-Galván, M.F.; Ozuna, C.; López-Malo, A.; Sosa-Morales, M.E. Changes in Phenolics and Flavonoids in Amaranth and Soybean Sprouts after UV-C Treatment. J. Food Sci. 2023, 88, 1280–1291. [Google Scholar] [CrossRef] [PubMed]
- Aly, B.E.; Mona, B.H.; Higazy, A.M. Green Synthesis of Silver Nanoparticles by Cyanobacterial Extracts: An Approach Guarantees Potential Bioactivity and Proper Cereal Seed Germination. Egypt. Pharm. J. 2023, 22, 613–631. [Google Scholar] [CrossRef]
- Rashid, M.T.; Liu, K.; Wei, D.-Z.; Jatoi, M.A.; Li, Q.; Sarpong, F. Drying Kinetics and Quality Dynamics of Ultrasound-Assisted Dried Selenium-Enriched Germinated Black Rice. Ultrason. Sonochem. 2023, 98, 106468. [Google Scholar] [CrossRef]
- Sarwar, G.; Anwar, T.; Malik, M.; Rehman, H.U.; Danish, S.; Alahmadi, T.A.; Ansari, M.J. Evaluation of Potassium-Enriched Biochar and GA3 Effectiveness for Improving Wheat Growth under Drought Stress. BMC Plant Biol. 2023, 23, 615. [Google Scholar] [CrossRef] [PubMed]
- Lalaleo, L.; Hidalgo, D.; Valle, M.; Calero-Cáceres, W.; Lamuela-Raventós, R.M.; Becerra-Martínez, E. Differentiating, Evaluating, and Classifying Three Quinoa Ecotypes by Washing, Cooking and Germination Treatments, Using 1H NMR-Based Metabolomic Approach. Food Chem. 2020, 331, 127351. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Changes in Protein Profile, Bioactive Potential and Enzymatic Activities of Gluten-Free Flours Obtained from Hulled and Dehulled Oat Varieties as Affected by Germination Conditions. LWT 2020, 134, 109955. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Peñas, E.; Dueñas, M.; Frias, J.; Martínez-Villaluenga, C. Optimizing Germination Conditions to Enhance the Accumulation of Bioactive Compounds and the Antioxidant Activity of Kiwicha (Amaranthus caudatus) Using Response Surface Methodology. LWT—Food Sci. Technol. 2017, 76, 245–252. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Luo, H.; Li, D.; Liu, C.; Song, J.; Zhang, Z.; Liu, C.; Niu, L. Effect of NaCl Stress and Supplemental CaCl2 on Carotenoid Accumulation in Germinated Yellow Maize Kernels. Food Chem. 2020, 309, 125779. [Google Scholar] [CrossRef]
- Peťková, M.; Švubová, R.; Kyzek, S.; Medvecká, V.; Slováková, Ľ.; Ševčovičová, A.; Gálová, E. The Effects of Cold Atmospheric Pressure Plasma on Germination Parameters, Enzyme Activities and Induction of DNA Damage in Barley. Int. J. Mol. Sci. 2021, 22, 2833. [Google Scholar] [CrossRef]
- Souid, A.; Bellani, L.; Tassi, E.L.; Ben Hamed, K.; Longo, V.; Giorgetti, L. Early Physiological, Cytological and Antioxidative Responses of the Edible Halophyte Chenopodium quinoa Exposed to Salt Stress. Antioxidants 2023, 12, 1060. [Google Scholar] [CrossRef] [PubMed]
- Yodpitak, S.; Mahatheeranont, S.; Boonyawan, D.; Sookwong, P.; Roytrakul, S.; Norkaew, O. Cold Plasma Treatment to Improve Germination and Enhance the Bioactive Phytochemical Content of Germinated Brown Rice. Food Chem. 2019, 289, 328–339. [Google Scholar] [CrossRef]
- Dębski, H.; Wiczkowski, W.; Szawara-Nowak, D.; Horbowicz, M. Elicitation with Sodium Silicate and Iron Chelate Affects the Contents of Phenolic Compounds and Minerals in Buckwheat Sprouts. Pol. J. Food Nutr. Sci. 2021, 71, 21–28. [Google Scholar] [CrossRef]
- Chavarín-Martínez, C.D.; Gutiérrez-Dorado, R.; Perales-Sánchez, J.X.K.; Cuevas-Rodríguez, E.O.; Milán-Carrillo, J.; Reyes-Moreno, C. Germination in Optimal Conditions as Effective Strategy to Improve Nutritional and Nutraceutical Value of Underutilized Mexican Blue Maize Seeds. Plant Foods Hum. Nutr. 2019, 74, 192–199. [Google Scholar] [CrossRef]
- Pradeep, P.M.; Sreerama, Y.N. Impact of Processing on the Phenolic Profiles of Small Millets: Evaluation of Their Antioxidant and Enzyme Inhibitory Properties Associated with Hyperglycemia. Food Chem. 2015, 169, 455–463. [Google Scholar] [CrossRef]
- Kanjevac, M.; Bojović, B.; Ćirić, A.; Stanković, M.; Jakovljević, D. Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions. Agriculture 2022, 13, 2. [Google Scholar] [CrossRef]
- Xie, L.; Xu, Y.; Zhang, X.; Bao, W.; Tong, C.; Shi, B. A Self-Calibrated Photo-Geometric Depth Camera. Vis. Comput. 2019, 35, 99–108. [Google Scholar] [CrossRef]
- Ahmed, Z.; Faisal Manzoor, M.; Hussain, A.; Hanif, M.; Din, Z.U.; Zeng, X.-A. Study the Impact of Ultra-Sonication and Pulsed Electric Field on the Quality of Wheat Plantlet Juice through FTIR and SERS. Ultrason. Sonochem. 2021, 76, 105648. [Google Scholar] [CrossRef] [PubMed]
- Naseer, I.; Javed, S.; Shah, A.A.; Tariq, A.; Ahmad, A. Influence of Phyto-Mediated Zinc Oxide Nanoparticles on Growth of (Zea mays L.). Pak. J. Bot. 2024, 56, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, Á.L.; Rico, D.; Ronda, F.; Martín-Diana, A.B.; Caballero, P.A. Development of a Gluten-Free Whole Grain Flour by Combining Soaking and High Hydrostatic Pressure Treatments for Enhancing Functional, Nutritional and Bioactive Properties. J. Cereal Sci. 2022, 105, 103458. [Google Scholar] [CrossRef]
- Clarke, W. Chapter 1—Mass Spectrometry in the Clinical Laboratory: Determining the Need and Avoiding Pitfalls. In Mass Spectrometry for the Clinical Laboratory; Nair, H., Clarke, W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 1–15. ISBN 978-0-12-800871-3. [Google Scholar]
- Ma, Z.; Guan, X.; Gong, B.; Li, C. Chemical Components and Chain-Length Distributions Affecting Quinoa Starch Digestibility and Gel Viscoelasticity after Germination Treatment. Food Funct. 2021, 12, 4060–4071. [Google Scholar] [CrossRef] [PubMed]
- Masure, H.G.; Fierens, E.; Delcour, J.A. Current and Forward Looking Experimental Approaches in Gluten-Free Bread Making Research. J. Cereal Sci. 2016, 67, 92–111. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szulc, P.; Szczepaniak, O.; Dziedziński, M.; Szymanowska, D.; Szymandera-Buszka, K.; Goryńska-Goldmann, E.; Gazdecki, M.; Telichowska, A.; Ligaj, M. Variability of Hordeum Vulgare L. Cultivars in Yield, Antioxidant Potential, and Cholinesterase Inhibitory Activity. Sustainability 2020, 12, 1938. [Google Scholar] [CrossRef]
- Ivankov, A.; Naučienė, Z.; Degutytė-Fomins, L.; Žūkienė, R.; Januškaitienė, I.; Malakauskienė, A.; Jakštas, V.; Ivanauskas, L.; Romanovskaja, D.; Šlepetienė, A.; et al. Changes in Agricultural Performance of Common Buckwheat Induced by Seed Treatment with Cold Plasma and Electromagnetic Field. Appl. Sci. 2021, 11, 4391. [Google Scholar] [CrossRef]
- Ma, H.; Xu, X.; Wang, S.; Wang, J.; Wang, S. Effects of Microwave Irradiation of Fagopyrum Tataricum Seeds on the Physicochemical and Functional Attributes of Sprouts. LWT 2022, 165, 113738. [Google Scholar] [CrossRef]
- Martinovs, A.; Martinovs, A.; Rēvalde, G.; Dombrovska, D.; Koļčs, G.; Tretjakova, R.; Zaicevs, E. Effect of Short-term Treatment of Some Cereal Grains with Atmospheric Pressure Ar–O2 and Ar–Air Plasma. Plasma Process. Polym. 2024, 21, e2400093. [Google Scholar] [CrossRef]
- Kondratenko, E.P.; Soboleva, O.M.; Konstantinova, O.B. Synthesis of Phenolic Compounds in Barley Seedlings Under the Influence of the Microwave Electromagnetic Field of Ultrahigh Frequency. J. Agric. Crops 2023, 9, 141–147. [Google Scholar] [CrossRef]
- Karabín, M.; Jelínek, L.; Průšová, N.; Ovesná, J.; Stránská, M. Pulsed Electric Field Treatment Applied to Barley before Malting Reduces Fusarium Pathogens without Compromising the Quality of the Final Malt. LWT 2024, 206, 116575. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, J.; Wang, Y.; Sun, X.; Huang, S.; Huang, L.; Liu, Y.; Liu, H.; Sun, J. Combined Transcriptome and Metabolome Analyses Reveal the Mechanisms of Ultrasonication Improvement of Brown Rice Germination. Ultrason. Sonochem. 2022, 91, 106239. [Google Scholar] [CrossRef]
- Szőke, C.; Nagy, Z.; Gierczik, K.; Székely, A.; Spitkól, T.; Zsuboril, Z.T.; Galiba, G.; Marton, C.L.; Kutasi, K. Effect of the Afterglows of Low Pressure Ar/N2 -O2 Surface-wave Microwave Discharges on Barley and Maize Seeds. Plasma Process. Polym. 2018, 15, 1700138. [Google Scholar] [CrossRef]
- Kriz, P.; Petr, B.; Zbynek, H.; Jaromir, K.; Pavel, O.; Petr, S.; Miroslav, D. Influence of Plasma Treatment in Open Air on Mycotoxin Content and Grain Nutriments. Plasma Med. 2015, 5, 145–158. [Google Scholar] [CrossRef]
- Wani, H.M.; Sharma, P.; Wani, I.A.; Kothari, S.L.; Wani, A.A. Influence of Γ-irradiation on Antioxidant, Thermal and Rheological Properties of Native and Irradiated Whole Grain Millet Flours. Int. J. Food Sci. Tech. 2021, 56, 3752–3762. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Park, Y.E.; Chun, S.W.; Chung, Y.S.; Lee, S.Y.; Park, S.U. Influence of Chitosan, Salicylic Acid and Jasmonic Acid on Phenylpropanoid Accumulation in Germinated Buckwheat (Fagopyrum esculentum Moench). Foods 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Shorna, M.N.A.; Islam, S.; Biswas, S.; Biswas, J.; Islam, S.; Dutta, A.K.; Uddin, M.S.; Zaman, S.; Akhtar-E-Ekram, M.; et al. Hydrogen-Rich Water: A Key Player in Boosting Wheat (Triticum aestivum L.) Seedling Growth and Drought Resilience. Sci. Rep. 2023, 13, 22521. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, N.; Wu, F.; Jin, Z.; Xu, X. Effect of Acid Pretreatment on the Physicochemical and Antioxidant Properties of Germinated Adlay (Coix lachryma-jobi L.). J. Food Process. Preserv. 2018, 42, e13511. [Google Scholar] [CrossRef]
- Dostalíková, L.; Hlásná Čepková, P.; Janovská, D.; Jágr, M.; Svoboda, P.; Dvořáček, V.; Viehmannová, I. The Impact of Germination and Thermal Treatments on Bioactive Compounds of Quinoa (Chenopodium quinoa Willd.) Seeds. Eur. Food Res. Technol. 2024, 250, 1457–1471. [Google Scholar] [CrossRef]
- Jena, K.; Vairakannu, P.; Singha, S. Microwave Drying of Sprouted Little Millet and Assessment of Their Kinetic and Physiochemical Properties. J. Cereal Sci. 2025, 122, 104122. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J.; Peñas, E. Response Surface Optimisation of Germination Conditions to Improve the Accumulation of Bioactive Compounds and the Antioxidant Activity in Quinoa. Int. J. Food Sci. Technol. 2018, 53, 516–524. [Google Scholar] [CrossRef]
- Xing, B.; Teng, C.; Sun, M.; Zhang, Q.; Zhou, B.; Cui, H.; Ren, G.; Yang, X.; Qin, P. Effect of Germination Treatment on the Structural and Physicochemical Properties of Quinoa Starch. Food Hydrocoll. 2021, 115, 106604. [Google Scholar] [CrossRef]
- Al-Qabba, M.M.; El-Mowafy, M.A.; Althwab, S.A.; Alfheeaid, H.A.; Aljutaily, T.; Barakat, H. Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients 2020, 12, 2904. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Franke, C.; Manthei, A.; McMullen, L.; Temelli, F.; Gänzle, M.G. Effects of High-Pressure Carbon Dioxide on Microbial Quality and Germination of Cereal Grains and Beans. J. Supercrit. Fluids 2021, 175, 105272. [Google Scholar] [CrossRef]
- Yudaev, I.V.; Daus, Y.V.; Eviev, V.A.; Soumyanova, E.V.; Goldvarg, T.B. Pre-Sowing Stimulation of Cereal Seeds in High Voltage Electric Field. BIO Web Conf. 2024, 103, 00063. [Google Scholar] [CrossRef]
- Alvarez, J.; Martinez, E.; Carbonell, V.; Florez, M. Magnetic-Time Model for Triticale Seeds Germination. Rom. J. Phys. 2019, 64, 10. [Google Scholar]
- Amnuaysin, N.; Korakotchakorn, H.; Chittapun, S.; Poolyarat, N. Seed Germination and Seedling Growth of Rice in Response to Atmospheric Air Dielectric-Barrier Discharge Plasma. Songklanakarin J. Sci. Technol. 2018, 40, 819–823. [Google Scholar]
- Sanchez, D.R.; Jespersen, B.M.; Rasmussen, L.H.; Andersen, M.L. Fungicidal Effect of Gaseous Ozone in Malting Barley: Implications for Fusarium Infections and Grain Germination. J. Cereal Sci. 2024, 118, 103973. [Google Scholar] [CrossRef]
- Kumar, R.; Dadhich, A.; Dhiman, M.; Sharma, L.; Sharma, M.M. Stimulatory Effect of ZnO Nanoparticles as a Nanofertilizer in Seed Priming of Pearl Millet (Pennisetum glaucum) and Their Bioactivity Studies. S. Afr. J. Bot. 2024, 165, 30–38. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.; Van Den Broeck, H.C.; Brouns, F.J.P.H.; De Brier, N.; et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef] [PubMed]
Group | Characteristics and Benefits | Bioactive Compounds | Mechanism of Biological Action | Matrices Studied | Ref. |
---|---|---|---|---|---|
Phenolic compounds | Potent antioxidants that neutralize free radicals, reduce lipid peroxidation, prevent cellular oxidative damage, reduce chronic disease risk, and have anti-inflammatory effects. | PHEA: p-HBA, CHLA, ELLA, SALA, p-COU, GENT, FERA. FLVN: RUTI, QUER, KAEM, CATCH, EPIC. ANTH and other POLY including TAN. | Act as free radical scavengers, chelate pro-oxidant metals, modulate inflammatory pathways, inhibit oxidative enzymes, and protect cell membranes. | Red sorghum, pearl millet, djulis (Chenopodium formosanum), naked barley (Hordeum vulgare L. var nudum), blue corn, foxtail millet, wheat (Triticum aestivum L.), barley, buckwheat, quinoa. | [3,5,8,24,41,42,50] |
Neurotransmitters | Main inhibitory neurotransmitter in CNS. Related to hypotensive, antidepressant, and nervous system regulatory effects. Improves sleep, reduces anxiety, regulates blood pressure. | GABA and its precursors such as glutamic acid. | Functions as an inhibitory neurotransmitter, modulates neuronal excitability, reduces neurotransmitter release, and exerts a calming effect. | Soft wheat, barley, naked barley, djulis, rice (Oryza sativa L.), buckwheat, finger millet (Eleusine coracana (L.) Gaertn.), and sorghum. | [3,5,15,41,76,77,78] |
Bioactive peptides | Possess antioxidant, antihypertensive, antimicrobial, immunomodulatory, and antithrombotic activity. Improve mineral bioavailability and may have hypocholesterolemic effects. | AABA, BIOP with antioxidant activity, antimicrobial peptides, oligopeptides and FAA, immunomodulatory peptides. | Inhibit key enzymes in physiological processes, interact with opioid receptors, neutralize free radicals, and bind to minerals, increasing their bioavailability. | Rice, djulis, corn, buckwheat, wheat, quinoa. | [6,37,41,51,67,69,79] |
Melatonin and indolic compounds | Melatonin is a potent antioxidant and circadian rhythm regulator. INDO has neuroprotective and anti-inflammatory activity. Improve sleep, protect neurons, modulate the immune system. | MELA, TRYP, p-CQA, FERQ. | MELA neutralizes free radicals in lipophilic and hydrophilic environments. INDO acts as a neurotransmitter precursor, modulates immune pathways. | Amaranth (Amaranthus spp.) | [80] |
Vitamins | Improves nutritional profile and biological value, helps combat micronutrient deficiencies, especially in vulnerable populations. | VITB: THIA, RIBO, NIAC. ASCA and VITA precursors. FOL. | Reduces antinutritional compounds, transforms inactive vitamin forms to active forms, and increases solubility and stability. | Corn, sorghum, pearl millet, barley, blue corn, foxtail millet. | [4,5,24,41,42,50] |
Antioxidant enzymes | Contribute to the detoxification of reactive oxygen species, reducing oxidative stress. Help prevent chronic diseases related to oxidative damage. | SOD, CAT, POD, GPx, GR. | Dismutation of superoxide anion, degradation of hydrogen peroxide, reduction of hydroperoxides, and maintenance of the antioxidant cycle. | Wheat, buckwheat, quinoa, corn, millet, barley, rice. | [8,32,37,69,81,82,83] |
Various phytochemicals | Possess antioxidant, anti-inflammatory, anticarcinogenic, and immune system modulating activity. Contribute to chronic disease prevention, benefit visual and cardiovascular health. | CAROT, CHL-a, CHL-b, TERP, TERD, SAPN, natural pigments, PHYS. | Neutralize free radicals, modulate inflammation pathways, protect cell membranes, photosensitize activity, and induce apoptosis in tumor cells. | Corn, djulis, millet, rice, barley. | [6,32,37,41,69,83,84] |
Dietary fiber | Contributes to gastrointestinal health, prebiotic effect, cholesterol reduction, glycemic control, and satiety sensation. It prevents cardiovascular diseases, type 2 diabetes, and certain cancers. | β-GLU, ARBX, OLIGS, SOLDF, INDF, REST. | Increases intestinal viscosity, ferments via microbiota producing short-chain fatty acids, binds bile acids, stimulates beneficial bacteria growth. | Barley, wheat, sorghum, millet. | [5,10,27,85] |
Species | Optimal Processing Parameters | Measurement Basis | Bioactive Compounds Analyzed and Quantitative Results | Ref. |
---|---|---|---|---|
Quinoa | 22 °C, 80% RH, 144 h; 48 h dark then 16/8 h light/dark | Dry basis | 5-MTHF: +8567% (0.203 → 17.47 mg/100 g). TPC: +397% (2.62 → 10.42 mg GAE/g). TFC: +325% (1.65 → 5.36 mg CE/g). ANTH: +958% (1.7 → 16.3 μg CE/g). LUT: +19787% (0.53 → 105.1 mg/100 g). ASCA: +276% (8.25 → 22.82 mg/100 g). RIBO: +728% (0.061 → 0.444 mg/100 g) | [20] |
Quinoa | 25 °C, 48 h, light treatment, 95% RH | Dry basis | TPC: Gray quinoa +50% (0.128 → 0.192 mg GAE/g), White quinoa +16.4% (0.128 → 0.149 mg GAE/g), Black quinoa +23.4% (0.141 → 0.173 mg GAE/g) | [118] |
Quinoa | 72–120 h at room temperature, 4 h soaking, 16/8 h light/dark | Dry basis | TPC: +35% (0.191 → 0.258 mg GAE/g). RUT: +245% (23.71 → 81.8 μg/g). KAEM: +760% (2.83 → 24.37 μg/g). QUER: +8333% (0.18 → 15.18 μg/g). PINO: +933% (1.65 → 17.05 μg/g). ISOR: +1250% (0.36 → 4.86 μg/g). AOA: variable increases | [115] |
Quinoa | 25 °C, 36–72 h, 90–95% RH, darkness | Not specified | GABA: +117% (52.6 → 114.2 mg/100 g). FPHE: +32% (2.67 → 3.51 mg GAE/g). FLVN: +81% (0.787 → 1.425 mg CE/g). BPHE: +22% (2.89 → 3.54 mg GAE/g). BFLVN: +127% (0.453 → 1.028 mg CE/g). FERA: +104% (162.16 → 331.32 μg/g). SALA: +597% (15.37 → 107.12 μg/g). KAEM: +1331% (2.05 → 29.35 μg/g). AOA: +1722% (6.25 → 113.81 μmol TE/g) | [16] |
Quinoa | 25 °C, 72 h, 95% RH, followed by 40 °C drying | Dry basis | TPC: White +74.4% (0.259 → 0.452 mg GAE/g), Red +60.9% (0.275 → 0.443 mg GAE/g), Black +43.3% (0.327 → 0.469 mg GAE/g). TFC: White +95.4% (0.633 → 1.238 mg CE/g). AOA: White +99.6% (45.32 → 90.48 μmol TE/g), Black +100.8% (50.36 → 101.12 μmol TE/g) | [23] |
Quinoa | 25 °C, 8 h soaking (1:10), germination to 1 cm sprouts | Dry basis | TPC: +21.91%. FERA: +289.11% (74.4 → 289.5 μg/g). Q3OG: +55.11% (722.6 → 1120.8 μg/g). QUER: +75.21% (48.0 → 84.1 μg/g). GACA: +79.85% (40.2 → 72.3 μg/g) | [48] |
Quinoa | 20 °C, 96 h darkness, watering each 12 h | Dry basis | TPC: White +50% (0.128 → 0.192 mg GAE/g), Red +13.7% (0.161 → 0.183 mg GAE/g), Black +22.7% (0.141 → 0.173 mg GAE/g) | [100] |
White quinoa | 28 °C, 48 h, periodic water spraying | Dry basis | TPC: Foxtail millet +36% (2.50 → 2.89 mg GAE/g), Proso millet +15% (0.86 → 1.16 mg GAE/g), White quinoa +24% (1.04 → 1.29 mg GAE/g). TFC: Foxtail millet +4.7% (6.28 → 6.57 mg CE/g), Proso millet +25.4% (0.62 → 0.78 mg CE/g), White quinoa +23.5% (0.70 → 0.86 mg CE/g) | [64] |
Red and yellow quinoa | 17 ± 1 °C, 90% RH, darkness, 6 days | Wet basis | TPC: Red +178.9% (1.05 → 2.93 mg GAE/g), Yellow +130.4% (1.12 → 2.59 mg GAE/g). AOA: Red +69.8% (174 → 295.6 μmol TE/g), Yellow +75.3% (120 → 210.4 μmol TE/g). FERA: Red +114.6% (173.3 → 371.9 μg/g), Yellow +47.2% (551.4 → 811.5 μg/g). TFC: Red +47.2% (0.71 → 1.04 mg CE/g), Yellow +165.4% (0.90 → 2.40 mg CE/g) | [119] |
Red and white quinoa | 20 °C, 4 days darkness, drying at 30 °C | Dry basis | TPC: Red +105% (1.36 → 2.79 mg GAE/g), White +105% (0.72 → 1.48 mg GAE/g). VANA: Red +9242% (1.4 → 130.8 μg/g). FERA: Red +367% (18.9 → 88.2 μg/g). AOA: Red +50% vs. White | [29] |
Quinoa | 20 °C, 42 h | Dry basis | TPC: +84.2% (2.71 → 4.99 mg GAE/g). GABA: +445.7% (22.41 → 122.32 mg/100g). AOA: +30% (43.43 → 56.42 μmol TE/g) | [117] |
Quinoa | 4 °C 24 h, 10 °C 72 h, 16/8 h photoperiod, >10,000 lx | Not specified | SAPN: CQE_01 −60% (4.2 → 1.7 mg/g), CQE_02 +80% (1.7 → 3.1 mg/g), CQE_03 no significant changes | [84] |
Species Studied | Optimal Parameters | Measurement Basis | Bioactive Compounds and Quantitative Results | Ref. |
---|---|---|---|---|
Buckwheat | 25 °C, 72 h | Not specified | TFC: +53.2% (6.51 → 9.97 mg CE/g, cv. Pintian), +49.3% (5.59 → 8.34 mg CE/g, cv. Suqiao); TPC: +30% (values not reported, 72 h); AOA: significant increase at 3 days | [12] |
Amaranth, quinoa, buckwheat | 25 °C, 72 h, soaking 16 h | Dry basis | TPC: amaranth +126.62% (0.33 → 0.74 mg GAE/g), buckwheat +125.32% (2.10 → 4.74 mg GAE/g), quinoa +71.56% (0.48 → 0.82 mg GAE/g); AOA: buckwheat +178.38% (31.69 → 88.22%), amaranth +87.47% (18.75 → 35.15%), quinoa +34.88% (46.41 → 62.60%) | [1] |
Amaranth | 35.86 °C, 22 h | Not specified | AOA: +43.8% (10.23 → 14.71%); TPC: +4.5% (0.47 → 0.49 mg GAE/g); TFC: +3.2% (0.069 → 0.071 mg CE/g); OLEA: +8.2% (1.84 → 1.99%); LINA: +18.6% (1.94 → 2.30%) | [50] |
Amaranth | 28 ± 2 °C, 72 h darkness, 30 min 0.2% formaldehyde pretreatment | Dry basis | TPC: +52.7% (1.08 → 1.65 mg TAE/g); TFC: +33.0% (0.24 → 0.32 mg RE/g); FERA: +28.0% (0.11 → 0.15 mg/g); p-HBA: +19.4% (0.11 → 0.13 mg/g); AOA: +54.3% (0.32 → 0.49 mg TE/g) | [65] |
Rice, Corn | 30–35 °C, 192 h, 12 h initial soaking, watering every 12 h | Not specified | TPC: corn +600% (0.070 → 0.419 mg GAE/g), rice +10% (0.173 → 0.192 mg GAE/g); TFC: corn +230% (0.36 → 1.16 mg QE/g), rice +74% (0.34 → 0.60 mg QE/g); AOA FRAP: corn +348% (5.56 → 24.90 μmol FeSO4/g), rice +27% (20.55 → 26.06 μmol FeSO4/g) | [18] |
Chinese wild rice | 30 °C darkness, 120 h | Not specified | TPC: +96.6% (1.07 → 2.10 mg GAE/g); FERA: +75% (0.49 → 0.85 mg/g); CATCH: +67.3% (0.38 → 0.64 mg/g); GABA: +729% (0.076 → 1.47 mg/g); AOA: +50% (spectrophotometric evaluation) | [76] |
Oat | 20 °C, 48–72 h, >85% RH, 24 h soaking | Not specified | Total AVEN: +29,300% (0.006 → 1.76 mg/g); AVN 2c: +1993–2130% (0.014 → 0.28–0.31 mg/g); AVN 2p: +900% (0.012 → 0.12 mg/g); AVN 2f: +1100% (0.009 → 0.11 mg/g); AVN-hexosides: +2,100% (0.001 → 0.022 mg/g) | [35] |
Hulled oat, dehulled oat | 16 °C 216 h (Barra), 18 °C 156 h (Meeri) | Dry basis | FPHE: Barra +63.7% (2.27 → 3.72 mg GAE/g), Meeri +165.8% (2.22 → 5.89 mg GAE/g); β-GLU: Barra −46.8% (20.3 → 10.8 g/kg), Meeri −55.9% (34.5 → 15.2 g/kg); AOA: Barra +172.2% (5.75 → 15.64 mg TE/g), Meeri +369.5% (5.38 → 25.25 mg TE/g) | [85] |
Barley | 22 °C, 240 h, ad libitum irrigation, 13.48–19.98 cm height | Dry basis | POLY: +49.8% (25.3 → 37.9 mg QE/g); PHEA: +41.0% (6.30 → 8.88 mg CAE/g); AOA DPPH: +175.0% (4.08 → 11.22 mg TE/g); AOA ABTS: +127.3% (5.42 → 12.32 mg TE/g); AChE inhibition: +610.0% (0.10 → 0.71 μM Es/g) | [102] |
Barley | 25 °C, 72 h for phenolics, 20 °C, 35 h for prebiotics | Dry basis | TPC: +61.8% (0.091 → 0.148 mg GAE/g); FERA: +89.1% (0.028 → 0.052 mg/g); p-COU: +127.3% (0.005 → 0.012 mg/g); GACA: +91.8% (0.018 → 0.034 mg/g) | [52] |
Barley, Tibetan barley, rice | 30 °C, 96 h barley/Tibetan barley, 48 h rice, soaking 8 h at 30 °C, drying 55 ± 5 °C | Dry basis | TPC: +23–41% (values not specified); AOA: +36–64% (values not specified) | [55] |
Naked barley | 25 °C, 36 h, infrared drying (600 W/m2, 20 °C) | Not specified | VITX: +386% (0.40 → 1.91 mg/g); RUTI: +379% (0.005 → 0.023 mg/g); HESP: +775% (0.002 → 0.016 mg/g); FERA: +766% (0.002 → 0.019 mg/g) | [14] |
Chenopodium album | 25 °C, 48 h, dry at 45 °C for 12 h | Not specified | TPC: V1 +73.7% (3.73 → 6.48 mg GAE/g), V2 +134.4% (2.41 → 5.65 mg GAE/g); AOA: V1 +26.5% (16.07 → 20.33%), V2 +29.1% (14.10 → 18.20%) | [13] |
White fonio (Digitaria exilis), brown fonio (Digitaria iburua) | 28 °C, 72 h, 92% RH, darkness, 7 h soaking | Not specified | TPC: brown +297.28% (0.19 → 0.76 mg GAE/g), white +279.27% (0.18 → 0.70 mg GAE/g); AOA DPPH: brown +78.24% (53.6 → 95.6 μmol TE/g), white +78.42% (51.9 → 92.5 μmol TE/g); AOA ORAC: brown +18.97% (31.1 → 37.0 μmol TE/g), white +20.10% (30.6 → 36.8 μmol TE/g) | [21] |
Blue corn | 26.9 °C, 207.7 h | Dry basis | TPC: +79% (1.88 → 3.36 mg GAE/g); ANTH: +9.9% (0.26 → 0.29 mg CGE/g); AOA ABTS: +192% (73.1 → 213.2 μmol TE/g); AOA ORAC: +160% (165.6 → 429.8 μmol TE/g); AOA DPPH: +148% (17.3 → 42.9 μmol TE/g) | [92] |
Millet, amaranth, quinoa, other cereals | 19–23 °C, 72 h, 92% RH, darkness, overnight soaking | Not specified | Polyunsaturated fatty acids: millet +1.6% (75.65 → 76.87%), amaranth +5.9% (59.13 → 62.59%), buckwheat +11.7% (46.92 → 52.43%); LINA: millet +0.5% (73.98 → 74.33%), amaranth +4.9% (56.70 → 59.50%); Omega-3: millet +67.2% (1.31 → 2.19%), amaranth +181.0% (0.89 → 2.50%), buckwheat +40.7% (2.68 → 3.77%) | [7] |
Barnyard millet (Echinochloa frumentacea Link), foxtail millet, proso millet (Panicum miliaceum L.) | 25 ± 2 °C, 48 h, 16 h soaking (1:3 w/v) | Not specified | TPC: proso +220.3% (0.74 → 2.38 mg FAE/g); TFC: foxtail +80.0% (0.88 → 1.58 mg CE/g); FERA: proso +67.1% (0.17 → 0.28 mg/g); AOA: foxtail +41.8% (117.3 → 68.3 μg/mL IC50); α-glucosidase inhibition: barnyard +59.1% (18.6 → 7.5 μg/mL IC50) | [93] |
Kodo millet | 25 °C, 48 h, 80–90% RH, 4 h soaking at 23–24 °C | Not specified | TPC: +52.2% (0.55 → 0.83 mg GAE/g); AOA: +48.3% (45.3 → 67.2 mg AAE/g); GABA: +410.6% (0.094 → 0.48 mg/g); AOA DPPH: +13.4% (67.3 → 76.3%); AOA H2O2: +69.7% (40.5 → 68.7 mmol TE/g) | [77] |
Kodo millet and little millet | 40 °C, 72 h, 80–90% RH, drying at 45 °C to 10% moisture | Dry basis | TPC: kodo +30% (values not specified), little +20%; TFC: kodo +50%, little +70%; AOA: kodo 88.46%, little 89.06% | [22] |
Little millet | 30 °C, 72 h, 90% RH, microwave drying 1050 W at 50 °C for 720 s | Not specified | TPC: +23.2% (2.95 → 3.64 mg GAE/g); TFC: +6.5% (2.02 → 2.15 mg CE/g); AOA: +35.45% (16.67 → 22.58%) | [116] |
Pearl millet, finger millet, buckwheat | 22 °C (buckwheat), 30 °C (millets), 72 h | Dry basis | TPC: finger −52.0% (0.29 → 0.14 mg GAE/g), pearl −42.0% (0.27 → 0.16 mg GAE/g), buckwheat +55.3% (0.28 → 0.43 mg GAE/g); AOA: buckwheat 22 °C +89.5% (28.2 → 53.5%), 30 °C +97.9% (17.3 → 34.3%); TAN: finger −82.5% (0.81 → 0.14 mg TAE/g), pearl +373.1% (0.40 → 1.87 mg TAE/g), buckwheat −33.4% (0.074 → 0.049 mg TAE/g) | [34] |
Coix | 29 °C, 24 h germination, 36 °C 10 h soaking | Not specified | GABA: +683% (0.027 → 0.21 mg/g); SOLP: +31.9% (16.0 → 21.2 mg/g); FAA: +41.3% (4.92 → 6.95 mg/g) | [67] |
Seven grains: various cereals and buckwheat | 16.5 °C, 98% RH, 120 h darkness, intermittent watering, aeration | Not specified | GABA: rye +700% (0.001 → 0.008 mg/mL); ARBX: wheat +33% (0.45 → 0.60 g/100g); α-amylase inhibition: barley +650% (3 → 35%); α-glucosidase inhibition: sorghum +25% (16 → 20%); AOA: rye +51% (spectrophotometric evaluation) | [27] |
Wheat and triticale | 24 °C germination, 1 mM GABA 3 h soaking | Dry basis | TPC: wheat +29% (1.62 → 2.09 μmol/g); ANTH: triticale +92% (0.38 → 0.73 units/g); Germination: +18–21% | [75] |
Wheat, barley, sorghum | 20 °C, 96 h | Dry basis | TPC: wheat +181% (0.36 → 1.01 μg GAE/mL), breakfast wheat +181% (0.72 → 2.02 μg GAE/mL), barley +69% (0.86 → 1.45 μg GAE/mL), breakfast barley +72% (1.38 → 2.38 μg GAE/mL), sorghum +102% (0.44 → 0.89 μg GAE/mL); AOA: wheat +107% (14.8 → 30.6% DPPH inhibition), barley +42% (19.2 → 27.4%), breakfast barley +158% (10.5 → 27.2%), sorghum +16% (15.7 → 18.2%) | [53] |
Type of Inductor | Species Studied | Optimal Parameters | Measurement Basis | Bioactive Compounds and Quantitative Results | Ref. |
---|---|---|---|---|---|
PAW | Wheat | PAW-3 treatment, 15 mm distance, Ar-O2 gas (98% Ar, 2% O2), 40 L/min, 600 W | Not specified | TPC: +10.46% (values not specified); CHL-a: +89.46% (values not specified); CHL-b: +112.46% (values not specified); CAROT: +91.58% (values not specified); SOLP: +19.48% (values not specified); GABA: +32.56% (values not specified); FAA: +28.23% (values not specified); SOD: +47.12% (values not specified) | [37] |
PAW with APPJ | Barley | Treatment C: 30 min APPJ, 4.5 h soaking, 19 h air rest, 15 °C, 76% RH | Dry basis | β-AMY: +18.8% (values not specified); Germination: improved acrospire growth | [45] |
HHP and soaking | Buckwheat | Soaking 40 °C 4 h, 600 MPa 30 min single cycle | Dry basis | TPC: +16% (values not specified); AOA: +2.5% (values not specified) | [98] |
CHVEF, AHVEF, PHVEF | Winter triticale | AHVEF (3 kV·cm−1, 60 s) for germination energy and uniformity | Not specified | Root length: +28.7% (9.4 → 12.1 cm); Grains per spike: +31.0% (values not specified); Grain yield: +57.8% (values not specified); Germination uniformity: +4% (94.7 → 98.7%) | [121] |
PEF | Wheat | PEF 6 kV·cm−1, 50 pulses prior to imbibition | Wet basis | TPC: +18.56% (2.80 → 3.32 mg GAE/L); CHL: +373% (2.8 → 10.8 mg/g); CAROT: +34% (2.1 → 2.8 mg/g); SOLP: +12.08% (8.94 → 10.02 mg/g); AOA: +5.78% (1314.4 → 1390.3 μmol TE/L) | [6] |
PEF | Barley | 10 min pre-soaking in phosphate buffer, PEF 3.8 kV·cm−1, 100 pulses, 20 μs width | Dry basis/Wet basis | α-AMY: −4% (211 → 203 U/g); β-GLUC: +12% (448 → 503 U/kg); Diastatic power: +2% (251 → 255 WK units) with optimized treatment; α-AMY: −73% (240 → 66 U/g); β-GLUC: −87% (603 → 80 U/kg); Diastatic power: −45% (364 → 202 WK units) with non-optimized treatment | [107] |
PEF | Wheat | PEF 3 kV·cm−1, 200 pulses (19.8 kJ/kg) before first hydration cycle, or 100 pulses (9.9 kJ/kg) after first cycle | Wet basis | α-AMY: +104% (34.4 → 70.6 U/g); β-AMY: +25% (15.2 → 19.1 U/g); Water absorption: +25% (hydration rate); Water retention: +15% (values not specified) | [44] |
PEF | Wheat | 161.8 Hz, 6.1 J, 19.5 s | Not specified | Germination rate: +10% (values not specified); Normal seedlings: +28% (72 → 100%) | [43] |
Static magnetic field | Triticale | 3.72 mT, 6 h, 10 °C | Not specified | Maximum germination: +9% (87 → 96%); Time to 50% germination: −12.4% (25.9 → 22.7 h); Time to 75% germination: −16% (33.2 → 27.9 h) | [122] |
Static magnetic field | Brown rice | 10 mT, 60 min, 25 °C, followed by 24 h germination at 30 °C in 5–10 mM GABA | Dry basis | GABA: +207.6% (16.43 → 50.54 mg/100g); GABA-T activity: −16.14% (63 → 53 μg/g); Root length maintained <3 mm (2.03–2.45 mm) | [15] |
HPCD | Barley | 57 bar, 25–35 °C | Wet basis | Oat germination: −13.8% (58 → 50%) to −100% (58 → 0%); Barley germination: −100% (11 → 0%) | [120] |
Gamma irradiation | Various millet varieties | 2.5 kGy, 12% moisture | Dry basis | TPC: +24.5% (16.85 → 21.04 mg GAE/g); DPPH: +55.6% (48.91 → 76.10% inhibition); Reducing power: +120.8% (0.24 → 0.53 μmol AAE/g) | [111] |
Microwave irradiation | Tartary buckwheat | 300 W, 50 s, 25 °C, 85% RH, 5 days darkness | Dry basis | FLVN: +31.78% (3.91 → 5.15 g/100g); PAL: +6.50% (values not specified); CHI: +8.64% (values not specified); FLS: +14.55% (values not specified); AOA: significant increase | [104] |
Microwave | Bitter buckwheat | 600 W, 10 s before 7 days germination, 25 ± 2 °C, 85% RH | Not specified | TFC: +377% (11.3 → 53.9 mg CE/g), AOA DPPH: +264% (17 → 62%), FAA: +427% (2.13 → 11.24 mg/g), CAT: +300% (7.7 → 30.7 mg H2O2/g FW min), SOD: +58% (11.4 → 18.0 U/g) | [71] |
Ultra-high frequency microwave (UHF EMF) | Spring barley | 0.42 kW, 11 s, 7 days at 18 °C, 60% RH | Not specified | CAFA in leaves: +95.2% (values not specified); FERA in leaves: +50.7% (values not specified); VANA in leaves: +329.3% (values not specified); SYRA in endosperm: +1871% (values not specified); TPC in leaves: +167.6% (values not specified) | [106] |
Light (different intensities) | Bitter buckwheat | 20 °C, 99% RH, 6000 lux for rutin/flavonoids, 600 g buckwheat/plate, 5° inclination | Not specified | RUTI: +34% (883.87 → 1,184.33 mg/L); MYR highest at 6000 lux (37.37 mg/L); QUER highest at 6000 lux (62.73 mg/L); KAEM: +12% (16.85 → 18.87 mg/L); TPC: +47% (824.61 → 1,213.04 mg/L); TFC: +64% (838.82 → 1,379.79 mg/L); AOA DPPH: +361% (11.06 → 50.96%); AOA ABTS: +250% (8.77 → 30.69%) | [47] |
PL | Corn | 6 h soaking, 400 pulses (0.50 J/cm2), 30 °C, 90% RH, 48–72 h | Dry basis | GABA: +27.20% (31.73 → 40.36 mg/100g); GABA vs. non-germinated: +801% (values not specified); GLUAS: +11.79% (39.96 → 44.67 mg/100g); FAA: +239.65% (83.55 → 283.78 mg/100g); GAD: significant increase; GABA-T: significant reduction | [9] |
PLT | Brown rice | 300 pulses at 400 J, 28 °C, 95% RH, 36 h | Not specified | GABA: >30% increase in all varieties (29.6–40.4 → 39–53 mg/100g); OsbZIP56 gene: +20% GABA increase (33 → 41 mg/100g) | [68] |
Temperature and photoperiod (light) | Common buckwheat | 16 °C, 20/4 h light/dark photoperiod, 288 h | Not specified | TPC: +76.6% (0.96 → 1.70 mg GAE/g); TFC: +20% (4.16 → 5.00 mg QE/g); CAROT: +18.19% (0.38 → 0.45 mg/g) with 16 °C vs. 25 °C; CAROT: +21.34% (values not specified) with extended photoperiod; CHL: +35.40% (0.74 → 1.00 mg/g) with extended photoperiod; AOA: +15% (75 → 90% inhibition) | [36] |
Type of Inductor | Species Studied | Optimal Parameters | Measurement Basis | Bioactive Compounds and Quantitative Results | Ref. |
---|---|---|---|---|---|
UV-A LED Light | Sorghum | 35 °C, 98% RH, 28 h germination, 36 h sprouting, 11.9 h UV-A at 5.1 μW·cm−2 | Wet basis | TPC: +143.57% (0.67 → 2.08 mg GAE/g); FPHE: +210.45% (22.4 → 48.8%); AOA: +168.86% (5.62 → 15.11 μmol TE/g) | [49] |
UV-B light (280–311 nm) | Mexican blue corn | 26.9 °C, 80–90% RH, 207.7 h, UV-B 37.0 h after 96 h | Dry basis | TPC: +587.2% (2.42 → 16.62 mg GAE/g); FPHE: +1148% (0.42 → 5.25 mg GAE/g); BPHE: +469% (2.00 → 11.37 mg GAE/g); ANTH: +29.9% (0.30 → 0.36 mg C3GE/g); GABA: +199.9% (0.098 → 0.294 mg/g); AOA ABTS: +133.9% (12.42 → 29.06 mmol TE/100g); AOA DPPH: +173.4% (4.09 → 11.17 mmol TE/100g) | [26] |
UV-B light (wavelengths between 280 and 315 nanometers) | Highland barley | Germination: 72 h at 25 °C. UV-B radiation: 0.2 W m−2 for 6 h/day for flavonoids; 0.2 W m−2 for 6 h/day for polyphenols; 0.2 W m−2 for 12 h/day for riboflavin; 0.2 W m−2 for 3 h/day for GABA. | Dry basis | TPC: +49.4% (values not specified); GABA: +40.21% (values not specified); RIBO: reached 2.5 μg/g after 72 h; β-GLU: −20.15% (values not specified) | [73] |
UV-B | Buckwheat or common buckwheat | 28.7 °C, 3.0 days, UV-B 30.0 μmol·m−2·s−1 for 7.6 h/day | Not specified | FLVN: +97% (0.95 → 1.87 mg/g); TPC: +54% (12.5 → 19.3 μg GAE/g); AOA DPPH: +54% (25 → 53% scavenging); AOA ABTS: +66% (42 → 80% scavenging); AOA FRAP: +54% (30 → 48% scavenging) | [74] |
UV-C light (200–280 nm) | Amaranth | 3 cm distance, 15 min exposure | Dry basis | TPC: +196% (0.45 → 1.33 mg GAE/g); p-CQA: +17.7% (893.4 → 1058.8 area units); TRYP: +12.4% (7977.5 → 8969.5 area units) | [80] |
UV-C light (254 nm) | Wheat and Chia | UV-C 120 min chia (35.7 × 104 J m−2), 180 min wheat (141.7 × 104 J m−2), germination 25 °C | Wet basis | AOA chia: +317% (1.8 → 7.5 g TE/kg); AOA wheat: +78% (0.9 → 1.6 g TE/kg); TPC: no significant effect | [28] |
Plasma (low-pressure plasma and sliding arc plasma) | Barley, Wheat, Triticale | Low-pressure plasma, 5 min | Dry basis | Low-pressure plasma: +18% germination; Atmospheric plasma: −58% germination | [110] |
Cold Atmospheric Pressure Plasma (CAPP) | Barley | 10–20 s for ambient air/nitrogen, 10–30 s for oxygen, 24 ± 2 °C | Wet basis | SOD: +40% (values not specified); G-POX: +132% (values not specified); Germination acceleration: +56%; Root growth: +20.6%; Sprout weight: +19% | [88] |
Dielectric Barrier Discharge (DBD) air atmospheric plasma | Rice | DBD plasma for 60 s | Not specified | Germination: +9.0% (85 → 92.7%); Vigor index: +18.0% (510 → 602); Germination speed: +7.3% (12.4 → 13.3); CHL-b: +10.3% (0.146 → 0.161 mg/g); CAROT: +7.6% (0.144 → 0.155 mg/g) | [123] |
Surface Barrier Discharge (SBD) plasma | Various winter and spring cereals | SBD plasma for 60 min (winter wheat), 24 °C | Not specified | Shoot length wheat: +31% (16 → 21 mm); Root length wheat: +15% (104 → 120 mm, 30 min), +33% (104 → 138 mm, 60 min), +21% in 6 days (310 → 375 mm) | [46] |
Atmospheric pressure plasma (SDBD) | Barley | 6 min SDBD plasma, 51.7 W, 8 kVp-p, 14.4 kHz, 15 °C, 16/8 h light/dark | Not specified | TPC: +9% (2.15 → 2.35 mg/g); SAPO: +50% (0.60 → 0.90 mg/g); GABA: +40% (0.11 → 0.15 mg/g); POLI: +90% (0.42 → 0.80 mg/g) | [70] |
Cold plasma (CP) and electromagnetic field (EMF) | Common buckwheat | CP7 for ‘VB Nojai’, CP5 for ‘VB Nojai’, EMF15 for ‘VB Vokiai’ | Not specified | In vitro germination: 100% in all groups; Germination time: −7% (43.6 → 40.6 h); Field emergence: −13% to −20% | [103] |
Cold plasma (DBD) | Brown rice | Plasma at 135 W, 75 s, argon flow 22 mL/min, germination 25–28 °C, 1–1.5 days | Wet basis | TPC: +86% (0.786 → 1.461 mg GAE/g); TOCO: +290% (11.50 → 44.85 μg/g); γ-ORY: +80% (40.91 → 73.64 μg/g); ANTH: +38% (212.26 → 292.76 μg/g); PHYS: +40.6% (4.04 → 5.68 mg STE/100g); TERP: +80.5% (4.42 → 7.98 mg STE/100g) | [90] |
Cold plasma (microwave discharges) | Barley, corn | Barley: Ar-20%O2 180 s at 4 mbar; corn: Ar-20%O2 240 s + N2-2%O2 120 s at 8 mbar | Not specified | No significant effect on germination; Slight positive effect on root/shoot length | [109] |
Atmospheric cold plasma (CAP): DBD and APPJ | Various cereals | APPJ Ar + O2 11 days for barley, APPJ Ar + air 10 days for wheat | Dry basis | Root dry mass rye: +15.6%; Barley: +16.2%; Wheat: +14.3%; Germination rate barley: +21.4%; Oats: +28.8%; Wheat: +33.3% | [105] |
US | Oat | Soaking 4 h at 23–24 °C, ultrasound 5 min at 25 kHz (16 W/L), germination 72–96 h at 24 ± 2 °C, 95 ± 3% RH | Dry basis | GABA: +256.9% (0.632 → 2.253 mg/g); AVEN 2c: +3403.2% (6.43 → 225.27 μg/g); AVEN 2p: +2024.6% (5.53 → 117.49 μg/g); AVEN 2f: +1267.6% (5.11 → 69.85 μg/g); TPC: +11.24% (14.93 → 16.61 μg GAE/mg); AOA: +72.45% (39.34 → 67.84% DPPH) | [11] |
US | Corn | 45 kHz, 30 °C, 30 min, germination at 30 °C, 90% RH for 60 h | Wet basis | GABA: +30.55% (0.311 → 0.406 mg/g) | [17] |
US (40 kHz, 30 min) | Brown rice | 40 kHz, 30 min, germination 36 h at 28 ± 1 °C | Not specified | Germination: +28% (77 → 100%); Metabolomic profile changes (specific values not reported) | [108] |
High intensity ultrasound (HIU) | Brown rice | HIU: 28 kHz, 17.83 W/cm2, 5 min, germination at 37 °C for 32 h | Dry basis | GABA: +56.92% (114.68 → 179.85 mg/kg); Amino acid index: +137.5% (0.8 → 1.9%); AOA FRAP: +43.9% (4.13 → 5.94 μmol Fe2+/g); Iron bioaccessibility: +147.1% (26.6 → 38.6%) | [31] |
US and controlled germination | Red spring wheat, white soft wheat | 28 ± 2 °C, 95 ± 3% RH, 6 h soaking, 72 h germination, 30 min ultrasound at 25 kHz | Wet basis | GABA: +339% (14.68 → 49.72 mg/100g); GABA with ultrasound: +30.7% (49.72 → 64.98 mg/100g); SOLDF in SW: −18.4% (2.17 → 1.77 g/100g); Glucose in HW: +471% (74.21 → 423.58 mg/100g) | [10] |
Type of Inducer | Species Studied | Optimal Processing Parameters | Measurement Basis | Bioactive Compounds and Quantitative Results | Ref. |
---|---|---|---|---|---|
Vegetable salts (ashes) | Corn | Atp-Y: 25.12 h at 25.54 °C, 0.52% salt, 144.37 h germination, 37.65 h maturation. Coca-sr: 1.608 h at 36.63 °C, 1.11% salt, 144.37 h germination, 27.07 h maturation | Dry basis | TPC Coca-sr: +72.4% (48.77 → 84.08 mg GAE/g); TFC Coca-sr: +126.4% (39.55 → 89.53 mg CE/g); AOA DPPH Coca-sr: +89.9% (12.13 → 23.04%); AOA FRAP Coca-sr: +193.6% (12.16 → 35.70 μmol TE/g) | [2] |
Chitosan, jasmonic acid (JA), SA | Common buckwheat | Chitosan 0.1%, JA 150 μM, 72 h, 25 °C | Not specified | Chitosan: TPC: +23% (0.74 → 0.91 mg GAE/g); GACA: +51% (6.09 → 9.19 μg/g); CATCH: +72% (56.18 → 96.59 μg/g); CHLA: +69% (58.92 → 99.66 μg/g); EPIC: +122% (44.44 → 98.51 μg/g); JA: TPC: +147% (0.74 → 1.82 mg GAE/g); RUTI: +138% (424.42 → 1011.3 μg/g); CAFA: +48% (77.99 → 115.63 μg/g); EPIC: +695% (44.44 → 353.28 μg/g) | [112] |
Slightly acidic electrolyzed water (SAEW) | Brown rice | SAEW pH 5.5–6.0, redox potential 940–968 mV, available chlorine 10 ppm, 35 ± 1 °C, 85% RH, 48 h darkness | Dry basis | TPC: +743% (13.75 → 115.94 mg GAE/100g); TFC: +578% (14.72 → 99.85 mg CE/100g); GABA: +299% (1.84 → 7.35 mg/L); FERA: +2751% (4.46 → 127.2 μg/g); p-COU: +1339% (3.74 → 53.8 μg/g); ASCA: detected only in SAEW (224.4 μg/g); QUER (SAEW): −69% (2.82 → 0.86 μg/g); QUER (water): +154% (2.82 → 7.17 μg/g); AOA DPPH: +839% (15.53 → 145.99 mg TE/100g); AOA ABTS: +792% (17.06 → 152.21 mg TE/100g); AOA FRAP: +934% (16.11 → 166.61 mg TE/100g) | [25] |
Hydrogen-rich water (HRW) | Wheat | HRW 4 h, 23 ± 2 °C, 50% RH | Not specified | Germination: +21.1% (79.99 → 96.66%); Vigor index: +84.7% (146 → 269.7); Chlorophyll: +76.8% (6.6 → 11.69 mg/g) | [113] |
3% sucrose and 7.5 mM calcium chloride | Common buckwheat | 3% sucrose + 7.5 mM CaCl2, sprayed every 6 h, 8 days, 25 °C, 60% RH, darkness | Wet basis | TPC: +64% (2.99 → 4.90 mg GAE/g); TFC: +58% (1.16 → 1.83 mg CE/g); GABA: +59% (37.6 → 59.7 mg/kg); ORI: +43% (175.5 → 251.3 mg/kg); ISOV: +30% (331.4 → 431.5 mg/kg); VITX: +36% (279.9 → 380.6 mg/kg); ISOV: +38% (437.4 → 603.3 mg/kg); RUTI: +34% (288.9 → 387.0 mg/kg); ASCA: +10% (130.5 → 143.2 mg/kg); α-TOCO: +31% (1.3 → 1.7 mg/kg); AOA DPPH: +51% (3.21 → 4.85 mg TE/g) | [33] |
Acidic medium | Brown rice | pH 2.7, 25 °C, 12 h | Not specified | PHYA: −46.2% (5.54 → 2.98 g/kg); PHYT: +402% (112.36 → 563.89 U/kg); Calcium bioaccessibility: +32.9% (18.84 → 25.04%); Zinc bioaccessibility: +44.4% (19.56 → 28.24%) | [38] |
Gaseous ozone (O3) | Spring malting barley | 50 ppm, 1–6 h, 20 °C, 98% RH, 19.8% grain moisture | Dry basis | Germination energy: 96.0% vs. 99.3% in control; Significant reductions after 1 h | [124] |
Gaseous ozone (O3) | Wheat | Ozone: 3 h at 50 ppm, flow 1 L min−1; Soaking: 24 h at 22 ± 2 °C (1:2); Germination: 72 h at 22 ± 2 °C, 80% RH, darkness | Dry basis | TPC grains: +1.5% (3 h), −56.2% (4 h), −54.8% (5 h); TPC germinated: −15.5% (3 h), −19.5% (4 h), −18.9% (5 h); AOA grains: +2.4% (3 h), −13.0% (4 h), −10.0% (5 h) | [19] |
Citric and lactic acid | Adlay | 1% citric acid, 12 h at 25 °C, germination 60 h at 25 °C, 95% RH, darkness | Dry basis | TPC citric acid: +18.3% (2.36 → 2.79 mg GAE/g); TPC lactic acid: −14.9% (2.36 → 2.01 mg GAE/g); TFC citric acid: +17.0% (0.55 → 0.65 mg RE/g); TFC lactic acid: −9.0% (0.55 → 0.50 mg RE/g); AOA citric acid: +39.1% (118.44 → 164.74 μmol TE/g); AOA lactic acid: −16.8% (118.44 → 98.55 μmol TE/g) | [114] |
Sodium Chloride (NaCl) | Wheat | 48 h at 17 °C, 80% RH, darkness, 60 mM NaCl solution | Dry basis | TPC: +242.3% (1.37 → 4.70 mg GAE/g) | [72] |
Sodium Chloride (NaCl) and CaCl2 supplement | Yellow corn | 16 h water soaking, 8 h 300 mM NaCl + 5 mM CaCl2, 72 h germination at 24 ± 1 °C in darkness | Dry basis | LUT NaCl+CaCl2: +21.50% (9.44 → 11.47 μg/g); LUT CaCl2: +36.55% (9.44 → 12.89 μg/g); ZEAX NaCl+CaCl2: +30.18% (6.23 → 8.11 μg/g); α-CRY NaCl + CaCl2: +23.33% (1.50 → 1.85 μg/g); AOA ORAC NaCl: +127.80% (36.54 → 83.24 μmol TE/g) | [87] |
Sodium chloride (NaCl) | Quinoa | 300 mM NaCl, 24 °C, 240 h (10 days) | Wet basis | TPC sprouts: +152% (1.02 → 2.57 mg GAE/g); TFC sprouts: +243% (0.23 → 0.79 mg CE/g); FLVL sprouts: +92% (0.26 → 0.50 mg QE/g); ANTH sprouts: +238% (2.47 → 8.36 μg CGE/g); AOA DPPH sprouts: +3700% (values not specified) | [89] |
Sodium silicate and iron chelate (Fe-EDTA) | Common buckwheat | 7 days, 4 mM sodium silicate (SIL) or SIL + 0.5 mM Fe-EDTA (SIL-Fe), 15 min immersion twice daily | Dry basis | FLVN SIL-Fe: −20.6% (5.094 → 4.044 mg/g); PHEA SIL: +11.2% (6.114 → 6.799 mg/g); EPIC SIL-Fe: −24.2% (3.529 → 2.674 mg/g); CAFA esters SIL: +80.8% (0.915 → 1.654 mg/g); Fe SIL-Fe: +335% (81.12 → 353.0 μg/g); Si SIL-Fe: +204% (152.6 → 464.2 μg/g) | [91] |
Zinc oxide nanoparticles (ZnO NPs) | Pearl millet | 150 ppm ZnO NPs, 6 h imbibition, 28 °C | Not specified | Germination: +20% (73.2 → 93.4%); Vigor index: +51% (1284.6 → 1944.5) | [125] |
Zinc oxide nanoparticles (ZnONPs) | Corn | 700–1000 mg/L ZnONPs for germination, 800 mg/L for CAROTS | Not specified | CHL: +170.8% (0.252 → 0.683 mg/g); TPC: +3.4% (values not specified); CAROT: +221.5% (values not specified); PROL: +66.8% (0.206 → 0.344 mg/g) | [97] |
Gibberellic acid (GA3) and abscisic acid (ABA) | Wheat | GA3 150 μM, 12 h, 25 °C, 16 h photoperiod | Not specified | α-AMY Yangmai 13: +13.5 mg g−1 min−1; α-AMY Yannong 19: +12.5 mg g−1 min−1 | [40] |
Phytohormones (IAA, SA, GA) | Wheat | IAA: 0.01 mg/mL, GA: 0.01 mg/mL, SA: 0.001 mg/mL or combination, 72–120 h, room temperature, darkness | Not specified | TPC IAA+GA+SA: +128% (values not specified); TFC IAA+GA+SA: +182% (values not specified); FERA: +949.3% (537,589 → 5.1 × 108 area units); NARG: +438.3% (102,023 → 4 × 107 area units); TRIC: +76% (191,663 → 1.5 × 107 area units); GABA: −64% (2 × 1010 → 6 × 109 area units); AOA DPPH: +106% (values not specified); AOA FRAP: +108% (values not specified) | [39] |
Vitamin B6 (Pyridoxal phosphate, PLP) | Bitter buckwheat | 2 days at 22 °C, 75% RH, darkness, then 2.5 mM PLP at 30 °C for 24 h | Not specified | GABA: +867% (0.39 → 3.82 g/kg); GLUAS: +175% (1.91 → 5.26 g/kg); FLVN: +11% (14.93 → 16.59 g/kg); TPC: +33% (17.33 → 23.09 g/kg); AOA DPPH: +23% (67.54 → 82.81%); AOA ABTS: +31% (38.75 → 50.83%); ACE inhibition: +135% (32.86 → 77.26%) | [30] |
Type of inducer | Species Studied | Optimal Parameters | Measurement basis | Bioactive Compounds Analyzed and Quantitative Results | Ref. |
---|---|---|---|---|---|
Cyanobacteria extracts and biologically synthesized silver nanoparticles (AgNPs) | Barley and wheat | AgNPs synthesized with 1.0 mM AgNO3 at 30 °C in light, smallest particles (7.3–28 nm) | Not specified | GRI barley cv. Giza 123: +3.7% (18.6 → 19.3%); GVC barley cv. Giza 123: +1.1% (55.7 → 56.3%); MGT barley cv. Giza 123: −7.1% (3.0 → 2.7 days) | [81] |
Fermentation, soaking and controlled germination | Corn | Soaking: 24 h at 18 °C (1:3 w/v), germination: 80 h at 18 °C, fermentation: 24 h at 30 °C with L. plantarum 299v | Dry basis | PHYA FLp-SG: −85.6% (9.58 → 1.39 g/kg); PHYA FYLc: −68.7% (9.58 → 3.02 g/kg); PHYA FLp: −65.3% (9.58 → 3.35 g/kg); PHYA FSp: −51.8% (9.58 → 4.65 g/kg); PHYA germination: −31.9% (9.58 → 6.35 g/kg); PHYA soaking: −12.6% (9.58 → 8.44 g/kg); Phytate molar ratio FLp-SG: −81% (40.76 → 7.77); Phytate molar ratio FLp-SG: −85% (41.42 → 6.24) | [4] |
Spontaneous fermentation and germination | Red sorghum and pearl millet | Germination: 48 h at 30 °C with intermittent water spraying, drying at 50 °C for 12 h, fermentation: 48 h at 30 °C | Dry basis | Red sorghum (G+F): TPC: −69% (82.23 → 25.49 mg GAE/g); TFC: −54% (23.83 → 10.93 mg CE/g); TDC: −89.2% (9.06 → 0.98 mg/g); PHYA: −90.1% (2.10 → 0.21 g/kg); AOA DPPH: −30% (81.16 → 56.80%); AOA ABTS: +3% (89.99 → 92.71%); Pearl millet (G+F): TPC: −26.3% (19.15 → 14.11 mg GAE/g); TFC: −56.9% (8.85 → 3.81 mg CE/g); TDC: −86.1% (1.01 → 0.14 mg/g); PHYA: −85.1% (2.58 → 0.38 g/kg); AOA DPPH: −69.1% (69.28 → 21.38%); AOA ABTS: +11% (84.39 → 93.64%) | [24] |
Fermentation with Rhizopus oligosporus (SSF) in two systems: traditional plate fermentation (PF) and bioreactor fermentation (BF) | djulis | Germination: 4 days at room temperature (42.6 ± 9.5 mm sprouts), fermentation: bioreactor at 35 °C, 0.4 vvm aeration, 5 rpm rotation, 4 days | Not specified | AOA: +101% (19.26 → 38.76 mM TE); FAA: +172% (36.62 → 99.56 mg casein tryptone/g); FPHE: +23% (BF vs. PF); CAROT: +37% (BF vs. PF); CHL-a: +13% (BF vs. PF); CHL-b: +133% (BF vs. PF); ANTH: +134% (BF vs. PF) | [41] |
Fermentation and controlled germination | Naked barley | Germination: 30 °C, 48 h, 80–85% RH; germination-fermentation: 48 h germination + 24 h fermentation at 35 °C | Not specified | GABA germination: +116.63% (5.49 → 11.9 mg/100 g); GABA germination-fermentation: +87.53% (5.49 → 10.3 mg/100 g); GABA soaking: +78.51% (5.49 → 9.8 mg/100 g); TPC germination-fermentation: +68.39% (16.85 → 28.37 mg GAE/g); TPC germination: +26.21% (16.85 → 21.27 mg GAE/g); AOA DPPH germination-fermentation: +267.46% (values not specified); AOA DPPH germination: +146% (values not specified); AOA ABTS germination-fermentation: +36.1% (3.13 → 4.26 mg TE/g); β-GLU germination: −9.68% (5.99 → 5.41%); β-GLU germination-fermentation: −5.51% (5.99 → 5.66%) | [5] |
Natural fermentation, soaking and roasting | Blue corn | Soaking 16 h, germinate at 25 °C for 72 h with periodic watering | Not specified | TPC germination: +36.02% (44.88 → 61.05 mg GAE/100 g); TPC fermentation: +14.88% (44.88 → 51.56 mg GAE/100g); TPC roasting: −20.38% (44.88 → 35.73 mg GAE/100 g); ANTH germination: −3.11% (0.54 → 0.53 mg CGE/g); ANTH fermentation: −3.23% (0.54 → 0.53 mg CGE/g); ANTH roasting: −5.07% (0.54 → 0.52 mg CGE/g); AOA germination: +81.07% (10.41 → 18.85%); AOA fermentation: +39.28% (10.41 → 14.50%); AOA roasting: −6.53% (10.41 → 9.73%) | [50] |
Fermentation and controlled germination | Foxtail millet | Soaking: 12 h at 25 °C (1:15), germination: 48 h at 25 °C in darkness, fermentation: 20 h at 38 °C with lactic acid bacteria to pH 3.0 | Dry basis | TPC combined: +98.2% (2.99 → 5.92 mg GAE/g); TFC combined: +16.6% (6.29 → 7.33 mg QE/g); AOA DPPH combined: +81.5% (18.42 → 33.44%); AOA FRAP combined: +33.5% (10.22 → 13.64 μmol TE/g); Reducing power combined: +184.5% (79.63 → 226.58 mg AAE/100g) | [42] |
Combination of Inductors | Reported Synergies | Species Studied | Measurement Basis | Bioactive Compounds and Quantitative Results | Reported Limitations | Ref. |
---|---|---|---|---|---|---|
US and fermentation with a complex starter culture | Synergy between ultrasound treatment and fermentation with a complex starter culture | Spring soft wheat and spring barley | Not specified | GABA wheat Zauralochka: +370% (2.7 → 12.7 mg/100g); GABA wheat Erythrosperium: +210% (7.1 → 22.0 mg/100g); GABA barley Chelyabinets: +220% (6.5 → 20.8 mg/100g); TFC wheat Zauralochka: +35% (values not specified); TFC wheat Erythrosperium: +45% (values not specified); TFC barley Chelyabinets: +68% (values not specified); AOA wheat Zauralochka: +31% (values not specified); AOA wheat Erythrosperium: +38% (values not specified); AOA barley Chelyabinets: +51% (values not specified) | Germination and fermentation reduce starch content | [3] |
Controlled germination, gibberellic acid (GA3), indole-3-acetic acid (IAA), KNO3, MgSO4, H2O2, ascorbic acid (ASCA) and H2O | GA3 and KNO3 showed synergistic effects for wheat and oats, while GA3 and IAA were more effective for barley | Wheat, barley and oats | Wet basis/Dry basis | Wheat with MgSO4: CHL: +35% (3.0 → 4.05 mg/g); Wheat with H2O2: CHL: +15% (3.4 → 4.2 mg/g); Barley with H2O2: CHL: +150% (1.0 → 2.5 mg/g); Oats with IAA: CHL: +77% (4.5 → 8.0 mg/g); CAROT in wheat with KNO3: +63% (0.24 → 0.39 mg/g); Wheat germination with GA3: +12% (81 → 91%) | Variation in response depending on cereal type | [32] |
Pretreatments (soaking, ultrasound and alkaline thermo-hydrolysis) + controlled germination | US pretreatment combined with germination shows synergistic effects | Buckwheat and quinoa | Not specified | Buckwheat + ultrasound/germination: TPC: +34% (4.59 → 6.14 mg GAE/g); AOA: +20% (13.29 → 15.95 μmol TE/g); FLVN: +201% (16.33 → 49.21 μg/g); Quinoa + ultrasound/germination: TPC: +8% (2.01 → 2.17 mg GAE/g); AOA: +64% (2.42 → 3.97 μmol TE/g); FLVN: +43% (6.24 → 8.93 μg/g); Buckwheat + thermo-alkaline: TAN: −83% (0.40 → 0.07 mg CE/g); Quinoa + ultrasound: PHYA: −85.5% (10.85 → 1.57 mg/g) | Alkaline treatment decreases TPC | [8] |
UV-B radiation and CaCl2 supplement | Combined treatment shows synergistic effects for carotenoid enhancement | Yellow corn | Dry basis | LUT: +77.38% (9.15 → 16.23 μg/g); ZEAX: +121.07% (5.60 → 12.38 μg/g); α-CRY: +75.19% (1.33 → 2.33 μg/g); β-CRY: +65.52% (0.29 → 0.48 μg/g); α-CAR: +79.17% (0.24 → 0.43 μg/g); β-CAR: +86.49% (0.37 → 0.69 μg/g); SOD: +14.12% (6.02 → 6.87 U/mg protein); POD: +2.66% (9.76 → 10.02 U/mg protein) | UV-B radiation inhibits growth | [69] |
US and selenium (selenium enrichment with sodium selenite) | Synergy between ultrasound and low drying temperature (50 °C) | Black rice | Dry basis | GACA: +271% (0.70 → 2.61 mg/g); PROTA: +268% (0.25 → 0.91 mg/g); CYA3GL: +732% (0.24 → 1.97 mg/g); Total phenolics: +146% (1.85 → 4.55 mg/g) with 10 min ultrasound, 50 °C | Limited ultrasound time | [82] |
Potassium-enriched biochar (KBC) and gibberellic acid (GA3) | GA3+KBC synergy for increasing germination, chlorophyll content and reducing antioxidant enzymes under osmotic stress | Wheat | Wet basis/Dry basis | CHL-a: +34.35% (1.06 → 1.43 mg/g); CHL-b: +20.96% (0.68 → 0.82 mg/g); Total chlorophyll: +29.12% (values not specified); Electrolyte leakage: −11.02% (values not specified) with GA3+KBC under low stress | More field-level research is needed | [83] |
Hormopriming (GA3, IAA), halopriming (KNO3, MgSO4), osmopriming (H2O2, ascorbic acid), hydropriming (distilled water) | No combinations of inductors were reported in this study | Wheat | Dry basis | TPC KNO3: +16.7% (19.28 → 22.50 mg GAE/g); TFC H2O2: +5.9% (25.39 → 26.88 mg RUE/g); CATCH H2O: +60.3% (6.80 → 10.90 μg/g); CHLA GA3: +1008.8% (0.34 → 3.77 μg/g); HYBA GA3: +1183.3% (0.06 → 0.77 μg/g); SINA H2O: +113.3% (0.83 → 1.77 μg/g); RUTI H2O: +158.3% (1.20 → 3.10 μg/g); NARG GA3: +214.5% (1.72 → 5.41 μg/g); QUER GA3: +282.4% (0.17 → 0.65 μg/g); AOA KNO3: +20.8% (51.23 → 61.89%) | Study limited to laboratory conditions | [94] |
Controlled germination and thermal treatment (tempering and roasting) | Synergy between germination and thermal treatment for phenolic compounds and antioxidants | Rice | Not specified | TPC green malt roasted (150 °C, 45 min): +113.8% (3.25 → 6.95 mg GAE/g); TPC tempered malt roasted (125 °C, 90 min): +83.1% (3.25 → 5.95 mg GAE/g); Amino acids (50 °C, 60 min): +80% (5.04 → 9.08 mg/g); AOA tempering (60–90 min): +46.21% (25 → 36.04%) | High temperatures (>175 °C) reduce bioactives | [51] |
US (US) and PEF | Synergistic effect between US and PEF, resulting in greater bioactive increase | Wheat | Wet basis | TPC US+PEF: +8.59% (305.23 → 331.45 μg GAE/g); TFC US+PEF: +14.06% (178.34 → 203.42 μg CE/g); CHL US+PEF: +12.06% (1.74 → 1.92 mg/100 mL); AOA DPPH US+PEF: +8.58% (1.63 → 1.74 mmol TE/L); AOA ORAC US+PEF: +2.34% (5.12 → 5.24 mmol TE/L) | Long-term stability unknown | [96] |
US (US) and microwave (MW) | No specific synergies reported between inductors | Sorghum | Not specified | GABA ultrasound (15 min): +182% (30.89 → 87.14 μg/g); GABA microwave (10% power): +117% (30.89 → 66.97 μg/g); TPC ultrasound (20 min): +18.8% (17.89 → 21.26 mg GAE/100g); AOA ultrasound (10 min): 84.53% vs. 60.61% in control | Prolonged ultrasound times reduce effectiveness | [66] |
Application | Inductors | Matrices | Benefits and Characteristics | Technological Challenges | Market Opportunities | Ref. |
---|---|---|---|---|---|---|
Foods with ACE inhibitory activity | Specific inductors (PLP, chitosan) | Barley, buckwheat, rice | High GABA content; ACE inhibitory peptides; phenolic compounds (rutin, catechin) with antihypertensive activity; reduction of factors that promote hypertension. Research development status. | Clinical validation; effective concentrations in final product; stability during processing; optimization of treatment conditions | Functional foods for blood pressure control; preventive products for cardiovascular health; foods targeted at the hypertensive population | [5,17,25,30,112] |
Foods with improved mineral bioaccessibility | Germination combined with lactic acid fermentation | Sorghum, millet, corn | Significant reduction of phytates, tannins, oxalates and other antinutrients; increase in bioavailability of iron, zinc and calcium; moderate increase in phenolic compounds. Research/Pilot development status | Prolonged processing time; optimization by cereal type; balance between antinutrient reduction and bioactive preservation | Naturally fortified food products; foods for populations with micronutrient deficiencies, especially women and children in Africa | [4,24,38,77] |
Sports foods | US + low-intensity microwave | Oats, rye, corn | High protein content with branched-chain amino acids; bioactive peptides with regenerative properties; GABA for recovery; antioxidants to reduce post-exercise oxidative stress; gradually absorbed carbohydrates; bioavailable minerals. Pilot development status | Standardization; organoleptic profile; formulation for different consumption times; stability | Muscle recovery; sports performance; pre/post-training products; natural alternatives to synthetic supplements | [50,66] |
Infant foods | Low-temperature germination (28 °C) + ultrasound | Quinoa, amaranth, millet | Improved essential amino acid profile; increase in B vitamins; reduction of antinutritional factors; increased DHA and essential fatty acids; bioavailable phenolic compounds; higher protein digestibility. Research development status. | Microbiological safety; digestibility; allergenicity; sensory acceptability; stability during processing | Nutritious porridges and snacks for cognitive development; foods for early childhood; premium organic products | [4,11] |
Foods for glycemic control | Cold plasma (CAPP and DBD) + germination | Rice, barley, wheat, buckwheat | Modification of starch structure for reduced digestibility; increase in phenolic compounds with α-amylase and α-glucosidase inhibitory properties; increase in soluble fiber; high GABA content; bioactive compounds with hypoglycemic activity. Research development status. | Specialized plasma equipment; parameter optimization according to cereal; in vivo validation; variable effect depending on variety | Foods for prevention and management of diabetes; low glycemic index products; foods for weight control | [31,70,88,100] |
Foods for brain health | Hydrogen-rich water (HRW) + controlled germination | Wheat, rice, buckwheat | Increase in GABA, improvement in enzymatic antioxidant content (SOD, CAT), increase in neuroprotective phenolic compounds, higher bioactive protein content, stimulation of metabolic pathways related to neuroprotection. Research development status. | Stability of dissolved hydrogen; specific equipment; optimization of treatment conditions; partially understood mechanisms of action | Foods for cognitive improvement; products for the prevention of age-related mental deterioration; functional foods for students and professionals | [15,37,108,113] |
Functional beverages | Germination + lactic fermentation | Oats, barley, quinoa | High content of β-glucans with hypocholesterolemic properties; avenanthramides with anti-inflammatory activity; phenolic compounds and flavonoids with antioxidant capacity; bioactive peptides with ACE inhibitory activity. Commercial limited development status. | Stability during shelf life; processing that preserves bioactives; standardization of content; limited solubility | Products for cardiovascular health; premium plant-based beverage market; athletes and fitness | [4,5,24,50] |
GABA-rich functional beverages | Plasma-activated water (PAW) + controlled germination | Barley, rice, wheat | High GABA content; increase in total free amino acids; increase in antioxidant enzymes; higher chlorophyll content; release of phenolic compounds with antioxidant activity; improved sensory profile (reduction of undesirable volatile compounds). Research development status. | Limited shelf life of PAW; industrial scalability; precise control of reactive species; need for specialized equipment | Beverages for stress reduction; products to improve sleep quality; functional foods for hypertension; fermented beverages with probiotic properties | [17,37,45,68] |
Sprouts enriched with specific phytonutrients | Moderate abiotic stress (salinity, CaCl2, sucrose) | Buckwheat, rice, corn | Specific increase in target compounds: CAROTS, GABA, flavonoids (rutin, quercetin, kaempferol), specific phenolic acids (ferulic, p-coumaric); metabolic adaptation that increases antioxidant defense systems. Research development status. | Balance between stress to induce bioactive compounds and acceptable yield; optimization by species; knowledge transfer to commercial scale | Functional foods directed at specific conditions; ingredients with specific health claims; components for specialized supplements | [33,83,87,89] |
Functional sprouts for direct consumption | (PEF 3–6 kV·cm−1) + cold plasma | Wheat, buckwheat, quinoa | Increased content of chlorophylls, GABA, flavonoids, CAROTS, antioxidant enzymes, significantly elevated antiradical capacity (DPPH, ABTS). Research/pilot development status. | Specialized equipment; precise parameter control; energy cost; variable yield depending on species | Ready-to-eat superfoods; functional living foods; components for smoothies and juices; nutritious vegetable snacks | [17,31,37,47,96] |
Enriched breakfast cereals | Germination (malting) + controlled drying | Wheat, oats, barley, quinoa | Increase in total polyphenols, flavonoids, improved antioxidant activity (DPPH, ABTS, FRAP), increased B vitamins, Maillard reaction compounds with antioxidant properties, and improved amino acid profile. Commercial development status. | Balance between thermal processing and preservation of bioactive compounds; development of attractive sensory profiles; standardization of processes | Value-added cereals; products for premium segments; foods with “whole grain plus” claims; alternatives to conventional cereals | [14,51,53,115] |
Bioactive concentrates | Specific inductors depending on target compound (MgSO4, KNO3, H2O2) | Rice, buckwheat, barley, sorghum | Standardized GABA concentrates for antihypertensive applications; extracts rich in avenanthramides for anti-inflammatory applications; concentrates of specific flavonoids (rutin, quercetin) with high bioavailability; purified bioactive peptides. Laboratory/Pilot development status. | Purification; standardization; stability; scaling up of extraction processes; production cost | Ingredients for nutraceuticals; food supplements; medical foods; specialized food ingredients; techno-functional ingredients | [30,70,76,112] |
Germinated seeds with optimized phytochemical profile | Static magnetic fields (1–10 mT) | Rice, buckwheat, wheat, barley | Significant increase in polyphenols, flavonoids, rutin, GABA, alteration of secondary metabolism without negatively affecting germination, and modification of enzymatic activity in key biosynthetic pathways. Research development status. | Equipment for magnetic field generation; optimization of intensity and exposure time; mechanisms of action not fully elucidated | Premium sprouts with specific functional properties; ingredients for food supplements; components for designer foods | [15,103,122] |
Germinated seeds with an improved sensory profile | Pretreatment with organic acids (citric, lactic) | Adlay, rice, millet | Moderate increase in total phenols, reduction of undesirable volatile compounds, improved amino acid profile, improved antioxidant activity, optimized texture. Research development status. | pH optimization; balance between sensory profile and bioactive compounds; variability between cereals; microbiological control | Sprouts with better sensory acceptance; products for introduction to the conventional consumer market; sensorially attractive functional foods | [16,38,72,114] |
Functional flours | Moderate thermal treatments + SA | Wheat, rice, amaranth | Increase in alkylresorcinols with anticancer activity; total phenolic compounds; increase in GABA; improved soluble dietary fiber; reduction of antinutrients; higher mineral bioavailability. Pilot/Commercial development status. | Maintaining technological properties; treatment homogeneity; quality control during processing; balance between bioactive compound content and functionality | Functional bakery; premium gluten-free market; foods with specialized nutritional value; products for diabetics | [66,124,126] |
Germinated flours with improved antioxidant activity | UV-C light (200–280 nm) + controlled germination | Wheat, amaranth, millet | Increased total phenolic compounds; increased total flavonoids; improved antioxidant activity (DPPH); reduction of antinutritional factors; improved essential amino acid profile; structural modification of starch for better functionality. Research development status. | Control of exposure time and distance; optimization of conditions according to cereal; balance between bioactive activity and yield | Ingredients for bakery with functional properties; premium flours for conscious consumers; foods with natural antioxidant claims | [28,50,65,77,80] |
Naturally biofortified ingredients | Nanoparticles (ZnO, Fe) + germination | Corn, rice, millet | Significant increase in CAROTS, phenolic compounds, higher bioavailability of essential minerals, improved nutritional profile (amino acids, vitamins), and increased stress resistance. Research development status. | Controlled synthesis of nanoparticles; regulation and consumer acceptance; dose optimization; long-term safety evaluation | Naturally biofortified foods; products to combat nutritional deficiencies in vulnerable populations; alternatives to chemical fortification | [87,91,97,125] |
Functional malts | Chemical elicitors (gibberellic acid, SA) | Barley, wheat, sorghum | Increase in enzymatic activity (α-amylase, β-glucanase) for better functionality; higher content of phenolic compounds and flavonoids; reduction of antinutrients during malting; optimized biochemical profile for specific applications. Pilot development status. | Precise control of hormonal treatments; specific optimization according to variety; balance between enzymatic activity and bioactive compounds | Functional beers; malt extracts as ingredients; specialty malts for craft breweries; ingredients for bakery and pastry | [32,39,44,94,107] |
Functional microgreens | Controlled germination with saline stress (NaCl 100–300 mM) + UV-B light | Buckwheat, quinoa, barley | High flavonoid content, superior antioxidant capacity, increased GABA content, unique phytochemical profile with high levels of rutin, catechins and phenolic acids. Significant concentrations of anthocyanins in colored varieties. Research/pilot development status. | Precise control of stress conditions; commercial scalability; reduced shelf life; consistent quality control; batch-to-batch variability | High value-added foods; gourmet market; health-conscious consumers; ingredients for premium culinary applications | [26,36,49,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minchán-Velayarce, H.H.; Bustos, A.-S.; Paucar-Menacho, L.M.; Vidaurre-Ruiz, J.; Schmiele, M. New Frontiers in Cereal and Pseudocereal Germination: Emerging Inducers for Maximizing Bioactive Compounds. Foods 2025, 14, 3090. https://doi.org/10.3390/foods14173090
Minchán-Velayarce HH, Bustos A-S, Paucar-Menacho LM, Vidaurre-Ruiz J, Schmiele M. New Frontiers in Cereal and Pseudocereal Germination: Emerging Inducers for Maximizing Bioactive Compounds. Foods. 2025; 14(17):3090. https://doi.org/10.3390/foods14173090
Chicago/Turabian StyleMinchán-Velayarce, Hans Himbler, Atma-Sol Bustos, Luz María Paucar-Menacho, Julio Vidaurre-Ruiz, and Marcio Schmiele. 2025. "New Frontiers in Cereal and Pseudocereal Germination: Emerging Inducers for Maximizing Bioactive Compounds" Foods 14, no. 17: 3090. https://doi.org/10.3390/foods14173090
APA StyleMinchán-Velayarce, H. H., Bustos, A.-S., Paucar-Menacho, L. M., Vidaurre-Ruiz, J., & Schmiele, M. (2025). New Frontiers in Cereal and Pseudocereal Germination: Emerging Inducers for Maximizing Bioactive Compounds. Foods, 14(17), 3090. https://doi.org/10.3390/foods14173090