Insights into Microbial and Metabolite Profiles in Traditional Northern Thai Fermented Soybean (Tuanao) Fermentation Through Metagenomics and Metabolomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. NMR Spectroscopy
2.3. UHPLC-ESI-QTOF-MS/MS Analysis
2.4. Metagenomics and Functional Annotation
2.5. Statistical Analysis
3. Results
3.1. Metabolite Profiling of Fermented Soybeans
3.1.1. NMR Analysis
3.1.2. LC-MS Analysis
3.2. Metagenomic Analysis
3.2.1. Tuanao Communities Were Mainly Associated with Bacilliota and Enterobacterales
3.2.2. Metabolic Components Differed by Stages of Fermentation
3.2.3. Metabolic Contents Significantly Correlated with Bacterial Groupings
4. Discussion
4.1. Unveiling the Complexity of Tuanao Fermentation Through an Integrated Omics Lens
4.2. The Microbial Ecosystem of Tuanao: A Dynamic Succession Orchestrated Primarily by Bacillota
4.3. The Evolving Metabolome: Signatures of Microbial Biotransformation and Nutritional Enhancement
4.4. Unveiling the Health-Promoting Potential of Tuanao: A Mechanistic Perspective Based on Integrated Omics
4.5. Tuanao in the Context of Fermented Soy Foods and Scientific Advancements
4.6. Limitations and Future Research Trajectories
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayachandran, M.; Xu, B. An insight into the health benefits of fermented soy products. Food Chem. 2019, 271, 362–371. [Google Scholar] [CrossRef]
- Chukeatirote, E. Thua nao: Thai fermented soybean. J. Ethn. Foods 2015, 2, 115–118. [Google Scholar] [CrossRef]
- Wongputtisin, P.; Khanongnuch, C.; Kongbuntad, W.; Niamsup, P.; Lumyong, S.; Sarkar, P.K. Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application. Lett. Appl. Microbiol. 2014, 59, 328–333. [Google Scholar] [CrossRef]
- Wongputtisin, P.; Khanongnuch, C.; Khongbantad, W.; Niamsup, P.; Lumyong, S. Screening and selection of Bacillus spp. for fermented corticate soybean meal production. J. Appl. Microbiol. 2012, 113, 798–806. [Google Scholar] [CrossRef]
- Chen, T.; Wang, J.; Liu, Z.; Gao, F. Effect of supplementation with probiotics or synbiotics on cardiovascular risk factors in patients with metabolic syndrome: A systematic review and meta-analysis of randomized clinical trials. Front. Endocrinol. 2023, 14, 1282699. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Daily, J.W., 3rd; Kim, H.J.; Park, S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010, 30, 1–13. [Google Scholar] [CrossRef]
- Kulprachakarn, K.; Chaipoot, S.; Phongphisutthinant, R.; Paradee, N.; Prommaban, A.; Ounjaijean, S.; Rerkasem, K.; Parklak, W.; Prakit, K.; Saengsitthisak, B.; et al. Antioxidant Potential and Cytotoxic Effect of Isoflavones Extract from Thai Fermented Soybean (Thua-Nao). Molecules 2021, 26, 7432. [Google Scholar] [CrossRef]
- Sukhamwang, A.; Inthanon, S.; Dejkriengkraikul, P.; Semangoen, T.; Yodkeeree, S. Anti-Cancer Potential of Isoflavone-Enriched Fraction from Traditional Thai Fermented Soybean against Hela Cervical Cancer Cells. Int. J. Mol. Sci. 2024, 25, 9277. [Google Scholar] [CrossRef]
- Wongkarn, S.; Chewonarin, T.; Ruangsuriya, J.; Taya, S.; Dejkriengkraikul, P.; Yodkeeree, S. Biochemical Mechanism of Thai Fermented Soybean Extract on UVB-Induced Skin Keratinocyte Damage and Inflammation. Int. J. Mol. Sci. 2025, 26, 3418. [Google Scholar] [CrossRef]
- Sasi, M.; Kumar, S.; Hasan, M.; S, R.A.; Garcia-Gutierrez, E.; Kumari, S.; Prakash, O.; Nain, L.; Sachdev, A.; Dahuja, A. Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Crit. Rev. Food Sci. Nutr. 2023, 63, 9995–10013. [Google Scholar] [CrossRef]
- Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): Screening for aflatoxin B1 and ochratoxin A detoxification. J. Appl. Microbiol. 2008, 104, 1495–1502. [Google Scholar] [CrossRef]
- Chukeatirote, E.; Dai, D.-Q.; Karunarathna, S.C.; Tibpromma, S. Research Progress and Potential Application of Thua Nao. Discov. Food 2025, 5, 89. [Google Scholar] [CrossRef]
- Wongsurawat, T.; Sutheeworapong, S.; Jenjaroenpun, P.; Charoensiddhi, S.; Khoiri, A.N.; Topanurak, S.; Sutthikornchai, C.; Jintaridth, P. Microbiome Analysis of Thai Traditional Fermented Soybeans Reveals Short-Chain Fatty Acid-Associated Bacterial Taxa. Sci. Rep. 2023, 13, 7573. [Google Scholar] [CrossRef]
- Yongsawas, R.; In-On, A.; Inta, A.; Kampuansai, J.; Pandith, H.; Suwannarach, N.; Lumyong, S.; Chitov, T.; Disa-yathanoowat, T. Bacterial Communities in Lanna Fermented Soybeans from Three Different Ethnolinguistic Groups in Northern Thailand. Microorganisms 2023, 11, 649. [Google Scholar] [CrossRef]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E.; Frazier, R.A. Free-Amino Acid Profiles of Thua Nao, a Thai Fermented Soybean. Food Chem. 2011, 125, 342–347. [Google Scholar] [CrossRef]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E. Volatile Profiles of Thua Nao, a Thai Fermented Soy Product. Food Chem. 2011, 125, 464–470. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Y.; Tong, S.; Jin, J.; Zhang, L.; Li, C.; Tan, Q.; Wen, F.; Tao, Y. Characterization of the Key Aroma Compounds of Soybean Flavor in Fermented Soybeans with Bacillus subtilis BJ3-2 by Gene Knockout, Gas Chromatography–Olfactometry–Mass Spectrometry, and Aroma Addition Experiments. Fermentation 2024, 10, 409. [Google Scholar] [CrossRef]
- Puente-Sanchez, F.; Garcia-Garcia, N.; Tamames, J. SQMtools: Automated processing and visual analysis of ‘omics data with R and anvi’o. BMC Bioinform. 2020, 21, 358. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef]
- Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform. 2010, 32, 1–14. [Google Scholar] [CrossRef]
- Kang, D.D.; Li, F.; Kirton, E.; Thomas, A.; Egan, R.; An, H.; Wang, Z. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019, 7, e7359. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Tang, Y.H.; Tringe, S.G.; Simmons, B.A.; Singer, S.W. MaxBin: An automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2014, 2, 26. [Google Scholar] [CrossRef]
- Alneberg, J.; Bjarnason, B.S.; de Bruijn, I.; Schirmer, M.; Quick, J.; Ijaz, U.Z.; Lahti, L.; Loman, N.J.; Andersson, A.F.; Quince, C. Binning metagenomic contigs by coverage and composition. Nat. Methods 2014, 11, 1144–1146. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M.; et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Matsuura, Y.; Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2025, 53, D672–D677. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. R J. 2016, 8, 478–489. [Google Scholar] [CrossRef]
- Fonseca, N.A.; Rung, J.; Brazma, A.; Marioni, J.C. Tools for Mapping High-Throughput Sequencing Data. Bioinformatics 2012, 28, 3169–3177. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. corrplot: Visualization of a Correlation Matrix. R Package Version 0.95. 2024. Available online: https://github.com/taiyun/corrplot (accessed on 19 June 2025).
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Tan, G.; Hu, M.; Li, X.; Li, X.; Pan, Z.; Li, M.; Li, L.; Wang, Y.; Zheng, Z. Microbial Community and Metabolite Dynamics During Soy Sauce Koji Making. Front. Microbiol. 2022, 13, 841529. [Google Scholar] [CrossRef]
- Utagawa, T. Production of arginine by fermentation. J. Nutr. 2004, 134, 2854S–2857S; discussion 2895S. [Google Scholar] [CrossRef]
- Goss, T.J.; Perez-Matos, A.; Bender, R.A. Roles of glutamate synthase, gltBD, and gltF in nitrogen metabolism of Escherichia coli and Klebsiella aerogenes. J. Bacteriol. 2001, 183, 6607–6619. [Google Scholar] [CrossRef]
- Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front. Bioeng. Biotechnol. 2020, 8, 570828. [Google Scholar] [CrossRef]
- Wätjen, A.; De Vero, L.; Núñez Carmona, E.; Sberveglieri, V.; Huang, W.; Turner, M.; Bang-Berthelsen, C. Leuconostoc performance in soy-based fermentations—Survival, acidification, sugar metabolism, and flavor comparisons. Food Microbiol. 2023, 115, 104337. [Google Scholar] [CrossRef]
- Shi, H.; An, F.; Lin, H.; Li, M.; Wu, J.; Wu, R. Advances in fermented foods revealed by multi-omics: A new direction toward precisely clarifying the roles of microorganisms. Front. Microbiol. 2022, 13, 1044820. [Google Scholar] [CrossRef]
- Moreira de Gouveia, M.I.; Bernalier-Donadille, A.; Jubelin, G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. Biology 2024, 13, 142. [Google Scholar] [CrossRef]
- Abd-Alrahman, A.M.; Ramadan, M.M.; Maraay, M.F.; Salem, R.; Saleh, F.M.; Hashim, M.A.; Zhernyakova, A.; El-Messery, T.M. Production of natural flavor compounds using Bacillus subtilis-fermented soybean meal extract and their biological potential: A comprehensive in vitro study. Front. Nutr. 2023, 10, 1280209. [Google Scholar] [CrossRef]
- Garai, P.; Chandra, K.; Chakravortty, D. Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2017, 8, 297–309. [Google Scholar] [CrossRef]
- Jules, M.; Le Chat, L.; Aymerich, S.; Le Coq, D. The Bacillus subtilis ywjI (glpX) gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the class III Fbp enzyme. J. Bacteriol. 2009, 191, 3168–3171. [Google Scholar] [CrossRef]
- Cruz Ramos, H.; Hoffmann, T.; Marino, M.; Nedjari, H.; Presecan-Siedel, E.; Dreesen, O.; Glaser, P.; Jahn, D. Fermentative metabolism of Bacillus subtilis: Physiology and regulation of gene expression. J. Bacteriol. 2000, 182, 3072–3080. [Google Scholar] [CrossRef]
- Wei, Q.; Chang, S.K.C. Characteristics of fermented natto products as affected by soybean cultivars. J. Food Process. Preserv. 2004, 28, 251–273. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Islam, F.; Ateeq, H.; Asghar, A.; Shah, Y.A.; Ofoedu, C.E.; Chaha, J.S. Nutritional Health Perspective of Natto: A Critical Review. Biochem. Res. Int. 2022, 1, 5863887. [Google Scholar] [CrossRef]
- Zhang, B.; Lingga, C.; Bowman, C.; Hackmann, T.J. A New Pathway for Forming Acetate and Synthesizing ATP during Fermentation in Bacteria. Appl. Environ. Microbiol. 2021, 87, e0295920. [Google Scholar] [CrossRef] [PubMed]
- Harahap, I.A.; Suliburska, J.; Karaca, A.C.; Capanoglu, E.; Esatbeyoglu, T. Fermented soy products: A review of bioactives for health from fermentation to functionality. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70080. [Google Scholar] [CrossRef] [PubMed]
- Sarita, B.; Samadhan, D.; Hassan, M.Z.; Kovaleva, E.G. A comprehensive review of probiotics and human health-current prospective and applications. Front. Microbiol. 2024, 15, 1487641. [Google Scholar] [CrossRef]
- Moffett, J.R.; Puthillathu, N.; Vengilote, R.; Jaworski, D.M.; Namboodiri, A.M. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front. Physiol. 2020, 11, 580167. [Google Scholar] [CrossRef]
- Manika, V.; Devi, P.B.; Singh, S.P.; Reddy, G.B.; Kavitake, D.; Shetty, P.H. Microbial Poly-Glutamic Acid: Production, Biosynthesis, Properties, and Their Applications in Food, Environment, and Biomedicals. Fermentation 2025, 11, 208. [Google Scholar] [CrossRef]
- Okabe, Y.; Shimazu, T.; Tanimoto, H. Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J. Sci. Food Agric. 2011, 91, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Song, D.H.; Chun, B.H.; Lee, S.; Son, S.Y.; Reddy, C.K.; Mun, H.I.; Jeon, C.O.; Lee, C.H. Comprehensive Metabolite Profiling and Microbial Communities of Doenjang (Fermented Soy Paste) and Ganjang (Fermented Soy Sauce): A Comparative Study. Foods 2021, 10, 641. [Google Scholar] [CrossRef] [PubMed]
Microbial Group/Key Genus | Key Associated Genes/Pathways from This Study (KEGG Orthology ID) | Key Correlated/Produced Metabolites from This Study | Inferred Functional Role and Health Implication |
---|---|---|---|
Bacillus spp. (and related Bacillota) | Oligopeptide transport system (Opp; K01990–K01995), Dipeptide transport system (Dpp; K02039–K02043) | Increased free amino acids (glutamine, leucine, alanine, valine, phenylalanine), specific oligopeptide groups | Soy protein hydrolysis and generation of bioactive peptides (potential for ACE inhibition, antioxidant activity); enhanced amino acid availability and improved nutritional quality; contribution to umami and other flavor characteristics. |
Bacillus spp. | Fructose-specific PTS system (fruA; K02777), Fructokinase (fruK; K00869), Alpha-glucosidase (glcU; K01622) | Consumption of soy carbohydrates, production of acetate (early phase) | Efficient utilization of soy carbohydrates for energy to drive fermentation; contribution to organic acid profile and initial pH modulation. |
Bacillus spp. | β-glucosidase (bglA; K01193) | Potential increase in isoflavone aglycones (e.g., daidzein, genistein) | Conversion of isoflavone glycosides to more bioavailable and bioactive aglycone forms; enhanced antioxidant capacity and potential for phytoestrogenic and other health benefits. |
Bacillus spp. | Riboflavin biosynthesis protein (ribD; K00922), Dihydroneopterin aldolase (folK; K00790) | Potential de novo synthesis of riboflavin (Vitamin B2) and folate (Vitamin B9) | Microbial enrichment of Tuanao with essential B vitamins; enhanced overall nutritional value of the fermented product. |
Bacillus spp. | Glutamate synthase (gltB; K00261), Arginine biosynthesis bifunctional protein (argJ; K00623) | Increased free amino acids (e.g., glutamine) | Assimilation of nitrogen and de novo synthesis of amino acids; contribution to flavor development and enhanced protein quality. |
Enterobacterales (early stage), Bacillus spp. | L-lactate dehydrogenase (ldh; K00003), Alcohol dehydrogenase (adh; K00016) | Acetate, potentially other organic acids and alcohols | Contribution to early-stage fermentation byproducts, flavor development, and environmental modification (e.g., pH, redox potential) that influences microbial succession. |
Weissella, Leuconostoc (LAB) | L-lactate dehydrogenase (ldh; K00003) | Lactic acid (inferred) | Potential for lactic acid production, contributing to acidification, flavor complexity, and inhibition of spoilage/pathogenic microbes, particularly in specific niches or early stages. |
Kosakonia | Sugar transport system permease protein (araH) | Utilization of specific sugars (e.g., arabinose, inferred) | Niche specialization by utilizing specific carbohydrate substrates not readily used by other dominant microbes; contribution to overall substrate degradation and microbial diversity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dissook, S.; Thongkumkoon, P.; Noisagul, P.; Sriaporn, C.; Suwannapat, S.; Pramoonchakko, W.; Suksawat, M.; Kulthawatsiri, T.; Phetcharaburanin, J.; Chewonarin, T.; et al. Insights into Microbial and Metabolite Profiles in Traditional Northern Thai Fermented Soybean (Tuanao) Fermentation Through Metagenomics and Metabolomics. Foods 2025, 14, 3070. https://doi.org/10.3390/foods14173070
Dissook S, Thongkumkoon P, Noisagul P, Sriaporn C, Suwannapat S, Pramoonchakko W, Suksawat M, Kulthawatsiri T, Phetcharaburanin J, Chewonarin T, et al. Insights into Microbial and Metabolite Profiles in Traditional Northern Thai Fermented Soybean (Tuanao) Fermentation Through Metagenomics and Metabolomics. Foods. 2025; 14(17):3070. https://doi.org/10.3390/foods14173070
Chicago/Turabian StyleDissook, Sivamoke, Patcharawadee Thongkumkoon, Pitiporn Noisagul, Chanenath Sriaporn, Sirikunlaya Suwannapat, Weeraya Pramoonchakko, Manida Suksawat, Thanaporn Kulthawatsiri, Jutarop Phetcharaburanin, Teera Chewonarin, and et al. 2025. "Insights into Microbial and Metabolite Profiles in Traditional Northern Thai Fermented Soybean (Tuanao) Fermentation Through Metagenomics and Metabolomics" Foods 14, no. 17: 3070. https://doi.org/10.3390/foods14173070
APA StyleDissook, S., Thongkumkoon, P., Noisagul, P., Sriaporn, C., Suwannapat, S., Pramoonchakko, W., Suksawat, M., Kulthawatsiri, T., Phetcharaburanin, J., Chewonarin, T., & Ruangsuriya, J. (2025). Insights into Microbial and Metabolite Profiles in Traditional Northern Thai Fermented Soybean (Tuanao) Fermentation Through Metagenomics and Metabolomics. Foods, 14(17), 3070. https://doi.org/10.3390/foods14173070