Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives
Abstract
1. Introduction
2. Literature Search Strategy
3. The Health Benefits Associated with Probiotics in Food Applications
4. Different Fermentation Techniques and Food Matrices Used for Probiotic Incorporation
4.1. Fermentation Techniques for Probiotic Incorporation
4.2. Food Matrices for Probiotic Delivery
5. Technological Challenges in Probiotic Stability and Viability During Processing and Storage
5.1. Processing Conditions Influencing Probiotic Viability
5.2. Matrix-Specific Considerations
5.3. Effects of Processing and Storage
5.4. Probiotic Survival and Functional Efficacy
5.5. Encapsulation and Smart Delivery Systems for Enhancing Probiotic Viability in Functional Foods
5.5.1. Encapsulation Technologies and Materials
5.5.2. Innovative and Smart Encapsulation Strategies
5.5.3. Applications of Immobilization and Encapsulation in Food Systems
6. The Impact of Probiotics on Consumer Acceptance of Food Products
7. Regulatory Considerations for Probiotic Food Products
- (i).
- Probiotics in food or supplements without health claims,
- (ii).
- Probiotics in food or supplements with specific health claims, and
- (iii).
- Probiotics classified as drugs.
- (i).
- Taxonomic identity must be clearly and unequivocally defined;
- (ii).
- The existing body of scientific knowledge must be sufficient to support a comprehensive safety assessment;
- (iii).
- The absence of pathogenic properties must be demonstrated and substantiated; and
- (iv).
- The intended use must be well characterized and appropriate [11].
7.1. Microbial Strain Identification and Characterization
7.2. Labeling Requirements
8. Consumer Perception and Market Trends Related to Probiotic Foods
9. Future Research Directions for Improving Probiotic Efficacy in Functional Foods
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAB | Lactic Acid Bacteria |
GRAS | Generally Regarded as Safe |
QPS | Qualified Presumption of Safety |
FFs | Functional Foods |
GI | Gastrointestinal |
GIT | Gastrointestinal Tract |
SCOBY | Symbiotic Culture of Bacteria and Yeast |
SDGs | Sustainable Development Goals |
SCI | Spinal Cord Injury |
PPOIT | Probiotic and Peanut Oral Immunotherapy |
FOSs | Fructooligosaccharides |
GOSs | Galactooligosaccharides |
CLA | Conjugated Linoleic Acid |
Aw | Water Activity |
EPSs | Exopolysaccharides |
EFSA | European Food Safety Authority |
GPP | Grape Pomace Pectin |
References
- FAO/WHO. Health and Nutrition Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. 2001. Available online: https://www.iqb.es/digestivo/pdfs/probioticos.pdf (accessed on 18 July 2025).
- ISAPP (International Scientific Association for Probiotics and Prebiotics). The Definition of Probiotics: Twelve Years Later. 2013. Available online: https://www.gutmicrobiotaforhealth.com/the-definition-of-probiotics-twelve-years-later/ (accessed on 18 July 2025).
- O’Toole, P.W.; Marchesi, J.R.; Hill, C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017, 2, 17057. [Google Scholar] [CrossRef]
- Grujović, M.; Mladenović, K.; Semedo-Lemsaddek, T.; Laranjo, M.; Stefanović, O.D.; Kocić-Tanackov, S.D. 2022. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1537–1567. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Wei, X.; Xu, C.; Cavender, G.; Lin, W.; Sun, S. Invited review: Advances in yogurt development—Microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across different dairy and plant-based alternative sources. J. Dairy Sci. 2025, 108, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, S.; Homayouni-Rad, A.; Samadi Kafil, H.; Sarabi-aghdam, V.; Zeynolabedini, P.; pour Agha, B.; Madadi, S.A. Selection of appropriate probiotic yeasts for use in dairy products: A narrative review. Food Prod. Process. Nutr. 2025, 7, 13. [Google Scholar] [CrossRef]
- Leite, A.M.O.; Miguel, M.A.L.; Peixoto, R.S.; Ruas-Madiedo, P.; Paschoalin, V.M.F.; Mayo, B.; Delgado, S. Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains. J. Dairy Sci. 2015, 98, 3622–3632. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, M.; Ilavenil, S.; Kim, D.H.; Arasu, M.V.; Priya, K.; Choi, K.C. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian ryegrass (Lolium multiflorum) forage. Anaerobe 2015, 32, 90–97. [Google Scholar] [CrossRef]
- Mahmoudi, F.; Miloud, H.; Bettache, G.; Mebrouk, K. Identification and physiological properties of Bifidobactérium strains isolated from different origin. J. Food Sci. Engin. 2013, 3, 196–206. [Google Scholar]
- FAO (U.S. Food and Drug Administration). Generally Recognized as Safe (GRAS). Available online: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/default.htm (accessed on 18 July 2025).
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA (2017–2019). EFSA J. 2020, 18, 5966. [Google Scholar] [CrossRef]
- Duche, R.T.; Singh, A.; Wandhare, A.G.; Sangwan, V.; Sihag, M.K.; Nwagu, T.N.T.; Panwar, H.; Ezeogu, L.I. Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria. BMC Microbiol. 2023, 23, 142. [Google Scholar] [CrossRef]
- Mendonça, A.A.; Pinto-Neto, W.P.; da Paixão, G.A.; Santos, D.S.; De Morais, M.A.; De Souza, R.B. Journey of the probiotic bacteria: Survival of the fittest. Microorganisms 2022, 11, 95. [Google Scholar] [CrossRef]
- Russo, P.; López, P.; Capozzi, V.; de Palencia, P.F.; Dueñas, M.T.; Spano, G.; Fiocco, D. Beta-glucans improve growth, viability, and colonization of probiotic microorganisms. Int. J. Mol. Sci. 2012, 13, 6026–6039. [Google Scholar] [CrossRef] [PubMed]
- Enck, K.; Banks, S.; Yadav, H.; Welker, M.E.; Opara, E.C. Development of a novel oral delivery vehicle for probiotics. Curr. Pharm. Des. 2020, 26, 3134–3140. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E.; Akkermans, L.M.A.; Haller, D.; Hammerman, C.; Heimbach, J.T.; Hörmannsperger, G.; Huys, G. Safety assessment of probiotics for human use. Gut Microbes 2010, 1, 164–185. [Google Scholar] [CrossRef] [PubMed]
- Lawley, T.D.; Walker, A.W. Intestinal colonization resistance. Immunology 2013, 138, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hungin, A.; Mitchell, C.R.; Whorwell, P.; Mulligan, C.; Cole, O.; Agréus, L.; Fracasso, P.; Lionis, C.; Mendive, J.; Philippart de Foy, J.M.; et al. Systematic review: Probiotics in the management of lower gastrointestinal symptoms—An updated evidence-based international consensus. Aliment. Pharm. Ther. 2018, 47, 1054–1070. [Google Scholar] [CrossRef]
- Sanders, M.E.; Guarner, F.; Guerrant, R.; Holt, P.R.; Quigley, E.M.; Sartor, R.B.; Sherman, P.M.; Mayer, E.A. An update on the use and investigation of probiotics in health and disease. Gut 2013, 62, 787–796. [Google Scholar] [CrossRef]
- Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol. 2021, 12, 616713. [Google Scholar] [CrossRef]
- Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013, 4, 181–192. [Google Scholar] [CrossRef]
- Lau, L.Y.J.; Quek, S.Y. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. Food Bioeng. 2024, 3, 41–64. [Google Scholar] [CrossRef]
- Kim, K.T.; Yang, S.J.; Paik, H.D. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immune-enhancing activities. Food Sci. Biotechnol. 2021, 30, 257–265. [Google Scholar] [CrossRef]
- Nyanzi, R.; Jooste, P.J.; Buys, E.M. Invited review: Probiotic yogurt quality criteria, regulatory framework, clinical evidence, and analytical aspects. J. Dairy Sci. 2021, 104, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022, 11, e1260. [Google Scholar] [CrossRef] [PubMed]
- Shamekhi, S.; Lotfi, H.; Abdolalizadeh, J.; Bonabi, E.; Zarghami, N. An overview of yeast probiotics as cancer biotherapeutics: Possible clinical application in colorectal cancer. Clin. Transl. Oncol. 2020, 22, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Kelidkazeran, E.; Bouri Yildiz, M.; Sahin, F. In vitro assessment of biological and functional properties of potential probiotic strains isolated from commercial and dairy sources. Microorganisms 2025, 13, 970. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Chen, M.; Chen, Y.; Sun, H. The probiotic potential, safety, and immunomodulatory properties of Levilactobacillus brevis ZG2488: A novel strain isolated from healthy human feces. Fermentation 2025, 11, 287. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, H.; Lee, J.Y.; Won, G.; Choi, S.-I.; Kim, G.-H.; Kang, C.-H. The antioxidant, anti-diabetic, and anti-adipogenesis potential and probiotic properties of lactic acid bacteria isolated from human and fermented foods. Fermentation 2021, 7, 123. [Google Scholar] [CrossRef]
- Bakhti, S.Z.; Latifi-Navid, S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol. 2021, 21, 258. [Google Scholar] [CrossRef]
- Fguiri, I.; Ziadi, M.; Arroum, S.; Khorchani, T.; Mohamed, H. Probiotic potential and characterization of Enterococcus faecium strains isolated from camel milk: Implications for animal health and dairy products. Fermentation 2025, 11, 444. [Google Scholar] [CrossRef]
- Seifati, S.M.; Zaker, E.; Fesahat, F.; Zare, F.; Hekmatimoghaddam, S. Modulatory effect of probiotics on proinflammatory cytokine levels in acrylamide-treated rats. Biochem. Res. Int. 2021, 2021, 2268770. [Google Scholar] [CrossRef]
- Cheng, J.; Laitila, A.; Ouwehand, A.C. Bifidobacterium animalis subsp. lactis HN019 effects on gut health: A review. Front. Nutr. 2021, 8, 790561. [Google Scholar] [CrossRef]
- Cousin, F.J.; Jouan-Lanhouet, S.; Théret, N.; Brenner, C.; Jouan, E.; Le Moigne-Muller, G.; Dimanche-Boitrel, M.; Jan, G. The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer. Oncotarget 2016, 7, 7161–7178. [Google Scholar] [CrossRef] [PubMed]
- Talwalkar, A.; Kailasapathy, K. A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Compr. Rev. Food Sci. Food Saf. 2004, 3, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Talwalkar, A.; Kailasapathy, K. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr. Issues Intest. Microbiol. 2004, 5, 1–8. [Google Scholar]
- Abbasi, A.; Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Baghbanzadeh, A. Antigenotoxicity and cytotoxic potentials of cell-free supernatants derived from Saccharomyces cerevisiae var. boulardii on HT-29 human colon cancer cell lines. Probiotics Antimicrob. Proteins 2023, 15, 1583–1595. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Martin, P.; Florez, A.B.; Hernández-Barranco, A.; Mayo, B. Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control 2008, 19, 62–70. [Google Scholar] [CrossRef]
- Lama, S.; Tamang, J.P. Isolation of yeasts from some homemade fermented cow-milk products of Sikkim and their probiotic characteristics. Fermentation 2022, 8, 664. [Google Scholar] [CrossRef]
- Homayouni-Rad, A.; Azizi, A.; Oroojzadeh, P.; Pourjafar, H. Kluyveromyces marxianus as a probiotic yeast: A mini-review. Curr. Nutr. Food Sci. 2020, 16, 1163–1169. [Google Scholar] [CrossRef]
- Zou, J.; Zhou, C.; Feng, C.; Chang, X.; Ding, M.; Liu, W. Kluyveromyces marxianus fermentation improves tomato sensory profile, functional metabolites, lycopene bioaccessibility, and human fecal microbiota composition. Food Chem. 2025, 493, 145813. [Google Scholar] [CrossRef]
- Angulo, M.; Reyes-Becerril, M.; Medina-Córdova, N.; Tovar-Ramírez, D.; Angulo, C. Probiotic and nutritional effects of Debaryomyces hansenii on animals. Appl. Microbiol. Biotechnol. 2020, 104, 7689–7699. [Google Scholar] [CrossRef]
- Álvarez, M.; Andrade, M.J.; Cebrián, E.; Roncero, E.; Delgado, J. Perspectives on the probiotic potential of indigenous moulds and yeasts in dry-fermented sausages. Microorganisms 2023, 11, 1746. [Google Scholar] [CrossRef]
- Nicaud, J.M. Yarrowia lipolytica . Yeast 2012, 29, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Al Halim, L.R.A.; Hemeda, N.F.; Serag, A.M. Isolation, characterization, and screening of yeast biodiversity for multi-hydrolytic enzymes. J. Umm Al-qura Univ. Appl. Sci. 2024, 10, 474–484. [Google Scholar] [CrossRef]
- Kahve, H.İ. In vitro evaluation of the technological and probiotic potential of Pichia kudriavzevii strains isolated from traditional fermented foods. Curr. Microbiol. 2023, 80, 379. [Google Scholar] [CrossRef] [PubMed]
- Piraine, R.E.A.; Retzlaf, G.M.; Gonçalves, V.S.; Cunha, R.C.; Conrad, N.L.; Bochman, M.L.; Leite, F.P.L. Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Eur. Food Res. Technol. 2023, 249, 133–148. [Google Scholar] [CrossRef]
- Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic viability in yoghurt: A review of influential factors. Int. Dairy J. 2020, 109, 104793. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Zhang, G.; Sadiq, F.A.; Simal-Gandara, J.; Xiao, J.; Sang, Y. Probiotics in the dairy industry-advances and opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3937–3982. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Batista, P.; Penas, M.R.; Pintado, M.; Oliveira-Silva, P. Kombucha: Perceptions and future prospects. Foods 2022, 11, 1977. [Google Scholar] [CrossRef]
- Song, D.; Ibrahim, S.; Hayek, S. Recent application of probiotics in food and agricultural science. In Probiotics; Rigobelo, E.C., Ed.; InTech Open: London, UK, 2012. [Google Scholar] [CrossRef]
- Thøgersen, R.; Gray, N.; Kuhnle, G.; Van Hecke, T.; De Smet, S.; Young, J.F.; Sundekilde, U.K.; Hansen, A.K.; Bertram, H.C. Inulin-fortification of a processed meat product attenuates formation of nitroso compounds in the gut of healthy rats. Food Chem. 2020, 302, 125339. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Penna, A.L.B.; Lorenzo, J.M.; Silva Barretto, A.C. Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat Sci. 2020, 159, 107936. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; da Silva Barretto, A.C.; Santos, E.M.; Lorenzo, J.M. Functional fermented meat products with probiotics-A review. J. Appl. Microbiol. 2022, 133, 91–103. [Google Scholar] [CrossRef] [PubMed]
- UNDP (United Nations Development Program). Sustainable Development Goals Report. 2021. Available online: https://unstats.un.org/sdgs/report/2021/The-Sustainable-Development-Goals-Report-2021.pdf (accessed on 18 July 2025).
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining protein nutrition through plant-based foods. Front. Nutr. 2022, 8, 772573. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Kataria, P.; Nautiyal, M.; Tuteja, I.; Sharma, V.; Ahmad, F.; Haque, S.; Shahwan, M.; Capanoglu, E.; Vashishth, R.; et al. Comprehensive review on the role of plant protein as a possible meat analogue: Framing the future of meat. ACS Omega 2023, 8, 23305–23319. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Duncan, A.; Messina, V.; Lynch, H.; Kiel, J.; Erdman, J.W. The health effects of soy: A reference guide for health professionals. Front. Nutr. 2022, 9, 970364. [Google Scholar] [CrossRef]
- Kumari, M.; Kokkiligadda, A.; Dasriya, V.; Naithani, H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J. Appl. Microbiol. 2022, 133, 104–119. [Google Scholar] [CrossRef]
- Elhalis, H.; Chin, X.H.; Chow, Y. Soybean fermentation: Microbial ecology and starter culture technology. Crit. Rev. Food. Sci. Nutr. 2023, 64, 7648–7670. [Google Scholar] [CrossRef]
- Mojikon, F.D.; Kasimin, M.E.; Molujin, A.M.; Gansau, J.A.; Jawan, R. Probiotication of nutritious fruit and vegetable juices: An alternative to dairy-based probiotic functional products. Nutrients 2022, 14, 3457. [Google Scholar] [CrossRef]
- Jeong, C.H.; Sohn, H.; Hwang, H.; Lee, H.J.; Kim, T.W.; Kim, D.S.; Kim, C.S.; Han, S.G.; Hong, S.W. Comparison of the probiotic potential between Lactiplantibacillus plantarum isolated from kimchi and standard probiotic strains isolated from different sources. Foods 2021, 10, 2125. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Salovaara, H. Lactic acid bacteria in cereal-based products: Microbiological and functional aspects. In Lactic Acid Bacteria, 5th ed.; Vinderola, G., Ouwehand, A., Salminen, S., von Wright, A., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 227–245. [Google Scholar] [CrossRef]
- Kedia, G.; Vázquez, J.A.; Pandiella, S.S. Fermentability of whole oat flour, PeriTec flour and bran by Lactobacillus plantarum. J. Food Engin. 2008, 89, 246–249. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Kvakova, M.; Bertkova, I.; Stofilova, J.; Savidge, T.C. Co-encapsulated synbiotics and immobilized probiotics in human health and gut microbiota modulation. Foods 2021, 10, 1297. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Jamous, A.; O’Driscoll, J.; Sekhar, R.; Weldon, M.; Yau, C.Y.; Hirani, S.P.; Grimble, G.; Forbes, A. A Lactobacillus casei Shirota probiotic drink reduces antibiotic-associated diarrhoea in patients with spinal cord injuries: A randomised controlled trial. Br. J. Nutr. 2014, 111, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Kato-Kataoka, A.; Nishida, K.; Takada, M.; Kawai, M.; Kikuchi-Hayakawa, H.; Suda, K.; Ishikawa, H.; Gondo, Y.; Shimizu, K.; Matsuki, T.; et al. Fermented milk containing Lactobacillus casei strain shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl. Environ. Microbiol. 2016, 82, 3649–3658. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.L.K.; Ponsonby, A.-L.; Orsini, F.; Tey, D.; Robinson, M.; Su, E.L.; Licciardi, P.; Burks, A.W.; Donath, S. Combined probiotic and peanut oral immunotherapy for the treatment of peanut allergy: A randomised trial. J. Allergy Clin. Immunol. 2015, 135, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Gilliland, S.E. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr. 1999, 18, 43–50. [Google Scholar] [CrossRef]
- Kullisaar, T.; Songisepp, E.; Mikelsaar, M.; Zilmer, K.; Vihalemm, T.; Zilmer, M. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br. J. Nutr. 2003, 90, 449–456. [Google Scholar] [CrossRef]
- Songisepp, E.; Kals, J.; Kullisaar, T.; Mandar, R.; Hutt, P.; Zilmer, M.; Mikelsaar, M. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr. J. 2005, 4, 22. [Google Scholar] [CrossRef]
- Ito, M.; Kusuhara, S.; Yokoi, W.; Sato, T.; Ishiki, H.; Miida, S.; Matsui, A.; Nakamori, K.; Nonaka, C.; Miyazaki, K. Streptococcus thermophilus fermented milk reduces serum MDA-LDL and blood pressure in healthy and mildly hypercholesterolaemic adults. Benef. Microbes 2017, 8, 171–178. [Google Scholar] [CrossRef]
- Bernini, L.J.; Simão, A.N.; Alfieri, D.F.; Lozovoy, M.A.; Mari, N.L.; de Souza, C.H.; Dichi, I.; Costa, G.N. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition 2016, 32, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Dore, M.P.; Bibbò, S.; Fresi, G.; Bassotti, G.; Pes, G.M. Side effects associated with probiotic use in adult patients with inflammatory bowel disease: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2019, 11, 2913. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Shoenfeld, Y.; Matthias, T. Probiotics: If it does not help it does not do any harm. Really? Microorganisms 2019, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Turna, N.S.; Chung, R.; McIntyre, L. A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon 2024, 10, e24501. [Google Scholar] [CrossRef] [PubMed]
- Maftei, N.M.; Raileanu, C.R.; Balta, A.A.; Ambrose, L.; Boev, M.; Marin, D.B.; Lisa, E.L. The potential impact of probiotics on human health: An update on their health-promoting properties. Microorganisms 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Katkowska, M.; Garbacz, K.; Kusiak, A. Probiotics: Should all patients take them? Microorganisms 2021, 9, 2620. [Google Scholar] [CrossRef]
- Sen, M. Role of probiotics in health and disease-A review. Int. J. Adv. Life Sci. Res. 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Doron, S.; Snydman, D. Risk and safety of probiotics. Clin. Infect. Dis. 2015, 60, 129–134. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Djilas, M.D.; Stefanović, O.D.; Čomić, L.R. In vitro evaluation of antimicrobial potential and ability of biofilm formation of autochthonous Lactobacillus spp. and Lactococcus spp. isolated from traditionally made cheese from Southeastern Serbia. J. Food Process. Preserv. 2018, 42, 13776. [Google Scholar] [CrossRef]
- Muruzović, M.; Mladenović, K.; Petrović, T.; Čomić, L. Characterization of lactic acid bacteria isolated from traditionally made Serbian cheese and evaluation of their antagonistic potential against Enterobacteriaceae. J. Food Process. Preserv. 2018, 42, e13577. [Google Scholar] [CrossRef]
- Xiong, T.; Song, S.; Huang, X.; Feng, C.; Liu, G.; Huang, J.; Xie, M. Screening and identification of functional Lactobacillus specific for vegetable fermentation. J. Food Sci. 2013, 78, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Li, X.; Guan, Q.; Peng, F.; Xie, M. Starter culture fermentation of Chinese sauerkraut: Growth, acidification and metabolic analyses. Food Control 2014, 41, 122–127. [Google Scholar] [CrossRef]
- Grujović, M.Ž.; Marković, K.G.; Morais, S.; Semedo-Lemsaddek, T. Unveiling the potential of lactic acid bacteria from Serbian goat cheese. Foods 2024, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Ivanov, I.; Tsigoriyna, L.; Valcheva, N.; Vasileva, E.; Parvanova-Mancheva, T.; Arsov, A.; Petrov, K. Traditional Bulgarian dairy products: Ethnic foods with health benefits. Microorganisms 2021, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Shim, J.M.; Park, S.-K.; Heo, H.-J.; Kim, H.-J.; Ham, K.-S.; Kim, J.H. Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT Food Sci. Technol. 2016, 71, 130–137. [Google Scholar] [CrossRef]
- Kazou, M.; Grafakou, A.; Tsakalidou, E.; Georgalaki, M. Zooming into the microbiota of home-made and industrial kefir produced in Greece using classical microbiological and amplicon-based metagenomics analyses. Front. Microbiol. 2021, 12, 621069. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.K.A.; Wang, B.; Lima, E.M.F.; Shebeko, S.K.; Ermakov, A.M.; Khramova, V.N.; Ivanova, I.V.; Rocha, R.d.S.; Vaz-Velho, M.; Mutukumira, A.N.; et al. Kombucha: An old tradition into a new concept of a beneficial, health-promoting beverage. Foods 2025, 14, 1547. [Google Scholar] [CrossRef]
- Adesemoye, E.T.; Sanni, A.I.; Spano, G.; Capozzi, V.; Fragasso, M. Lactic acid bacteria diversity in fermented foods as potential bio-resources contributing to alleviate malnutrition in developing countries: Nigeria as a Case Study. Fermentation 2025, 11, 103. [Google Scholar] [CrossRef]
- Dan, T.; Hu, H.; Tian, J.; He, B.; Tai, J.; He, Y. Influence of Different Ratios of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Yogurt. Molecules 2023, 28, 2123. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, L.; Ai, M.; Qiao, Y.; Liu, G.; Fan, X.; Lv, X.; Feng, Z. Nutrient requirements of Lactobacillus casei Shirota and their application in fermented milk. LWT 2020, 118, 108735. [Google Scholar] [CrossRef]
- Mitropoulou, G.; Nedovic, V.; Goyal, A.; Kourkoutas, Y. Immobilization technologies in probiotic food production. J. Nutr. Metab. 2013, 2013, 716861. [Google Scholar] [CrossRef] [PubMed]
- Stasiak-Różańska, L.; Gawor, J.; Piwowarek, K.; Fabiszewska, A.; Aleksandrzak-Piekarczyk, T. Co-fermentation and genomic insights into lactic acid bacteria for enhanced propionic acid production using a non-gmo approach. Foods 2025, 14, 1573. [Google Scholar] [CrossRef] [PubMed]
- Alraddadi, F.A.J.; Ross, T.; Powell, S.M. Evaluation of the microbial communities in kefir grains and kefir over time. Int. Dairy J. 2023, 136, 105490. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Wu, A.; Ju, C.; Jiang, J.; Chen, J. Multiple-strain Lactobacillus-fermented soymilk with antioxidant capacity and delicate flavour. Int. J. Food Sci. Technol. 2021, 56, 6052–6061. [Google Scholar] [CrossRef]
- Jørgensen, C.E.; Abrahamsen, R.K.; Rukke, E.-O.; Hoffmann, T.K.; Johansen, A.-G.; Skeie, S.B. Processing of highprotein yoghurt—A review. Int. Dairy J. 2019, 88, 42–59. [Google Scholar] [CrossRef]
- González-Herrera, S.M.; Bermúdez-Quiñones, G.; Ochoa-Martínez, L.A.; Rutiaga-Quiñones, O.M.; Gallegos-Infante, J.A. Synbiotics: A technological approach in food applications. J. Food Sci. Technol. 2021, 58, 811–824. [Google Scholar] [CrossRef]
- Illippangama, A.U.; Jayasena, D.D.; Cheorun, J.; Mudannayake, D.C. Inulin as a functional ingredient and their applications in meat products. Carbohydr. Polym. 2022, 275, 118706. [Google Scholar] [CrossRef]
- Hekmat, S.; Reid, G. Sensory properties of probiotic yogurt is comparable to standard yogurt. Nutr. Res. 2006, 26, 163–166. [Google Scholar] [CrossRef]
- Aragon-Alegro, L.C.; Alegro, J.H.A.; Cardarelli, H.R.; Chiu, M.C.; Saad, S.M.I. Potentially probiotic and synbiotic chocolate mousse. LWT-Food Sci. Technol. 2007, 40, 669–675. [Google Scholar] [CrossRef]
- Oliveira, L.B.; Jurkiewicz, C.H. Influence of inulin and acacia gum on the viability of probiotic bacteria in synbiotic fermented milk. Braz. J. Food Technol. 2009, 12, 138–144. [Google Scholar] [CrossRef]
- Chollet, M.; Gille, D.; Schmid, A.; Walther, B.; Piccinali, P. Acceptance of sugar reduction in flavored yogurt. J. Dairy Sci. 2013, 96, 5501–5511. [Google Scholar] [CrossRef] [PubMed]
- McCain, H.R.; Kaliappan, S.; Drake, M.A. Invited review: Sugar reduction in dairy products. J. Dairy Sci. 2018, 101, 8619–8640. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.G.; Cavalcanti, R.N.; Guerreiro, L.M.R.; Sant’Ana, A.S.; Nogueira, L.C.; Oliveira, C.A.F.; Deliza, R.; Cunha, R.L.; Faria, J.A.F.; Bolini, H.M.A. Developing a prebiotic yogurt: Rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. J. Food Eng. 2013, 114, 323–330. [Google Scholar] [CrossRef]
- Mobasserfar, R.; Shiri, A.; Mofid, V.; Shahidi Noghabi, M.; Taghi Gharibzahedi, S.M. Grape pomace high-methoxyl pectin: A new prebiotic stabilizer for low-fat synbiotic yogurt gels—Optimization and characterization. Int. J. Biol. Macromol. 2024, 282, 137139. [Google Scholar] [CrossRef]
- Muniz Pereira, C.T.; Muniz Pereira, D.; André Bolini, H.M. Influence of a prebiotic and natural sweeteners on the sensory profile of skyr yogurt with mango pulp. J. Food Sci. 2021, 86, 2626–2639. [Google Scholar] [CrossRef]
- Allgeyer, L.C.; Miller, M.J.; Lee, S.-Y. Sensory and microbiological quality of yogurt drinks with prebiotics and probiotics. J. Dairy Sci. 2010, 93, 4471–4479. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Sakadani, E.; Kandylis, P. Enhancing probiotic viability in yogurt: The role of apple fibers in supporting Lacticaseibacillus casei ATCC 393 during storage and gastrointestinal transit. Foods 2025, 14, 376. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two faces of fermented foods—The benefits and threats of its consumption. Front. Microbiol. 2022, 13, 845166. [Google Scholar] [CrossRef]
- Behl, M.; Thakar, S.; Ghai, H.; Sakhuja, D.; Kumar Bhatt, A. Chapter 21—Fundamentals of fermentation technology. In Basic Biotechniques for Bioprocess and Bioentrepreneurship; Bhatt, A.K., Bhatia, R.K., Bhalla, T.C., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 313–328. [Google Scholar] [CrossRef]
- Martínez-Cuesta, M.C.; Peláez, C.; Requena, T. Chapter 6: Laboratory simulators of the colon microbiome. In Microbiome and Metabolome in Diagnosis, Therapy, and Other Strategic Applications; Faintuch, J., Faintuch, S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 61–67. [Google Scholar] [CrossRef]
- Chan, M.Z.A.; Tan, L.T.; Heng, S.W.Q.; Liu, S.Q. Effect of co-fermentation of Saccharomyces boulardii CNCM-I745 with four different probiotic lactobacilli in coffee brews on cell viabilities and metabolic activities. Fermentation 2023, 9, 219. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Meybodi, N.; Mortazavian, A. Probiotic supplements and food products: A comparative approach. Biochem. Pharmacol. 2017, 6, 1000227. [Google Scholar] [CrossRef]
- Nami, Y.; Vaseghi Bakhshayesh, R.; Manafi, M.; Hejazi, M.A. Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. LWT 2019, 111, 876–882. [Google Scholar] [CrossRef]
- Prezzi, L.E.; Lee, S.H.I.; Nunes, V.M.R.; Corassin, C.H.; Pimentel, T.C.; Rocha, R.S.; Ramos, G.L.P.A.; Guimarães, J.T.; Balthazar, C.F.; Duarte, M.C.K.H.; et al. Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese. Food Microbiol. 2020, 92, 103557. [Google Scholar] [CrossRef] [PubMed]
- Arbex, P.M.; Moreira, M.E.C.; Toledo, R.C.L.; de Morais Cardoso, L.; Pinheiro-Sant’ana, H.M.; dos Anjos Benjamin, L.; Licursi, L.; Carvalho, C.W.P.; Aparecida Vieira Queiroz, V.; Stampini Duarte Martino, H. Extruded sorghum flour (Sorghum bicolor L.) modulate adiposity and inflammation in high fat diet-induced obese rats. J. Funct. Food 2018, 42, 346–355. [Google Scholar] [CrossRef]
- Cuffia, F.; George, G.; Godoy, L.; Vinderola, G.; Reinheimer, J.; Burns, P. In vivo study of the immunomodulatory capacity and the impact of probiotic strains on physicochemical and sensory characteristics: Case of pasta filata soft cheeses. Food Res. Int. 2019, 125, 108606. [Google Scholar] [CrossRef]
- Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhao, X.; Zhang, J.; ud Din, J.; Chen, C.; Cao, Y.; Yang, Z. Physicochemical and microbiological properties of synbiotic yogurt made with probiotic yeast Saccharomyces boulardii in combination with inulin. Foods 2019, 8, 468. [Google Scholar] [CrossRef]
- Stadnik, J.; Dolatowski, Z.J. Effect of inoculation with probioticsand ageing time on selected functional properties and oxidation of proteins in dry-cured pork loins. Int. J. Food Prop. 2014, 17, 866–876. [Google Scholar] [CrossRef]
- Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiol. 2010, 27, 1–11. [Google Scholar] [CrossRef]
- Holko, I.; Hrabě, J.; Šalaková, A.; Rada, V. The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis. Meat Sci. 2013, 94, 275–279. [Google Scholar] [CrossRef]
- Paul, M.M.; Anand, N.; Raj, A.; Raghavendra, S.N. Technological challenges for future probiotic foods. Intl. J. Ferment. Food 2021, 10, 35–50. [Google Scholar] [CrossRef]
- Bhutto, R.A.; ul ain Hira Bhutto, N.; Mahar, H.; Khanal, S.; Wang, M.; Iqbal, S.; Fan, Y.; Yi, J. Recent trends in co-encapsulation of probiotics with prebiotics and their applications in the food industry. Trends Food Sci. Technol. 2025, 156, 104829. [Google Scholar] [CrossRef]
- Senaka Ranadheera, C.; Evans, C.A.; Adams, M.C.; Baines, S.K. Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J. Funct. Foods 2014, 8, 18–25. [Google Scholar] [CrossRef]
- Rodríguez, L.G.R.; Gasga, V.M.Z.; Pescuma, M.; Van Nieuwenhove, C.; Mozzi, F.; Burgos, J.A.S. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Res. Int. 2021, 140, 109854. [Google Scholar] [CrossRef] [PubMed]
- Naseem, Z.; Mir, S.A.; Wani, S.M.; Rouf, M.A.; Bashir, I.; Zehra, A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition 2023, 115, 112154. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Buzzanca, C.; Pistorio, E.; Melilli, M.G.; Di Stefano, V. Fruit juices as alternative to dairy products for probiotics’ intake. Beverages 2024, 10, 100. [Google Scholar] [CrossRef]
- Min, M.; Bunt, C.R.; Mason, S.L.; Hussain, M.A. Non-dairy probiotic food products: An emerging group of functional foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 2626–2641. [Google Scholar] [CrossRef]
- el-Sohaimy, S.A.; Shehata, M.G.; Mehany, T.; Zeitoun, M.A. Nutritional, physicochemical, and sensorial evaluation of flat bread supplemented with quinoa flour. Int. J. Food Sci. 2019, 2019, 4686727. [Google Scholar] [CrossRef]
- Mirzamani, S.; Bassiri, A.R.; Tavakolipour, H.; Azizi, M.H.; Kargozari, M. Survival of fluidized bed encapsulated Lactobacillus acidophilus under simulated gastro-intestinal conditions and heat treatment during bread baking. J. Food Meas. Charact. 2021, 15, 5477–5484. [Google Scholar] [CrossRef]
- Hauser, K.; Matthes, J. Medical students’ medication communication skills regarding drug prescription-a qualitative analysis of simulated physician-patient consultations. Eur. J. Clin. Pharmacol. 2017, 73, 429–435. [Google Scholar] [CrossRef]
- Zhang, L.; Taal, M.A.; Boom, R.M.; Chen, X.D.; Schutyser, M.A.I. Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread. LWT 2018, 87, 318–325. [Google Scholar] [CrossRef]
- Waghmode, M.; Gunjal, A.; Patil, N. Probiotic sugar confectionery fortified with flax seeds (Linum usitatissimum L.). J. Food Sci. Technol. 2020, 57, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Hadi, J.; Gutierrez-Maddox, N.; Li, Y.; Leung, I.K.H.; Gao, Y.; Shu, Q.; Quek, S.Y. Sensory, microbiological, and physicochemical characterisation of functional manuka honey yogurts containing probiotic Lactobacillus reuteri DPC16. Foods 2020, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Jan Mei, S.; Mohd Nordin, M.S.; Norrakiah, A.S. Fructooligosaccharides in honey and effects of honey on growth of Bifidobacterium longum BB 536. Int. Food Res. J. 2010, 17, 557–561. [Google Scholar]
- ŽugićPetrović, T.; Tomović, V.M.; Marković, K.G.; Semedo-Lemsaddek, T.; Grujović, M.Ž. Probiotics and honey: Boosting functional properties in dry fermented sausages. Microorganisms 2025, 13, 349. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.P.S.; Perego, P.; Oliveira, M.N.; Converti, A. Effect of inulin as prebiotic and synbiotic interactions between probiotics to improve fermented milk firmness. J. Food Eng. 2011, 107, 36–40. [Google Scholar] [CrossRef]
- Bahrudin, M.F.; Abdul-Rani, R.; Tamil, A.M.; Mokhtar, N.M.; Raja-Ali, R.A. Effectiveness of sterilized symbiotic drink containing Lactobacillus helveticus comparable to probiotic alone in patients with constipation-predominant irritable bowel syndrome. Dig. Dis. Sci. 2020, 65, 541–549. [Google Scholar] [CrossRef]
- Li, H.; Zhang, T.; Li, C.; Zheng, S.; Li, H.; Yu, J. Development of a microencapsulated synbiotic product and its application in yoghurt. LWT-Food Sci. Technol. 2020, 122, 109033. [Google Scholar] [CrossRef]
- Haji-Ghafarloo, M.; Jouki, M.; Tabari, M. Production and characterization of synbiotic doogh, a yogurt-based Iranian drink by gum arabic, ginger extract and B. bifidum. J. Food Sci. Technol. 2020, 57, 1158–1166. [Google Scholar] [CrossRef]
- Klobukowski, J.; Modzelewska-Kapitula, M.; Kornacki, K. Calcium bioavailability from diets based on white cheese containing probiotics or synbiotics in short-time study in rats. Pak. J. Nutr. 2009, 8, 933–936. [Google Scholar] [CrossRef]
- Araújo, E.A.; de Carvalho, A.F.; Leandro, E.S.; Furtado, M.M.; de Moraes, C.A. Development of a symbiotic cottage cheese added with Lactobacillus delbrueckii UFV H2b20 and inulin. J. Funct. Foods. 2010, 2, 85–88. [Google Scholar] [CrossRef]
- Langa, S.; van den Bulck, E.; Peirotén, A.; Gaya, P.; Schols, H.A.; Arqués, J.L. Application of lactobacilli and prebiotic oligosaccharides for the development of a synbiotic semi-hard cheese. LWT-Food Sci. Technol. 2019, 114, 108361. [Google Scholar] [CrossRef]
- Chong, A.Q.; Lau, S.W.; Chin, N.L.; Talib, R.A.; Basha, R.K. Fermented beverage benefits: A comprehensive review and comparison of kombucha and kefir microbiome. Microorganisms 2023, 11, 1344. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Conesa, D.; López, G.; Abellán, P.; Ros, G. Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J. Sci. Food Agric. 2006, 86, 2327–2336. [Google Scholar] [CrossRef]
- Di Criscio, T.; Fratianni, A.; Mignogna, R.; Cinquanta, L.; Coppola, R.; Sorrentino, E.; Panfili, G. Production of functional probiotic, prebiotic, and synbiotic ice creams. J. Dairy Sci. 2010, 93, 4555–4564. [Google Scholar] [CrossRef] [PubMed]
- Peres, J.; Esmerino, E.; Silva, A.L.; Racowski, I.; Bolini, H. Sensory profile, drivers of liking, and influence of information on the acceptance of low-calorie synbiotic and probiotic chocolate ice cream. J. Food Sci. 2018, 83, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Pasqualin Cavalheiro, C.; Ruiz-Capillas, C.; Herrero, A.M.; Jiménez-Colmenero, F.; Ragagnin de Menezes, C.; Fries, L.L.M. Application of probiotic delivery systems in meat products. Trends Food Sci. Technol. 2015, 46, 120–131. [Google Scholar] [CrossRef]
- Li, Z.; Song, Y.; Tang, Q.; Duan, X.; Sheng, L. Effect of lactic acid bacteria fermentation on spray-dried egg yolk powder: Powder characteristics, structural properties and gastrointestinal digestibility. Innov. Food Sci. Emerg. Technol. 2024, 97, 103797. [Google Scholar] [CrossRef]
- Mourad, R.; Aljanabi, I.; Csehi, B.; Hidas, K.; Kókai, Z.; Friedrich, L.; Németh, C.; Gupta, V.K.; Gábor, S.; Alpár, B.; et al. Simultaneous blending and fermentation of ToTu™ an egg-white drink with different fruit juices and probiotic lactic acid bacteria. Food Bioprod. Process. 2025, 150, 198–206. [Google Scholar] [CrossRef]
- Mantzouridou, F.; Spanou, A.; Kiosseoglou, V. An inulin-based dressing emulsion as a potential probiotic food carrier. Food Res. Int. 2012, 46, 260–269. [Google Scholar] [CrossRef]
- Mani-López, E.; Ramírez-Corona, N.; López-Malo, A. Advances in probiotic incorporation into cereal-based baked foods: Strategies, viability, and effects–A review. Appl. Food Res. 2023, 3, 100330. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Emon, D.D.; Toma, M.A.; Nupur, A.H.; Karmoker, P.; Iqbal, A.; Aziz, M.G.; Alim, M.A. Recent advances in probiotication of fruit and vegetable juices. J. Adv. Vet. Anim. Res. 2023, 10, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.M.; Lima, J.R.; Wurlitzer, N.J.; Rodrigues, T.C. Non-dairy cashew nut milk as a matrix to deliver probiotic bacteria. Food Sci. Technol. 2020, 40, 604–607. [Google Scholar] [CrossRef]
- Rasika, D.M.D.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-based milk substitutes as emerging probiotic carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Praveen, M.A.; Parvathy, K.; Patra, S.; Khan, I.; Natarajan, P.; Balasubramanian, P. Cytotoxic and pharmacokinetic studies of Indian seaweed polysaccharides for formulating raindrop synbiotic candy. Int. J. Biol. Macromol. 2020, 154, 557–566. [Google Scholar] [CrossRef]
- Santos, D.X.; Casazza, A.A.; Aliakbarian, B.; Bedani, R.; Saad, S.M.I.; Perego, P. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT 2019, 99, 404–410. [Google Scholar] [CrossRef]
- Moon, J.E.; Heo, W.; Lee, S.H.; Lee, S.H.; Lee, H.G.; Lee, J.H.; Kim, Y.J. Trehalose protects the probiotic yeast Saccharomyces boulardii against oxidative stress-induced cell death. J. Microbiol. Biotechnol. 2020, 30, 54. [Google Scholar] [CrossRef]
- Abid, R.; Waseem, H.; Ali, J.; Ghazanfar, S.; Muhammad Ali, G.; Elasbali, A.M.; Alharethi, S.H. Probiotic yeast Saccharomyces: Back to nature to improve human health. J. Fungi 2022, 8, 444. [Google Scholar] [CrossRef]
- Grattepanche, F.; Lacroix, C. Production of viable probiotic cells. In Microbial Production of Food Ingredients, Enzymes and Nutraceuticals; McNeil, B., Archer, D., Giavasis, I., Harvey, L., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 321–352. [Google Scholar] [CrossRef]
- Matouskova, P.; Hoova, J.; Rysavka, P.; Marova, I. Stress effect of food matrices on viability of probiotic cells during model digestion. Microorganisms 2021, 9, 1625. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Eweys, A.S.; Zhang, J.Y.; Zhu, Y.; Bai, J.; Darwesh, O.M.; Zhang, H.B.; Xiao, X. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 2021, 10, 2004. [Google Scholar] [CrossRef] [PubMed]
- Østlie, H.M.; Treimo, J.; Narvhus, J.A. Effect of temperature on growth and metabolism of probiotic bacteria in milk. Int. Dairy J. 2005, 15, 989–997. [Google Scholar] [CrossRef]
- Liu, X.; Champagne, C.P.; Lee, B.H.; Boye, J.I.; Casgrain, M. Thermostability of Probiotics and Their α-Galactosidases and the Potential for Bean Products. Biotechnol. Res. Int. 2014, 2014, 472723. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Bae, D.-W.; Lim, K.; Griffiths, M.W.; Oh, S. Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing. Intern. J. Food Microbiol. 2014, 191, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, F.; Yazgan, H.; Ozogul, Y. Lactic acid bacteria: Lactobacillus acidophilus. In Encyclopedia of Dairy Sciences, 3rd ed.; Mc Sweeney, P.L., McNamara, J.P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 187–197. [Google Scholar]
- Žugić Petrović, T.; Tomović, V.M.; Kocić-Tanackov, S.; Marković, K.G.; Joković, N.; Radojević, I.D.; Grujović, M.Ž. Microbial dynamics and quality evolution in the spontaneous fermentation of the traditional meat product Sjenica sheep stelja. Fermentation 2025, 11, 221. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Čomić, L.R. In vitro evaluation of resistance to environmental stress by planktonic and biofilm form of lactic acid bacteria isolated from traditionally made cheese from Serbia. Food Biosci. 2018, 23, 54–59. [Google Scholar] [CrossRef]
- Wang, X.; Kang, Y.; Gao, L.; Zhao, Y.; Gao, Y.; Yang, G.; Li, S. The effect of salt reduction on the microbial community structure and metabolite composition of cheddar cheese. Foods 2024, 13, 4184. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Nguyen-Thi, T.U.; Nguyen, H.T.; Pham, M.N.; Nguyen, T.T. Halophilic lactic acid bacteria—Play a vital role in the fermented food industry. Folia Microbiol. 2024, 69, 305–321. [Google Scholar] [CrossRef]
- Putta, S.; Yarla, N.S.; Lakkappa, D.B.; Imandi, S.B.; Malla, R.R.; Chaitanya, A.K.; Chari, B.P.V.; Saka, S.; Vechalapu, R.R.; Kamal, M.A. Chapter 2—Probiotics: Supplements, food, pharmaceutical industry. In Therapeutic, Probiotic, and Unconventional Foods; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 15–25. [Google Scholar] [CrossRef]
- Gaba, K.; Anand, S. incorporation of probiotics and other functional ingredients in dairy fat-rich products: Benefits, challenges, and opportunities. Dairy 2023, 4, 630–649. [Google Scholar] [CrossRef]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for food quality and safety: Recent views and future challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, L.; Yang, Q. Partial replacement of nitrite with a novel probiotic Lactobacillus plantarum on nitrate, color, biogenic amines and gel properties of Chinese fermented sausages. Food Res. Int. 2020, 137, 109351. [Google Scholar] [CrossRef] [PubMed]
- Terán, L.C.; Orihuel, A.; Bentencourt, E.; Raya, R.; Fadda, S. Role of curing agents in the adaptive response of the bioprotective Latilactobacillus curvatus CRL 705 from a physiologic and proteomic perspective. Bacteria 2023, 2, 142–154. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Sibanda, T.; Marole, T.A.; Thomashoff, U.L.; Thantsha, M.S.; Buys, E.M. Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front. Microbiol. 2024, 15, 1327010. [Google Scholar] [CrossRef] [PubMed]
- Gumus, S.; Demirci, A.S. Survivability of probiotic strains, Lactobacillus fermentum CECT 5716 and Lactobacillus acidophilus DSM 20079 in grape juice and physico-chemical properties of the juice during refrigerated storage. Food Sci. Technol. Camp. 2022, 42, e08122. [Google Scholar] [CrossRef]
- Slima, B.S.; Ktari, N.; Trabelsi, M.T.I.; Abdeslam, A.; Moussa, H.; Makni, I.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C.; Salah, R.B. Effects of probiotic strains, Lactobacillus plantarum TN8 and Pediococcus acidilactici, on microbiological and physico-chemical characteristics of beef sausages. LWT 2018, 92, 195–203. [Google Scholar] [CrossRef]
- Martelli, A.; Mohamed, Y.O.A.; Gallego-Ferrer, G.; Gentile, P.; Girón-Hernández, J. Revolutionizing gut health: Advances in encapsulation strategies for probiotics and bioactive molecules. Biotechnol. Adv. 2025, 83, 108630. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Y.; Xu, H. Unlocking wellness: Probiotics as key drivers in functional food innovation and health promotion. Appl. Sci. 2025, 15, 6498. [Google Scholar] [CrossRef]
- Condurso, C.; Merlino, M.; Miller, A.; Di Rosa, A.R.; Accetta, F.; Leonardi, M.; Cicero, N.; Gervasi, T. Developing novel plant-based probiotic beverages: A study on viability and physicochemical and sensory stability. Foods 2025, 14, 2148. [Google Scholar] [CrossRef]
- D’Amico, V.; Cavaliere, M.; Ivone, M.; Lacassia, C.; Celano, G.; Vacca, M.; la Forgia, F.M.; Fontana, S.; De Angelis, M.; Denora, N.; et al. Microencapsulation of probiotics for enhanced stability and health benefits in dairy functional foods: A focus on pasta filata cheese. Pharmaceutics 2025, 17, 185. [Google Scholar] [CrossRef]
- Laina, K.T.; Drosou, C.; Frakolaki, G.; Krokida, M. Advancing Probiotic Delivery in Functional Yogurt: Encapsulation in Prebiotic-Based Matrices. Foods 2025, 14, 1423. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Tarapoulouzi, M.; Varzakas, T.; Jafari, S.M. Application of encapsulation strategies for probiotics: From individual loading to co-encapsulation. Microorganisms 2023, 11, 2896. [Google Scholar] [CrossRef] [PubMed]
- Rajam, R.; Subramanian, P. Encapsulation of probiotics: Past, present and future. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 46. [Google Scholar] [CrossRef]
- Barajas-Álvarez, P.; González-Ávila, M.; Espinosa-Andrews, H. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation. Food Rev. Int. 2023, 39, 992–1013. [Google Scholar] [CrossRef]
- Vinitha, K.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Size-dependent enhancement in salt perception: Spraying approaches to reduce sodium content in foods. Powder Technol. 2021, 378, 237–245. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Alrosan, M.; Gammoh, S.; Tranchant, C.C.; Alhamad, M.N.; Rababah, T.; Zghoul, R.; Alzoubi, H.; Ghatasheh, S.; Ghozlan, K.; et al. Encapsulation-based technologies for bioactive compounds and their application in the food industry: A roadmap for food-derived functional and healthy ingredients. Food Biosci. 2022, 50, 101971. [Google Scholar] [CrossRef]
- Duary, R.K.; Kumar, A.; Mahato, D.K.; Pandhi, S.; Premjit, Y.; Rai, D.C. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavor release and mathematical modelling. Food Res. Int. 2022, 151, 110879. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, L.; Li, Y.; Chen, Q.; Wang, L.; Farag, M.A.; Liu, L.; Zhan, S.; Wu, Z.; Liu, L. Soy protein isolate-citrus pectin composite hydrogels induced by TGase and ultrasonic treatment: Potential targeted delivery system for probiotics. Food Hydrocoll. 2023, 143, 108901. [Google Scholar] [CrossRef]
- Esposto, B.S.; Jauregi, P.; Martelli-Tosi, M.; Tapia-Blacido, D.R. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci. Technol. 2021, 108, 40–48. [Google Scholar] [CrossRef]
- Centurion, F.; Basit, A.W.; Liu, J.; Gaisford, S.; Rahim, M.A.; Kalantar-Zadeh, K. Nanoencapsulation for probiotic delivery. ACS nano 2021, 15, 18653–18660. [Google Scholar] [CrossRef]
- Bu, W.; Mcclements, D.J.; Zhang, Z.; Zhang, R.; Jin, Z.; Chen, L. Encapsulation method of probiotic embedded delivery system and its application in food. Food Hydrocoll. 2025, 159, 110625. [Google Scholar] [CrossRef]
- Sun, Q.; Yin, S.; He, Y.; Cao, Y.; Jiang, C. Biomaterials and encapsulation techniques for probiotics: Current status and future prospects in biomedical applications. Nanomaterials 2023, 13, 2185. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yan, X.; Zheng, H.; Li, J.; Wu, X.; Xu, J.; Zhen, Z.; Du, C. The application of encapsulation technology in the food Industry: Classifications, recent Advances, and perspectives. Food Chem. X 2024, 21, 101240. [Google Scholar] [CrossRef] [PubMed]
- Safaeian Laein, S.; Samborska, K.; Can Karaca, A.; Parisa Mostashari, P.; Akbarbaglu, Z.; Sarabandi, K.; Mahdi Jafari, S. Strategies for further stabilization of lipid-based delivery systems with a focus on solidification by spray-drying. Trends Food Sci. Tech. 2024, 146, 104412. [Google Scholar] [CrossRef]
- Cheng, J.; Li, X.; Ke, T.; Gong, J.; Jiang, T.; Chen, L. Advances in polysaccharide-based probiotic delivery systems: A review. Carbohydr. Polym. Technol. Appl. 2025, 10, 100804. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of freeze-dried immobilized Lactobacillus casei as probiotic adjunct culture in yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef] [PubMed]
- Dimitrellou, D.; Kandylis, P.; Lević, S.; Petrović, T.; Ivanović, S.; Nedović, V.; Kourkoutas, Y. Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. LWT 2019, 116, 108501. [Google Scholar] [CrossRef]
- Mandal, S.; Hati, S.; Puniya, A.K.; Singh, R.; Singh, K. Development of symbiotic milk chocolate using encapsulated Lactobacillus casei NCDC 298. J. Food Process. Preserv. 2012, 37, 1031–1037. [Google Scholar] [CrossRef]
- Sidira, M.; Saxami, G.; Dimitrellou, D.; Santarmaki, V.; Galanis, A.; Kourkoutas, Y. Monitoring survival of Lactobacillus casei ATCC 393 in probiotic yogurts using an efficient molecular tool. J. Dairy Sci. 2013, 96, 3369–3377. [Google Scholar] [CrossRef]
- Ortakci, F.; Sert, S. Stability of free and encapsulated Lactobacillus acidophilus ATCC, 4356 in yogurt and in an artificial human gastric digestion system. J. Dairy Sci. 2012, 95, 6918–6925. [Google Scholar] [CrossRef]
- Krunić, T.; Obradović, N.S.; Rakin, M.B. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. 2019, 293, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Ainsley, R.A.; Champagne, C.P.; Gardner, N.; Fustier, P.; Vuillemard, J.C. Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. J. Food Sci. 2007, 72, 31–37. [Google Scholar] [CrossRef]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.S.; Grosso, C.R.F.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Ahmadi, A.; Milani, E.; Madadlou, A.; Mortazavi, S.A.; Mokarram, R.R.; Salarbashi, D. Synbiotic yogurt-ice cream produced via incorporation of microencapsulated Lactobacillus acidophilus (la-5) and fructooligosaccharide. J. Food Sci. Technol. 2014, 51, 1568–7154. [Google Scholar] [CrossRef] [PubMed]
- Teneva, D.; Denkova, Z.; Denkova-Kostova, R.; Goranov, B.; Kostov, G.; Slavchev, A.; Hristova-Ivanova, Y.; Uzunova, G.; Degraeve, P. Biological preservation of mayonnaise with Lactobacillus plantarum LBRZ12, dill, and basil essential oils. Food Chem. 2021, 344, 128707. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, L.-F.; Ştefănescu, B.E.; Pop, I.D.; Muntean, L.; Vodnar, D.C. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings 2019, 9, 194. [Google Scholar] [CrossRef]
- Saarela, M.; Virkajärvi, I.; Nohynek, L.; Vaari, A.; Mättö, J. Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. Int. J. Food Microbiol. 2006, 112, 171–178. [Google Scholar] [CrossRef]
- Zadeike, D.; Gaizauskaite, Z.; Basinskiene, L.; Zvirdauskiene, R.; Cizeikiene, D. Exploring Calcium Alginate-Based Gels for Encapsulation of Lacticaseibacillus paracasei to Enhance Stability in Functional Breadmaking. Gels 2024, 10, 641. [Google Scholar] [CrossRef]
- Teh, S.-S.; Rosma, A.; Wan-Abdullah, W.-N.; Min-Tze, L. Evaluation of agrowastes as immobilizers for probiotics in soy milk. J. Agric. Food Chem. 2009, 57, 10187–10198. [Google Scholar] [CrossRef]
- Muthukumarasamy, P.; Holley, R.A. Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int. J. Food Microbiol. 2006, 111, 164–169. [Google Scholar] [CrossRef]
- King, V.A.-E.; Huang, H.-Y.; Tsen, J.-H. Fermentation of tomato juice by cell immobilized Lactobacillus acidophilus. Mid-Taiwan J. Med. 2007, 12, 1–7. [Google Scholar]
- Praepanitchai, O.-A.; Noomhorm, A.; Anal, A.K. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. Biomed. Res. Int. 2019, 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Nualkaekul, S.; Lenton, D.; Cook, M.T.; Khutoryanskiy, V.V.; Charalampopoulos, D. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydr. Polym. 2012, 90, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Suharja, A.A.; Henriksson, A.; Liu, S.Q. Impact of Saccharomyces cerevisiae on viability of probiotic Lactobacillus rhamnosus in fermented milk under ambient conditions. J. Food Process. Preserv. 2014, 38, 326–337. [Google Scholar] [CrossRef]
- Ponomarova, O.; Gabrielli, N.; Sévin, D.C.; Mülleder, M.; Zirngibl, K.; Bulyha, K.; Andrejev, S.; Kafkia, E.; Typas, A.; Sauer, U. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 2017, 5, 345–357. [Google Scholar] [CrossRef]
- Sieuwerts, S.; Bron, P.A.; Smid, E.J. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT 2018, 90, 201–206. [Google Scholar] [CrossRef]
- Ismail, B.; Nampoothiri, K.M. Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. J. Food Sci. Technol. 2014, 51, 4012–4018. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Balthazar, C.F.; Silva, R.; Esmerino, E.A.; Silva, M.C.; Sant’Ana, A.S.; Duarte, M.C.K.H.; Freitas, M.Q.; Cruz, A.G. Impact of probiotics and prebiotics on food texture. Curr. Opin. Food Sci. 2020, 33, 38–44. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Silva, H.L.A.; Esmerino, E.A.; Rocha, R.S.; Moraes, J.; Carmo, M.A.V.; Azevedo, L.; Camps, I.; Abud, Y.K.D.; Sant’Anna, C.; et al. The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chem. 2018, 246, 464–472. [Google Scholar] [CrossRef]
- Escobar, M.C.; Van Tassell, M.L.; Martinez-Bustos, F.; Singh, M.; Castano-Tostado, E.; Amaya-Llano, S.L.; Miller, M.J. Characterization of a Panela cheese with added probiotics and fava bean starch. J. Dairy Sci. 2012, 95, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control 2019, 100, 8–16. [Google Scholar] [CrossRef]
- Miranda, R.F.; de Paula, M.M.; da Costa, G.M.; Barão, C.E.; da Silva, A.C.R.; Raices, R.S.L.; Gomes, R.G.; Pimentel, T.C. Orange juice added with L. casei: Is there an impact of the probiotic addition methodology on the quality parameters? LWT 2019, 106, 186–193. [Google Scholar] [CrossRef]
- Juvonen, R.; Honkapää, K.; Maina, N.H.; Shi, Q.; Viljanen, K.; Maaheimo, H.; Virkki, L.; Tenkanen, M.; Lantto, R. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). Int. J. Food Microbiol. 2015, 207, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Ghosh, K.; Pal, S.; Halder, S.K.; Ghosh, C.; Mondal, K.C. Biofortification of multi-grain substrates by probiotic yeast. Food Biotechnol. 2020, 34, 283–305. [Google Scholar] [CrossRef]
- Rajkowska, K.; Kunicka-Styczyńska, A. Probiotic activity of Saccharomyces cerevisiae var. boulardii against human pathogens. Food Technol. Biotechnol. 2012, 50, 230–236. [Google Scholar]
- Liu, Y.; Galani Yamdeu, J.H.; Gong, Y.Y.; Orfila, C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The Link between the Consumer and the Innovations in Food Product Development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Szakos, D.; Ózsvári, L.; Kasza, G. Perception of Older Adults about Health-Related Functionality of Foods Compared with Other Age Groups. Sustainability 2020, 12, 2748. [Google Scholar] [CrossRef]
- Safraid, G.F.; Portes, C.Z.; Dantas, R.M.; Batista, Â.G. Perception of functional food consumption by adults: Is there any difference between generations? Braz. J. Food Technol. 2024, 27, e2023095. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, N.; Chan, S.W. How Do Socio-Demographic Factors, Health Status, and Knowledge Influence the Acceptability of Probiotics Products in Hong Kong? Foods 2024, 13, 2971. [Google Scholar] [CrossRef] [PubMed]
- Salas-García, M.A.; Bernal-Orozco, M.F.; Díaz-López, A.; Betancourt-Núñez, A.; Nava-Amante, P.A.; Vizmanos, B. Associations of sociodemographic characteristics with food choice motives’ importance among Mexican Adults: A cross-sectional analysis. Foods 2025, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-R.; Chung, S.-J.; Adhikari, K.; Shin, H.; Cho, H.; Nam, Y. Cross-cultural consumer acceptability for ethnic fermented sauce products: Comparisons among Korean, UAE, and US consumers. Foods 2020, 9, 1463. [Google Scholar] [CrossRef] [PubMed]
- Hay, C.; de Matos, A.D.; Low, J.; Feng, J.; Lu, D.; Day, L.; Hort, J. Comparing cross-cultural differences in perception of drinkable yoghurt by Chinese and New Zealand European consumers. Int. Dairy J. 2021, 113, 104901. [Google Scholar] [CrossRef]
- Greis, M.; Nolden, A.A.; Kinchla, A.J.; Puputti, S.; Seppä, L.; Sandell, M. What if plant-based yogurts were like dairy yogurts? texture perception and liking of plant-based yogurts among US and Finnish consumers. Food Qual. Prefer. 2023, 107, 104848. [Google Scholar] [CrossRef]
- García-Barón, S.E.; Carmona-Escutia, R.P.; Herrera-López, E.J.; Leyva-Trinidad, D.A.; Gschaedler-Mathis, A. Consumers’ drivers of perception and preference of fermented food products and beverages: A systematic review. Foods 2025, 14, 713. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/eli/reg/2006/1924/oj/eng (accessed on 18 July 2025).
- Palanivelu, J.; Thanigaivel, S.; Vickram, S.; Dey, N.; Mihaylova, D.; Desseva, I. Probiotics in functional foods: Survival assessment and approaches for improved viability. Appl. Sci. 2022, 12, 455. [Google Scholar] [CrossRef]
- FAO/WHO (Food and Agriculture Organization/World Health Organization). Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food Nutr. Pap. 2006, 85, 1–50. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/382476b3-4d54-4175-803f-2f26f3526256/content (accessed on 18 July 2025).
- Merenstein, D.; Guzzi, J.; Sanders, M.E. More information needed on probiotic supplement product labels. J. Gen. Intern. Med. 2019, 34, 2735–2737. [Google Scholar] [CrossRef]
- 21 CFR Part 117; Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventive Controls for Human Food. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-117 (accessed on 18 July 2025).
- 253. FDA (U.S. Food and Drug Administration). HACCP Principles & Application Guidelines. 1997. Available online: https://www.fda.gov/food/hazard-analysis-critical-control-point-haccp/haccp-principles-application-guidelines#princ (accessed on 18 July 2025).
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M.; et al. Probiotics: Mechanism of action, health benefits and their application in food industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef]
- Pio Ávila, B.; Pinto da Rosa, P.; Albandes Fernandes, T.; Garavaglia Chesini, R.; Aristimunho Sedrez, P.; de Oliveira, A.P.T.; Mota, G.N.; Arocha Gularte, M.; Buttow Roll, V.F. Analysis of the perception and behaviour of consumers regarding probiotic dairy products. Int. Dairy J. 2020, 106, 104703. [Google Scholar] [CrossRef]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for plant-based diets: Challenges and innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Shirley Berue, M.S.R.D. Probiotic juice drink: GoodBelly. J. Renal Nutr. 2010, 20, 29–32. [Google Scholar] [CrossRef]
- Sutula, J.; Coulthwaite, L.A.; Thomas, L.V.; Verran, J. The effect of a commercial probiotic drink containing Lactobacillus casei strain Shirota on oral health in healthy dentate people. Microb. Ecol. Health Dis. 2013, 29, 24. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Healthy chocolate enriched with probiotics: A review. Food Sci. Technol. Campinas 2021, 41, 531–543. [Google Scholar] [CrossRef]
- Niro, C.M.; Mendonça, G.M.N.; Paulino, L.R.; Soares, V.F.; Azeredo, H.M.C. Freeze-dried banana slices carrying probiotic bacteria. Foods 2023, 12, 2282. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; Hernández-Figueroa, R.H.; López-Malo, A.; Morales-Camacho, J.I. Viability and functional impact of probiotic and starter cultures in salami-type fermented meat products. Front. Chem. 2024, 12, 1507370. [Google Scholar] [CrossRef] [PubMed]
- Soccol, C.; Prado, M.; Garcia, L.; Rodrigues, C.; Medeiros, A.; Soccol, V. Current developments in probiotics. J. Microb. Biochem. Technol. 2014, 7, 11–20. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rajendraprasad, S.; Ozkan, M.; Ramachandran, D.; Ahmad, S.; Bakken, J.S.; Laudanski, K.; Gajic, O.; Bauer, B.; Zec, S.; et al. Safety, feasibility, and impact on the gut microbiome of kefir administration in critically ill adults. BMC Med. 2024, 22, 80. [Google Scholar] [CrossRef]
- Mori, N.; Kano, M.; Masuoka, N.; Konno, T.; Suzuki, Y.; Miyazaki, K.; Ueki, Y. Effect of probiotic and prebiotic fermented milk on skin and intestinal conditions in healthy young female students. Biosci. Microbiota Food Health 2016, 35, 105–112. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Pastoriza, S.; Gironés, A.; Avellaneda, A.; Pilar Francino, M.; Rufián-Henares, J.A. Potential probiotic salami with dietary fiber modulates metabolism and gut microbiota in a human intervention study. J. Funct. Foods 2020, 66, 103790. [Google Scholar] [CrossRef]
- Hung, Y.; Verbeke, W. Consumer evaluation, use and health relevance of health claims in the European Union. Food Qual. Prefer. 2019, 74, 88–99. [Google Scholar] [CrossRef]
- İnce Palamutoğlu, M.; Bilgi, E.; Horzum, M.; Kılıç, Z.; Karaca Çelilk, K.E. Determination of consumers’ knowledge levels and consumption status on probiotic and prebiotic products. Food Health 2023, 9, 193–200. [Google Scholar] [CrossRef]
- Flach, J.; van der Waal, M.B.; van den Nieuwboer, M.; Claassen, E.; Larsen, O.F.A. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Crit. Rev. Food Sci. Nutr. 2018, 58, 2570–2584. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Zoumpopoulou, G.; Foligné, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Front. Microbiol. 2015, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; He, Z.; Wang, G.; Ma, Y.; Zhang, F. Interaction between microbiota and immunity: Molecular mechanisms, biological functions, diseases, and new therapeutic opportunities. MedComm. 2025, 6, 70265. [Google Scholar] [CrossRef]
- Gibbons, S.M.; Gurry, T.; Lampe, J.W.; Chakrabarti, A.; Dam, V.; Everard, A.; Goas, A.; Gross, G.; Kleerebezem, M.; Lane, J.; et al. Perspective: Leveraging the gut microbiota to predict personalized responses to dietary, prebiotic, and probiotic interventions. Adv. Nutr. 2022, 13, 1450–1461. [Google Scholar] [CrossRef]
- Merenstein, D.; Pot, B.; Leyer, G.; Ouwehand, A.C.; Preidis, G.A.; Elkins, C.A.; Hill, C.; Lewis, Z.T.; Shane, A.L.; Zmora, N.; et al. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023, 15, 2185034. [Google Scholar] [CrossRef]
- Penha Rodrigues Pereira, E.; Silva da Graça, J.; Manfrinato Ferreira, B.; Fasura Balthazar, C.; Xavier-Santos, D.; França Bezerril, F.; Magnani, M.; Sant’Ana, A.S. What are the main obstacles to turning foods healthier through probiotics incorporation? A review of functionalization of foods by probiotics and bioactive metabolites. Food Res. Int. 2024, 176, 113785. [Google Scholar] [CrossRef]
- Njolke Mafe, A.; Iruoghene Edo, G.; Majeed, O.S.; Sumer Gaaz, T.; Othuke Akpoghelie, P.; Fegor Isoje, E.; Augustina Igbuku, U.; Oghenewogaga Owheruo, J.; Ajiri Opiti, R.; Garba, Y.; et al. A review on probiotics and dietary bioactives: Insights on metabolic well-being, gut microbiota, and inflammatory responses. Food Chem. Adv. 2025, 6, 100919. [Google Scholar] [CrossRef]
Probiotic Strain(s) | Benefit and Outcome | Reference |
---|---|---|
Lactobacillus johnsonii La1, Ligilactobacillus salivarius (formerly classified as Lactobacillus salivarius), Lb. acidophilus LB, Lactiplantibacillus plantarum, Lcb. rhamnosus | Improve lactose tolerance and digestion through inhibition of pathogen growth and reduced urease activity, aiding survival in acidic stomach environments | [24,27] |
Lcb. rhamnosus GG, GR-1, LC-705, Lcb. casei (incl. Shirota), Lb. acidophilus (incl. HN017, LA-2), Lmb. reuteri RC-14, Levilactobacillus brevis | Support microbiota homeostasis; improve intestinal function and immune response; prevent/treat diarrhea and genitourinary infections; modulate gut microbiota and inflammation in IBS; aid in colon cancer prevention; restore vaginal microbiota | [23,24,28] |
Lcb. rhamnosus MG4502, Lactobacillus gasseri MG4524, Lmb. reuteri MG5149, Weissella cibaria MG5285 | Exhibit antioxidant activity through DPPH and ABTS radical scavenging assays and α-glucosidase inhibitory activities; promote anti-adipogenesis by reducing lipid accumulation | [29] |
Lactobacillus spp. (general) | Control Helicobacter pylori colonization; aid in cholesterol reduction and B-vitamin synthesis | [30] |
Enterococcus faecium | Inhibit the growth of pathogens such as Listeria innocua, Micrococcus luteus, Escherichia coli | [31] |
S. thermophilus | Improve intestinal microbial balance and function, especially in combination with other probiotics; immune stimulation (cytokine release) | [24,32] |
Bifidobacterium spp. (including B. bifidum, B. lactis BB-12, HN019, B. animalis subsp. lactis) | Support gut microbial balance; prevent/treat infectious diarrhea; aid in cholesterol reduction and B-vitamin synthesis; contribute to immune response; help prevent allergic symptoms and colon cancer | [24,33] |
Propionibacterium spp. (P. freudenreichii) | Contribute to colon cancer prevention when combined with other probiotic strains | [24,34] |
S. boulardii | Inhibit growth of harmful intestinal bacteria, supporting gut health | [35,36] |
S. cerevisiae | Provide antigenotoxic and cytotoxic effects; enhances gut health, flavor, and probiotic function | [37] |
S. cerevisiae, S. boulardii | Enhance dairy production efficiency, milk yield, and quality; improve nutrient digestibility and microbial protein synthesis; normalize gut flora; treat gastrointestinal disorders | [38,39] |
Kluyveromyces lactis, K. marxianus | Produce beneficial dairy enzymes; improve dairy product performance, texture, flavor, and probiotic qualities; improve human fecal microbiota composition | [40,41] |
Debaryomyces hansenii | Produce aromatic compounds that enhance flavor and reduce fermentation time in cheese production; shows probiotic effects in animal models; possesses antioxidant, antimicrobial, and immune-modulating properties | [42,43] |
Yarrowia lipolytica | Produce enzymes for fat breakdown, enhancing texture and taste | [44] |
Candida milleri | Promote digestive health and enhance the immune system by fostering a balanced gut microbiome | [26] |
Candida stellimalicola, Cyberlindnera (Pichia) jadinii | Improve lactate degradation during fermentation in dairy products (Dadih) | [45] |
Pichia kudriavzevii (esp. strain 5S5) | Show strong probiotic traits, like gastrointestinal tract (GIT) survival, adhesion, hydrophobicity | [46] |
Pichia kluyveri LAR001 | Tolerate low pH (2.5); survives gastrointestinal (GI) conditions; exhibits antimicrobial activity | [47] |
Hanseniaspora uvarum PIT001 | Exhibit probiotic potential under GI stress conditions | [47] |
Candida intermedia ERQ001 | Exhibit probiotic potential under various fermentation conditions | [47] |
Probiotic | Dosage | Duration of Study | Participants | Health Benefit | Reference |
---|---|---|---|---|---|
Lcb. casei Shirota | Probiotic drink with live Lcb. casei Shirota 6.5 × 109 | 21 days | 164 spinal cord injury (SCI) patients | Reduction of antibiotic-associated diarrhea in hospitalized SCI patients | [71] |
Yakult (Lcb. casei Shirota) | 1 bottle of fermented milk per day; 1 × 1011 CFU per bottle | 8 weeks | 23 normally nourished students, aged 23 years | Alleviation of stress-induced intestinal dysfunction symptoms | [72] |
Lcb. rhamnosus CGMCC 1.3724 | Probiotic and peanut oral immunotherapy (PPOIT) | 2 to 5 weeks | 64 children (1–10 years) with peanut allergy | Effective in inducing possible sustained immune changes that suggest modulation of the peanut-specific immune response | [73] |
Lb. acidophilus L1 | 200 g of yogurt with Lb. acidophilus L1 | 10 weeks | 48 volunteers with blood cholesterol concentrations ranging from 5.40 to 8.32 mmol/L | 2.4% reduction in cholesterol levels compared to the placebo group | [74] |
Limosilactobacillus fermentum ME-3 (formerly classiefied as Lactobacillus fermentum) | Fermented goat milk, unknown daily consumption amount | 3 weeks | 21 volunteers | Extended protection period against lipoprotein oxidation, and reduced levels of oxidized LDL, peroxidized lipoproteins, 8-isoprostane, and improved glutathione redox ratio | [75] |
Fermented milk (6.3 × 1011 CFU daily); capsules (1.6 × 109 CFU daily) | 3 weeks | 21 volunteers for fermented milk; 24 volunteers for capsules | Improved total antioxidant activity and antioxidant status in blood: 6% and 9% for fermented milk, and 4% and 2.5% for capsules | [76] | |
S. thermophilus | Daily intake of milk fermented with S. thermophilus (test group) and a placebo group (milk without the bacterium) | 12 weeks | 30 individuals with an average LDL cholesterol level of 140 mg/dL | Proven benefit for healthy individuals and patients with mild hyper-LDL-cholesterolemia | [77] |
Bifidobacterium lactis HN019 | Daily intake of 80 mL of milk fermented with 2.72 × 1010 CFU of B. lactis HN019 | 45 days | 51 patients with metabolic syndrome | 7.7% reduction in cholesterol levels; 13% reduction in LDL cholesterol | [78] |
Fermentation Method | Pros | Cons | Reference |
---|---|---|---|
Traditional spontaneous fermentation | Natural inoculation with diverse indigenous strains; enhances flavor complexity and cultural authenticity while remaining low-cost and requiring minimal equipment | Uncontrolled microbial composition poses safety risks; variability between batches and unpredictable probiotic levels may occur due to the lack of process control; potential safety risk due to pathogens | [4,115] |
Controlled batch fermentation | High reproducibility and safety under defined conditions; optimized pH, temperature, and oxygen control improve probiotic viability and yield, enabling industrial-scale production and regulatory compliance | Requires advanced control systems and higher operational costs; often limited to monocultures or defined consortia, reducing microbial diversity | [84,116,117] |
Immobilized cell fermentation | Enhanced probiotic stability and reusability; immobilization improves survival during processing and gastrointestinal transit, supports continuous fermentation, and may reduce long-term costs | Complex immobilization processes and scale-up challenges; mass transfer limitations and the cost of carriers can hinder industrial application | [98,117] |
Co-fermentation techniques | Synergistic microbial interactions boost probiotic performance; enhance vitamins, peptide, and bioactive production while improving texture and flavor profiles | Strain compatibility must be carefully managed; antagonism, competition, and the complexity of monitoring microbial dynamics can be challenging | [5,99,118] |
Synbiotic fermentation | Combines probiotics and prebiotics for synergistic effects; prebiotics improve probiotic survival and colonization, enhance nutrient bioavailability, inhibit spoilage organisms, and improve texture, especially in dairy and plant-based foods | Effectiveness depends on correct pairing of probiotics and prebiotics; formulation must be optimized to avoid loss of viability, increased costs, off-flavors, or undesirable texture changes; health claims require scientific validation | [103,110,115,119] |
Matrix | Key Features | Probiotic Strains | Prebiotics | Advantages | Challenges | References | |
---|---|---|---|---|---|---|---|
Dairy-Based | Fermented Skim Milk | Prepared from skim milk powder with added inulin | Lb. bulgaricus, Lb. acidophilus, Lcb. rhamnosus, B. lactis | Inulin | Improved viability of specific probiotic strains | Strain-specific responses and storage time significantly influence probiotic viability and product firmness | [144] |
Yogurt | Semi-solid fermented milk; buffering capacity | Lactobacillus helveticus, Lcb. casei, B. animalis | Polydextrose, Lactitol | Good probiotic survival; favorable sensory properties | Viability may decrease over prolonged storage | [145,146,147] | |
Cheese | Semi-hard/hard, low moisture, neutral pH | Lcb. paracasei, Lpb. plantarum, Lb. delbrueckii | FOS—1%, Inulin, Maltodextrin | Long shelf life; protects probiotics from acidity | Flavor changes if probiotic metabolism is excessive | [148,149,150] | |
Fermented Beverages (kombucha and kefir) | Liquid form; easily consumed; often fruit-flavored; health benefits | Lb. acidophilus, Lcb. casei, Lcb. rhamnosus, B. lactis, Bacillus coagulans and yeasts Km. marxianus, S. cerevisiae, S. boulardii | Sucrose, bee pollen, honey | Suitable for pediatrics and elderly; enhanced survival with stabilizers or encapsulation | Higher oxygen exposure; shear stress during processing | [151] | |
Infant Formula | Lyophilized probiotics and varying GOS levels were added to a milk-based formula; nutritional and mineral bioavailability assessments were conducted using a rat model | B. bifidum, B. longum | GOS—1.2%, 5% and 10% | Synbiotic formulas improved mineral bioavailability, particularly in younger rats | Lack of probiotic viability data at consumption point | [152] | |
Ice Cream/Frozen Desserts | Frozen dairy products; low acidity | Lcb. rhamnosus, Lcb. casei, Lb. acidophilus | Inulin | Cryoprotectants aid survival; appealing to children | Freezing stress; viability loss over time | [153,154] | |
Meat and egg-Based | Fermented Meat | Rich in protein, fat; fermentation promotes safety | B. longum, Enterococcus faecium, Lcb. casei Lcb. paracasei, Lcb. rhamnosus, Lpb. plantarum Lb. acidophilus, Llp. sakei, Lmb. fermentum, Pediococcus acidilactici | / | Improved flavor, safety; viable probiotics post-ripening | Salt and curing agents inhibit survival | [55] |
Cooked/Ready-to-Eat Meat | Heat processing; requires protection of probiotics | Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus genera | / | Convenient format; high protein content | Heat sensitivity; need encapsulation technologies | [155] | |
Dry-Cured Meat | Long curing, low moisture | Llb. curvatus, Llb. sakei | 0.2% organic sunflower honey or without prebiotics | Maintains viability over long shelf-life | Moisture reduction limits probiotic metabolism | [143] | |
Spray-Dried Egg Powder | High protein, low moisture | Lb. acidophilus | / | Stability during drying and storage | Limited commercial applications; heat during drying | [156] | |
Liquid Egg Products | Emulsifying, foaming properties | Lcb. casei, Lgb. salivarius | Different fruit juices | Functional stabilization of probiotics | Thermal processing can reduce viability | [157] | |
Egg-Based Dressings | Fat-rich, acidic | Lcb. paracasei subsp. paracasei | Inulin | Protection from acidity and fat matrix | Sensory challenges; antimicrobial egg components | [158] | |
Plant-Based | Cereal-Based | High in carbohydrates, β-glucans, dietary fiber | B. lactis, Lpb. plantarum, Lb. acidophilus, Lcb. casei, S. boulardii, B. coagulans, B. subtilis | / | Natural prebiotics; good texture and viscosity; supports probiotic growth | Low in essential amino acids; may need supplementation | [159] |
Legume-Based | High in protein, oligosaccharides, minerals | Lb. delbrueckii ssp. bulgaricus, Lb. acidophilus, Lcb. casei, Leuc. mesenteroides, Lpb. plantarum subsp. plantarum, Lcb. rhamnosus | / | Good buffering capacity; high nutritional value; stable viability | Beany flavor; requires flavor masking or enzymatic treatment | [160] | |
Fruit Juices | High in sugars, polyphenols, vitamins, antioxidants | Lpb. plantarum, Lb. acidophilus, Lcb. casei, Lcb. rhamnosus | FOS, GOS | Consumer-friendly flavor; antioxidant synergy; no need for added sugar | Low pH may reduce viability; phase separation | [134] | |
Vegetable Juices | Moderate sugar, high fiber, minerals, polyphenols | Lb. acidophilus, Lpb. plantarum, Lcb. rhamnosus, Lmb. reuteri, B. lactis | / | Nutrient-rich; supports functional benefits (e.g., antioxidants) | Astringent taste, color, and flavor may reduce acceptance | [161] | |
Nut-Based Beverages | Rich in fats (especially MUFA/PUFA), moderate protein, low sugar, no lactose | B. animalis, Lb. acidophilus, Lpb. plantarum | / | Appealing for vegan/clean-label products; healthy fats; pH around 6.5 | Moderate protein; emulsification and separation issues | [162] | |
Plant-based Beverages | High in omega-3 fatty acids, fiber, and phytochemicals, low protein | Lactobacillus and Bifidobacterium genera | / | Nutrient-dense; potential prebiotic effect, rich in vitamins | High microbial contamination, short shelf life, functional efficacy of probiotics was not investigated, stability concerns, flavor and texture inconsistencies, low nutritional value | [163] | |
Bakery products | Bread, Cookies, and Biscuits | Rich in carbohydrates, proteins, dietary fibers, nutritionally valuable food matrices, wide consumer acceptability | Encapsulated Lcb. rhamnosus and Lpb. plantarum | / | Non-dairy alternatives, catering to individuals with lactose intolerance or dairy allergies | High baking temperature, which can significantly reduce probiotic viability, probiotic stability during processing, storage, and gastrointestinal passage remains complex | [138,139] |
Confectionery and Snacks | Chocolate | Hight fat content | Leuc. mesenteroides | Flax seeds | Probiotic survived throughout the storage period, with antioxidant activity being retained in the product | Not defined | [140] |
Candy | High potential to benefit consumer health | Lpb. plantarum | Polysaccharide extracts from three different Indian seaweeds, inulin | High probiotic surveillance | Unknown influence on sensory acceptance | [164] | |
Mousse | Improved probiotic survival to in vitro gastrointestinal stress | Lb. acidophilus | Inulin, FOS | Probiotics and prebiotics proportion was kept constant | Not defined | [165] |
Commercial Product | Probiotic Strain(s) | Delivery Format/Technology | Claimed/Reported Benefits | Reference |
---|---|---|---|---|
Activia® Yogurt | B. lactis DN-173 010/CNCM I-2494 | Direct inoculation into milk base | Supports gut transit and microbiota balance | [262] |
Lifeway® Kefir | S. diacetylactis, Lb. lactis, Lb. rhamnosus, Lb. acidophilus, Lb. reuteri, Lpb. plantarum, Lcb. casei, Saccharomyces florentinus, Leuconostoc cremoris, B. longum, B. breve, B. lactis | Mixed culture, fermented milk drink | Supports immunity, digestion, and microbiota diversity | [263] |
SVELTY® Gastro Protect | Lb. johnsonii La1 | Fermented milk drink | Control H. pylori infection and stomach discomfort | [259] |
Yakult® 1000 | Lcb. casei Shirota | Fermented skim milk base and soybean with high probiotic count | Improves gut health; supports immune function; increases beneficial bacteria; reduces the harmful bacteria | [258] |
Yakult | B. brevis, GOS | Prevent dryness of the skin; beneficial effects on the intestinal conditions; stimulation of defecation; decrease in phenol production by gut bacteria | [264] | |
GoodBelly® Probiotic Juice | Lpb. plantarum 299v, B. lactis Bi-07, Lb. acidophilus | Refrigerated juice, direct inoculation | Supports digestive health; lactose-free; stimulates the immune system; synthesis of vitamins (vitamin B and vitamin K); absorption of key nutrients (calcium, magnesium, and iron) | [257] |
PERKii® | B. lactis, Lcb. casei | Natural fruit juices with no artificial colors, flavors, or sweeteners | Supports gastrointestinal health and immune system | [259] |
Attune® Probiotic Chocolate Bars | Lb. acidophilus, Lcb. casei, B. lactis | Dark chocolate coating as protective matrix; organic brown rice crisps | Supports digestive health; shelf-stable | [259] |
Probiotic Banana Bites | Bacillus coagulans | Spore-form probiotics in dried banana pieces | Digestive health; stable at ambient temperature | [260] |
Salgot® Fuet Probiotic Sausage | Lpb. plantarum (as a starter), Lb. acidophilus (as a probiotic) | Starter culture in dry-fermented sausage | Pathogen inhibition; improved flavor profile | [161] |
Lcb. rhamnosus HN001 | Probiotic culture | Improved inflammatory and immunological markers (CRP and TNFα); improved antioxidant plasmatic markers and butyrate production | [265] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grujović, M.Ž.; Semedo-Lemsaddek, T.; Marković, K.G. Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives. Foods 2025, 14, 3088. https://doi.org/10.3390/foods14173088
Grujović MŽ, Semedo-Lemsaddek T, Marković KG. Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives. Foods. 2025; 14(17):3088. https://doi.org/10.3390/foods14173088
Chicago/Turabian StyleGrujović, Mirjana Ž., Teresa Semedo-Lemsaddek, and Katarina G. Marković. 2025. "Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives" Foods 14, no. 17: 3088. https://doi.org/10.3390/foods14173088
APA StyleGrujović, M. Ž., Semedo-Lemsaddek, T., & Marković, K. G. (2025). Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives. Foods, 14(17), 3088. https://doi.org/10.3390/foods14173088