The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Raman Spectroscopy Acquisition
2.3. Data Analysis and Machine Learning
3. Results
3.1. Raman Spectra
3.2. Exploratory Analysis
3.3. Machine Learning Classification Performance
3.4. Specific Confusion Matrices (Example)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
RF | Random Forest |
SVM | Support Vector Machine |
References
- Spink, J.; Moyer, D.C. Defining the public health threat of food fraud. J. Food Sci. 2011, 76, R157–R163. [Google Scholar] [CrossRef] [PubMed]
- Rady, A.M.; Adedeji, A.; Watson, N.J. Feasibility of utilizing color imaging and machine learning for adulteration detection in minced meat. J. Agric. Food Res. 2021, 6, 100251. [Google Scholar] [CrossRef]
- Fengou, L.-C.; Lianou, A.; Tsakanikas, P.; Mohareb, F.; Nychas, G.-J.E. Detection of Meat Adulteration Using Spectroscopy-Based Sensors. Foods 2021, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Gan, M.; Xie, Z.; Zhou, C.; Li, M.; Wang, M.; Dai, H.; Huang, Z.; Chen, L.; Zhao, Y.; et al. Current progress on meat food authenticity detection methods. Food Control 2023, 152, 109842. [Google Scholar] [CrossRef]
- León-Ecay, S.; Insausti, K.; López-Maestresalas, A.; Prieto, N. Non-destructive spectroscopy-based technologies for meat and meat product discrimination—A review. Meat Sci. 2025, 228, 109893. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Nath, P.C.; Lodh, B.K.; Mukherjee, J.; Mahata, N.; Gopikrishna, K.; Tiwari, O.N.; Bhunia, B. Rapid and sensitive approaches for detecting food fraud: A review on prospects and challenges. Food Chem. 2024, 454, 139817. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, Z.; Li, J.; Lin, H. Raman spectroscopic techniques for nondestructive analysis of agri-foods: A state-of-the-art review. Trends Food Sci. Technol. 2021, 118, 490–504. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y. The applications of Raman spectroscopy in food science. Trends Food Sci. Technol. 1996, 7, 361–370. [Google Scholar] [CrossRef]
- Olsen, E.F.; Rukke, E.-O.; Flåtten, A.; Isaksson, T. Quantitative determination of saturated-, monounsaturated- and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci. 2007, 76, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Boyacı, İ.H.; Temiz, H.T.; Uysal, R.S.; Velioğlu, H.M.; Yadegari, R.J.; Rishkan, M.M. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chem. 2014, 148, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Nedeljković, A.; Rösch, P.; Popp, J.; Miočinović, J.; Radovanović, M.; Pudja, P. Raman Spectroscopy as a Rapid Tool for Quantitative Analysis of Butter Adulterated with Margarine. Food Anal. Methods 2016, 9, 1315–1320. [Google Scholar] [CrossRef]
- Nedeljkovic, A.; Tomasevic, I.; Miocinovic, J.; Pudja, P. Feasibility of discrimination of dairy creams and cream-like analogues using Raman spectroscopy and chemometric analysis. Food Chem. 2017, 232, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Dong, P.; Fengou, L.-C.; Nychas, G.-J.; Fowler, S.M.; Mao, Y.; Luo, X.; Zhang, Y. Preliminary investigation into the prediction of indicators of beef spoilage using Raman and Fourier transform infrared spectroscopy. Meat Sci. 2023, 200, 109168. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.G.; Hopkins, D.L.; Schmidtke, L.M.; Fowler, S.M. Assessing chemometric models developed using Raman spectroscopy and fatty acid data for Northern and Southern Australian beef production systems. Meat Sci. 2022, 187, 108753. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing, 4.4.0; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Beleites, C.S. Valter hyperSpec: A Package to Handle Hyperspectral Data Sets in R; 0.100.2; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2003. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Dimitriadou, E.; Hornik, K.; Leisch, F.; Meyer, D. E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 1.7-16; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Liaw, A.; Wiener, M.C. Classification and Regression by randomForest; R Foundation for Statistical Computing: Vienna, Austria, 2007. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Morhac, M. Peaks, 0.2. 2012. Available online: https://cran-archive.r-project.org/web/checks/2019/2019-04-18_check_results_Peaks.html (accessed on 29 July 2025).
- Tomasevic, I.N.; Nedeljković, A.; Stanisic, N.; Pudja, P. Authenticity assessment of cooked emulsified sausages using Raman spectroscopy and chemometrics. Fleischwirtschaft 2016, 96, 70–73. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Wiley: Chichester, UK, 2001. [Google Scholar]
- Qiu, J.; Hou, H.-Y.; Huyen, N.T.; Yang, I.-S.; Chen, X.-B. Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Appl. Sci. 2019, 9, 2807. [Google Scholar] [CrossRef]
Raman Shift (cm−1) | Assignment | Associated Component |
---|---|---|
1746 | C=O stretching vibration from triglycerides | Fat |
1659 | C=C cis double bond stretching vibration, characteristic of unsaturated fatty acids | Fat |
1440 | C–H bending from methylene groups | Fat |
1302 | C–H twisting vibration of the –CH2 group | Fat |
1266 | C–H bending vibration at the cis double bond in R–HC=(H–R) | Fat |
1082 and 1063 | C–C stretching vibration | Fat |
969 | C–N asymmetric stretching of the choline group (CH3)3N+ | Fat |
1650–1680 | Amide I | Protein |
1230–1300 | Amide III | Protein |
1003 | Phenylalanine ring breathing mode | Protein |
Treatment | Samples Spectra Used in Model | Machine Learning Algorithm | Accuracy of Classification Model | Kappa |
---|---|---|---|---|
Unhomogenized | P, B, L | SVM | 0.72 | 0,584 |
ANN | 0.47 | 0.209 | ||
Random Forests | 0.62 | 0.439 | ||
P, BP50, B | SVM | 0.61 | 0.099 | |
ANN | 0.66 | 0.487 | ||
Random Forests | 0.51 | 0.268 | ||
P, LP50, L | SVM | 0.62 | 0.419 | |
ANN | 0.55 | 0.316 | ||
Random Forests | 0.55 | 0.326 | ||
Homogenized | P, B, L | SVM | 0.95 | 0.922 |
ANN | 0.93 | 0.896 | ||
Random Forests | 0.86 | 0.793 | ||
P, BP50, B | SVM | 0.88 | 0.820 | |
ANN | 0.85 | 0.096 | ||
Random Forests | 0.86 | 0.262 | ||
P, LP50, L | SVM | 0.68 | 0.518 | |
ANN | 0.65 | 0.473 | ||
Random Forests | 0.65 | 0.473 | ||
Homogenized | P, B, L | SVM | 0.88 | 0.820 |
ANN | 0.77 | 0.112 | ||
Random Forests | 0.71 | 0.113 | ||
P, BP25, BP50, BP75, B | SVM | 0.56 | 0.454 | |
ANN | 0.51 | 0.386 | ||
Random Forests | 0.52 | 0.401 | ||
P, LP25, LP50, LP75, L | SVM | 0.86 | 0.820 | |
ANN | 0.78 | 0.724 | ||
Random Forests | 0.69 | 0.612 |
Sample | P | L | LP25 | LP50 | LP75 |
P | 30 | 0 | 0 | 0 | 0 |
L | 0 | 34 | 1 | 1 | 1 |
LP25 | 2 | 1 | 30 | 1 | 4 |
LP50 | 7 | 1 | 1 | 20 | 0 |
LP75 | 0 | 0 | 4 | 0 | 29 |
Additional metrics | |||||
Precision | 1.00 | 0.92 | 0.79 | 0.69 | 0.88 |
Recall | 0.77 | 0.94 | 0.83 | 0.91 | 0.86 |
F1 | 0.87 | 0.93 | 0.81 | 0.78 | 0.87 |
Overall Statistics: Accuracy: 0.86, Kappa: 0.82 |
Sample | P | B | BP25 | BP50 | BP75 |
P | 27 | 1 | 0 | 5 | 1 |
B | 1 | 19 | 1 | 11 | 1 |
BP25 | 0 | 7 | 20 | 0 | 4 |
BP50 | 5 | 4 | 4 | 15 | 5 |
BP75 | 6 | 5 | 11 | 1 | 13 |
Additional metrics | |||||
Precision | 0.79 | 0.58 | 0.65 | 0.45 | 0.36 |
Recall | 0.69 | 0.53 | 0.56 | 0.68 | 0.38 |
F1 | 0.74 | 0.55 | 0.60 | 0.55 | 0.37 |
Overall Statistics: Accuracy: 0.5629, Kappa: 0.4535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedeljkovic, A.; Maggiolino, A.; Rocchetti, G.; Sun, W.; Heinz, V.; Tomasevic, I.D.; Djordjevic, V.; Tomasevic, I. The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat. Foods 2025, 14, 3084. https://doi.org/10.3390/foods14173084
Nedeljkovic A, Maggiolino A, Rocchetti G, Sun W, Heinz V, Tomasevic ID, Djordjevic V, Tomasevic I. The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat. Foods. 2025; 14(17):3084. https://doi.org/10.3390/foods14173084
Chicago/Turabian StyleNedeljkovic, Aleksandar, Aristide Maggiolino, Gabriele Rocchetti, Weizheng Sun, Volker Heinz, Ivana D. Tomasevic, Vesna Djordjevic, and Igor Tomasevic. 2025. "The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat" Foods 14, no. 17: 3084. https://doi.org/10.3390/foods14173084
APA StyleNedeljkovic, A., Maggiolino, A., Rocchetti, G., Sun, W., Heinz, V., Tomasevic, I. D., Djordjevic, V., & Tomasevic, I. (2025). The Feasibility of Artificial Intelligence and Raman Spectroscopy for Determining the Authenticity of Minced Meat. Foods, 14(17), 3084. https://doi.org/10.3390/foods14173084