Analysis of the Mass Transfer Kinetics of Dealuminated Jellyfish During Ethanol Pickling Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Instruments and Equipment
2.3. Experimental Methods
2.3.1. Sample Processing and Sampling
2.3.2. Water Content Determination
2.3.3. Alcohol Content Determination
2.3.4. Total Mass Determination
2.3.5. Determination of the Aluminum Content
2.3.6. Texture Measurement
2.3.7. Calculation of the Total Mass, Water Content and Ethanol Content Changes in the Jellyfish
2.3.8. Calculation of the Ethanol Content in the Jellyfish Aqueous Phase
2.3.9. Describing the Changes in Jellyfish During Ethanol Pickling by an Empirical Equation
2.3.10. Pickling Equilibrium Equation
2.3.11. Effective Diffusion Coefficient
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Total Mass, Ethanol Content, and Water Content in the Jellyfish After Ethanol Pickling
3.2. Calculation of the Effective Diffusion Coefficient
3.3. Kinetic Parameters of Dealuminated Jellyfish During the Edible Alcohol Pickling Process
3.4. Texture Change
3.5. Variation in the Aluminum Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, H. Medusa and Jellyfish. Bull. Biol. 2002, 37, 13–16. (In Chinese) [Google Scholar] [CrossRef]
- Xu, P. Processing and storage of jellyfish. Sci. Cultiv. 2006, 51–52. (In Chinese) [Google Scholar] [CrossRef]
- Cheng, D.; Li, X.; Liu, J.; Wang, J.; Xue, R.; Wang, S. Research progress on the toxicity of foodborne aluminum contamination. J. Food Saf. Qual. Insp. 2019, 10, 291–296. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L. Research on a New Process for Jellyfish Treatmen. Master’s Thesis, Dalian University of Technology, Dalian, China, 2020. (In Chinese). [Google Scholar]
- Bai, J. Research on the Effect of White Wine on the Reduction of Bacteria in the Raw Materials of Pan County Ham and Its Influence on Flavor. Master’s Thesis, Guizhou University, Guizhou, China, 2021. (In Chinese). [Google Scholar]
- Barat, J.M.; Rodríguez-Barona, S.; Andrés, A.; Fito, P. Influence of increasing brine concentration in the cod salting process. J. Food Sci. 2002, 65, 1922–1925. [Google Scholar] [CrossRef]
- Erikson, U.; Veliyulin, E.; Singstad, T.E.; Aursand, M. Salting and desalting of fresh and frozen-thawed cod (Gadus morhua) fillets: A comparative study using 23Na NMR, 23Na MRI, low-field 1H NMR, and physicochemical analytical methods. J. Food Sci. 2004, 69, 107–114. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975; ISBN 0 19 853344 6. [Google Scholar]
- Andrés, A.; Rodríguez-Barona, S.; Barat, J.M.; Fito, P. Mass transfer kinetics during cod salting operation. Food Sci. Technol. Int. 2002, 8, 309–314. [Google Scholar] [CrossRef]
- Barat, J.M.; Rodríguez-Barona, S.; Andrés, A.; Fito, P. Cod salting manufacturing analysis. Food Res. Int. 2003, 36, 447–453. [Google Scholar] [CrossRef]
- Boudhrioua, N.; Djendoubi, N.; Bellagha, S.; Kechaou, N. Study of moisture and salt transfers during salting of sardine fillets. J. Food Eng. 2009, 94, 83–89. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernádez-Segovia, I.; Serra, J.A.; Barat, J.M. Influence of the presence of skin on the salting kinetics of European sea bass. Food Sci. Technol. Int. 2007, 13, 199–205. [Google Scholar] [CrossRef]
- Fuentes, A.; Barat, J.M.; Fernádez-Segovia, I.; Serra, J.A. Study of sea bass (Dicentrarchus labrax L.) salting process: Kinetic and thermodynamic control. Food Control 2008, 19, 757–763. [Google Scholar] [CrossRef]
- Gallart-Jornet, L.; Barat, J.M.; Rustad, T.; Erikson, U.; Escriche, I.; Fito, P. A comparative study of brine salting of Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar). J. Food Eng. 2007, 79, 261–270. [Google Scholar] [CrossRef]
- Gallart-Jornet, L.; Barat, J.M.; Rustad, T.; Erikson, U.; Escriche, I.; Fito, P. Influence of brine concentration on Atlantic salmon fillet salting. J. Food Eng. 2007, 80, 267–275. [Google Scholar] [CrossRef]
- Wang, D.; Tang, J.; Correia, L.R. Salt diffusivities and salt diffusion in farmed Atlantic salmon muscle as influenced by rigor mortis. J. Food Eng. 2000, 43, 115–123. [Google Scholar] [CrossRef]
- GB5009.3-2016; National Food Safety Standard for Determination of Water in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016. (In Chinese)
- Mou, J.; Wang, J.; Zhang, W.; Chen, Z. Methods for Determination of Alcohol. Brewing 2006, 33, 46–48. (In Chinese) [Google Scholar] [CrossRef]
- GB5009.268-2016; National Food Safety Standard for Determination of Multiple Elements in Food. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016. (In Chinese)
- Peppas, N.A.; Brannon-Peppas, L. Water diffusion and sorption in amorphous macromolecular systems and foods. J. Food Eng. 1994, 22, 189–210. [Google Scholar] [CrossRef]
- Barat, J.M.; Gallart-Jornet, L.; Andres, A.; Akse, L.; Carlehög, M.; Skjerdal, O.T. Influence of cod freshness on the salting, drying and desalting stages. J. Food Eng. 2006, 73, 9–19. [Google Scholar] [CrossRef]
- Barat, J.M.; Rodríguez-Barona, S.; Andrés, A.; Ibáñez, J.B. Modeling of the cod desalting operation. J. Food Sci. 2004, 69, 183–189. [Google Scholar] [CrossRef]
- Barat, J.M.; Baigts, D.; Aliño, M.; Fernández, F.J.; Pérez-García, V.M. Kinetics studies during NaCl and KCl pork meat brining. J. Food Eng. 2011, 106, 102–110. [Google Scholar] [CrossRef]
- Sabadini, E.; Carvalho, B.C., Jr.; Sobral, P.D.A.; Hubinger, M.D. Mass transfer and diffusion coefficient determination in the wet and dry salting of meat. Dry. Technol. 1998, 16, 2095–2115. [Google Scholar] [CrossRef]
- Guo, L.; Liu, D.; Xu, X.; Zhou, G. Mass Transfer Dynamics during Wet-Curing of Pork. Food Sci. 2015, 36, 31–36. (In Chinese) [Google Scholar] [CrossRef]
- Gou, P.; Comaposada, J.; Arnau, J. NaCl content and temperature effects on moisture diffusivity in the Gluteus medius muscle of pork ham. Meat Sci. 2003, 63, 29–34. [Google Scholar] [CrossRef]
- Chiralt, A.; Fito, P.; Barat, J.M.; Andrés, A.; González-Marťinez, C.; Escriche, I.; Camacho, M.M. Use of vacuum impregnation in food salting process. J. Food Eng. 2001, 49, 141–151. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Romanelli, P.F.; Gabas, A.L.; Telis-Romero, J. Salting kinetics and salt diffusivities in farmed Pantanal caiman muscle. Pesqui. Agropecu. Bras. 2003, 38, 529–535. [Google Scholar] [CrossRef]
- Santchurn, S.J.; Collignan, A.; Trystram, G. Impact of solute molecular mass and molality, and solution viscosity on mass transfer during immersion of meat in a complex solution. J. Food Eng. 2007, 78, 1188–1201. [Google Scholar] [CrossRef]
- Graiver, N.; Pinotti, A.; Califano, A.; Zaritzky, N. Mathematical modeling of the uptake of curing salts in pork meat. J. Food Eng. 2009, 95, 533–540. [Google Scholar] [CrossRef]
- Medynski, A.; Pospiech, E.; Kniata, R. Effect of various concentrations of lactic acid and sodium chloride on selected physicochemical meat traits. Meat Sci. 2000, 55, 285–290. [Google Scholar] [CrossRef]
- Offer, G.; Trinick, J. On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Sci. 1983, 8, 245–281. [Google Scholar] [CrossRef]
- Graiver, N.; Pinotti, A.; Califano, A.; Zaritzky, N. Diffusion of sodium chloride in pork tissue. J. Food Eng. 2006, 77, 910–918. [Google Scholar] [CrossRef]
- Bampi, M.; Domschke, N.; Schmidt, F.; Laurindo, J. Influenceof vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts. LWT-Food Sci. Technol. 2016, 74, 26–33. [Google Scholar] [CrossRef]
- Nguyen, M.V.; Arason, S.; Thorarinsdottir, K.A.; Thorkelsson, G.; Gudmundsdóttir, A. Influence of salt concentration on the salting kinetics of cod loin (Gadus morhua) during brine salting. J. Food Eng. 2010, 100, 225–231. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Qin, P.; Wang, M.; Ma, X. Research on aluminum removal technology in jellyfish production and processing. J. Food Saf. Qual. Insp. 2016, 7, 1681–1685. (In Chinese) [Google Scholar] [CrossRef]
- Du, L. Analysis of the Characteristics and Mass Transfer Kinetics of Salted Duck Marinated in Old Brine. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2010. (In Chinese). [Google Scholar]
- Lin, Y. Application of Photodynamic Non Thermal Reduction Technology in the Production of Instant Jellyfish. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2017. (In Chinese). [Google Scholar] [CrossRef]
- GB2760-2024; National Food Safety Standard for Food Additives. National Health Commission of the People’s Republic of China: Beijing, China, 2024. (In Chinese)
Ethanol Concentration | ||
---|---|---|
35% | 15.1% | 16.0% |
45% | 21.2% | 21.0% |
55% | 26.1% | 25.8% |
65% | 31.1% | 30.8% |
75% | 34.7% | 34.6% |
Ethanol Concentration | De (m2/s) (10−6) | K | R2 |
---|---|---|---|
35% | 2.544690 | −0.8058 | 0.9120 |
45% | 2.835287 | −0.8488 | 0.9182 |
55% | 2.010619 | −0.8181 | 0.9706 |
65% | 1.767146 | −0.8367 | 0.9059 |
75% | 1.539380 | −0.8408 | 0.9771 |
Variable | Ethanol Concentration | k1 | k2 | R2 |
---|---|---|---|---|
35% | −4.0755 | −1.4840 | 0.8486 | |
45% | −4.7835 | −1.3600 | 0.8234 | |
55% | −5.1501 | −1.3388 | 0.8658 | |
65% | −4.9893 | −2.0771 | 0.9280 | |
75% | −4.1059 | −3.9766 | 0.9779 | |
35% | −1.0898 | 1.9607 | 0.9432 | |
45% | −0.6096 | 2.6517 | 0.8996 | |
55% | −0.8941 | 3.0422 | 0.9766 | |
65% | −0.7644 | 3.1676 | 0.9095 | |
75% | −0.8938 | 3.3122 | 0.9868 | |
35% | −1.3262 | −1.3490 | 0.6905 | |
45% | −5.9763 | 0.2384 | 0.0943 | |
55% | −5.8676 | −0.1594 | 0.1011 | |
65% | −6.3404 | 0.8139 | 0.6878 | |
75% | −5.9346 | −2.3981 | 0.9154 |
Processing Method | Hardness (N) | Springiness | Chewiness | Gumminess | Cohesiveness |
---|---|---|---|---|---|
Ready-to-eat jellyfish | 188.2 ± 20.6 bc | 1.10 ± 0.08 ab | 50.5 ± 12.8 bc | 45.6 ± 10.7 bcd | 0.28 ± 0.04 a |
Dealuminated jellyfish | 140.8 ± 23.5 d | 1.03 ± 0.14 b | 29.8 ± 3.93 d | 28.9 ± 4.1 d | 0.2 ± 0.00 b |
35% | 164.6 ± 18.5 cd | 1.00 ± 0.29 b | 40.3 ± 8.07 cd | 40.4 ± 8.5 cd | 0.27 ± 0.05 a |
45% | 214.0 ± 39.7 ab | 1.00 ± 0.08 b | 44.1 ± 10.4 bc | 42.2 ± 10.1 bcd | 0.2 ± 0.00 b |
55% | 219.7 ± 36.7 ab | 1.08 ± 0.11 ab | 60.5 ± 20.8 ab | 58.3 ± 24.4 abc | 0.25 ± 0.08 ab |
65% | 232.2 ± 29.6 a | 1.18 ± 0.09 a | 78.3 ± 21.3 a | 67.3 ± 21.4 a | 0.27 ± 0.05 a |
75% | 213.7 ± 18.6 ab | 1.16 ± 0.06 a | 71.6 ± 17.0 a | 60.9 ± 13.4 ab | 0.27 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yi, P.; Xu, J.; You, K.; Li, X.; Ren, J.; Bai, H.; Ma, C. Analysis of the Mass Transfer Kinetics of Dealuminated Jellyfish During Ethanol Pickling Process. Foods 2025, 14, 3067. https://doi.org/10.3390/foods14173067
Zhang Y, Yi P, Xu J, You K, Li X, Ren J, Bai H, Ma C. Analysis of the Mass Transfer Kinetics of Dealuminated Jellyfish During Ethanol Pickling Process. Foods. 2025; 14(17):3067. https://doi.org/10.3390/foods14173067
Chicago/Turabian StyleZhang, Yihe, Pengfei Yi, Jingkang Xu, Kui You, Xinghua Li, Jiajun Ren, Heyang Bai, and Caihua Ma. 2025. "Analysis of the Mass Transfer Kinetics of Dealuminated Jellyfish During Ethanol Pickling Process" Foods 14, no. 17: 3067. https://doi.org/10.3390/foods14173067
APA StyleZhang, Y., Yi, P., Xu, J., You, K., Li, X., Ren, J., Bai, H., & Ma, C. (2025). Analysis of the Mass Transfer Kinetics of Dealuminated Jellyfish During Ethanol Pickling Process. Foods, 14(17), 3067. https://doi.org/10.3390/foods14173067