Preservation of Atlantic Salmon (Salmo salar) Fillets Using Jasmine Essential Oil-Loaded Nanoemulsions Stabilized with a Whey Protein/Oxidized Corn Starch Complex
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Jasmine Essential Oil-Loaded Nanoemulsions
2.1.1. Synthesis of WP-OCS Mixture
2.1.2. Nanoemulsion Preparation
2.2. Characterization of Nanoemulsions
2.3. Analysis of Antibacterial Activity
2.3.1. Preparation of Bacterial Suspensions
2.3.2. Determination of Inhibition Zone
2.3.3. Determination of Minimum Inhibitory Concentration (MIC)
2.4. Preparation of Fillet
2.5. Sensory Evaluation
2.6. Texture Profile Analysis (TPA)
2.7. pH
2.8. Total Volatile Basic Nitrogen (TVB-N) Content
2.9. Total Viable Counts (TVC)
2.10. Color
2.11. Free Amino Acid (FAAs) Content
2.12. K Value
2.13. Extraction of Myofibrillar Proteins (MPs)
2.13.1. MP Carbonyl Group Content
2.13.2. MP Sulfhydryl Group Content
2.13.3. Ca2+-ATPase Activity of MPs
2.13.4. MP Secondary Structures
2.13.5. MP Tertiary Structures
2.14. Statistical Analysis
3. Results
3.1. Properties of Jasmine Essential Oil-Loaded Nanoemulsions
3.1.1. Appearance, Particle Size, PDI, and ζ Potential
3.1.2. Determination of Inhibitory Activity
3.2. Sensory Evaluation
3.3. Texture Profile Analysis (TPA)
3.4. pH
3.5. Total Volatile Basic Nitrogen (TVB-N) Content
3.6. Total Viable Counts (TVC)
3.7. Color
3.8. FAAs Content
3.9. K Value
3.10. Myofibrillar Proteins (MPs)
3.10.1. MP Carbonyl Group Content
3.10.2. MP Sulfhydryl Group Content
3.10.3. Ca2+-ATPase Activity of MPs
3.10.4. MP Secondary Structures
3.10.5. MP Tertiary Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
JEO | jasmine essential oil |
OCS | oxidized corn starch |
WP | whey protein |
MAP | modified atmosphere packaging |
CK | control check |
WO | whey protein–oxidized corn starch mixture |
NE | nanoemulsion |
QIM | quality index technique |
PDI | polydispersity index |
MIC | minimum inhibitory concentration |
TPA | texture profile analysis |
TVB-N | total volatile basic nitrogen |
TVC | total viable count |
PCA | perchloric acid |
FAAs | free amino acids |
Hx | hypoxanthine |
HxR | hypoxanthine ribonucleoside |
IMP | inosine monophosphate |
AMP | adenosine monophosphate |
ADP | adenosine diphosphate |
ATP | adenosine triphosphate |
HPLC | high-performance liquid chromatography |
MPs | myofibrillar proteins |
References
- Zhang, L.; Liu, Z.; Ma, M.; Zhao, Y.; Miao, W.; Chen, Y.; Shi, W.; Chen, Q. Preparation and characterization of highly stable melleolides @ chitosan nanoemulsion and its effect on salmo salar preservation. LWT 2025, 216, 117337. [Google Scholar] [CrossRef]
- Cui, H.; Karim, N.; Jiang, F.; Hu, H.; Chen, W. Role of temperature fluctuations and shocks during refrigeration on pork and salmon quality. Food Qual. Saf. 2023, 7, fyad011. [Google Scholar] [CrossRef]
- Wang, J.J.; Xie, J.; Mei, J. Research Progress Regarding Psychrotrophic Pseudomonas in Aquatic Products: Psychrophilic Characteristics, Spoilage Mechanisms, Detection Methods, and Control Strategies. Foods 2025, 14, 363. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, J.; Wei, L.; Zhang, Y.; Deng, H.; Guo, Y.; Hu, C.; Meng, Y. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in Atlantic salmon fillets. LWT 2019, 101, 419–426. [Google Scholar] [CrossRef]
- De Paiva, E.L.; Milani, R.F.; Boer, B.S.; Quintaes, K.D.; Morgano, M.A. Methylmercury in fish species used in preparing sashimi: A case study in Brazil. Food Control 2017, 80, 104–112. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.; Bu, Y.; Li, X.; Zhu, W. Nano freezing–thawing of atlantic salmon fillets: Impact on thermodynamic and quality characteristics. Foods 2023, 12, 2887. [Google Scholar] [CrossRef]
- Nakazawa, N.; Okazaki, E. Recent research on factors influencing the quality of frozen seafood. Fish. Sci. 2020, 86, 231–244. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Wu, Z.; Zhou, H.; Xie, X.; Zhang, Q.; Liu, R.; Pang, J. Structure, merits, gel formation, gel preparation and functions of konjac glucomannan and its application in aquatic food preservation. Foods 2023, 12, 1215. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Yang, H.; Wu, L.; Dong, Z.; Lou, Y.; Fu, S. Spoilage mechanism and preservation technologies on the quality of salmon: An overview. Food Biosci. 2025, 69, 107006. [Google Scholar] [CrossRef]
- Kujur, A.; Kumar, A.; Singh, P.P.; Prakash, B. Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix Against Aspergillus flavus in Food System. Food Bioprocess Technol. 2021, 14, 554–571. [Google Scholar] [CrossRef]
- Sun, D.; Xia, B. Composition Analysis of Three Plant Essential Oils and Comparison of Their Antibacterial Activities. Mod. Food Sci. Technol. 2020, 36, 104–113. [Google Scholar] [CrossRef]
- Hanan, E.; Dar, A.H.; Shams, R.; Goksen, G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int. J. Biol. Macromol. 2024, 280, 135751. [Google Scholar] [CrossRef]
- Medeleanu, M.L.; Fărcaș, A.C.; Coman, C.; Leopold, L.; Diaconeasa, Z.; Socaci, S.A. Citrus essential oils-based nano-emulsions: Functional properties and potential applications. Food Chem. X 2023, 20, 100960. [Google Scholar] [CrossRef]
- Lakshmayya, N.S.V.; Mishra, A.K.; Mohanta, Y.K.; Panda, J.; Naik, B.; Mishra, B.; Varma, R.S. Essential oils-based nano-emulsion system for food safety and preservation: Current status and future prospects. Biocatal. Agric. Biotechnol. 2023, 53, 102897. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, H.J.; Zhao, X.; Bian, C.H.; Cheng, H.; Mei, J.; Xie, J. The application of Melissa officinalis L. essential oil nanoemulsions protects sea bass (Lateolabrax japonicus) against myofibrillar protein and lipid oxidation during refrigeration. Food Qual. Saf. 2023, 7, fyad024. [Google Scholar] [CrossRef]
- Qiu, X.; Xie, J.; Mei, J. Recent Advances in the Applications and studies of polysaccharide-, protein-, and lipid-based delivery systems in enhancing the bioavailability of capsaicin—A review. Polymers 2025, 17, 1196. [Google Scholar] [CrossRef] [PubMed]
- Naji-Tabasi, S.; Shakeri, M.-S.; Modiri-Dovom, A.; Shahbazizadeh, S. Investigating Baneh (Pistacia atlantica) gum properties and applying its particles for stabilizing Pickering emulsions. Food Chem. X 2024, 21, 101111. [Google Scholar] [CrossRef] [PubMed]
- Øye, G.; Simon, S.; Rustad, T.; Paso, K. Trends in food emulsion technology: Pickering, nano-, and double emulsions. Curr. Opin. Food Sci. 2023, 50, 101003. [Google Scholar] [CrossRef]
- Peito, S.; Peixoto, D.; Ferreira-Faria, I.; Margarida Martins, A.; Margarida Ribeiro, H.; Veiga, F.; Marto, J.; Cláudia Paiva-Santos, A. Nano- and microparticle-stabilized pickering emulsions designed for topical therapeutics and cosmetic applications. Int. J. Pharm. 2022, 615, 121455. [Google Scholar] [CrossRef]
- Li, W.; Wei, M.; Zhao, Y.; Li, L.; Ning, C.; Hu, F. Effects of heat treatment on structure and processing characteristics of donkey milk whey protein. J. Food Biochem. 2024, 2024, 5598462. [Google Scholar] [CrossRef]
- Sarraf, M.; Naji-Tabasi, S.; Beig-Babaei, A.; Moros, J.E.; Sánchez, M.C.; Franco, J.M.; Tenorio-Alfonso, A. Improving the structure and properties of whey protein emulsion gel using soluble interactions with xanthan and basil seed gum. Food Sci. Nutr. 2023, 11, 6907–6919. [Google Scholar] [CrossRef]
- Faridi Esfanjani, A.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem. 2017, 221, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Tamang, N.; Shrestha, P.; Khadka, B.; Mondal, M.H.; Saha, B.; Bhattarai, A. A review of biopolymers’ utility as emulsion stabilizers. Polymers 2021, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, M.; Bhandari, B.; Bai, B. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application. Food Control 2021, 127, 108151. [Google Scholar] [CrossRef]
- Ma, S.; Li, L.; Qu, J.; Yang, Y.; Yang, Q.; Tian, Y. Inhibitory activity of moringa oleifera seed oil nanoemulsion against staphylococcus aureus and its application in chicken meat preservation. Food Biosci. 2025, 68, 106662. [Google Scholar] [CrossRef]
- Li, F.; Wu, J.; Yue, X.; Suo, Y.; Li, J.; Wu, F.; Yu, Y. Synthesis and antibacterial activity of 8-ketoberberine derivatives. Food Qual. Saf. 2024, 8, fyae040. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Haroutounian, S.A.; Nychas, G.-J.E.; Boziaris, I.S. Microbiological spoilage and volatiles production of gutted european sea bass stored under air and commercial modified atmosphere package at 2 °C. Food Microbiol. 2015, 50, 44–53. [Google Scholar] [CrossRef]
- Dong, J.; Fang, X.; Wang, H.; Zhang, X.; Tao, X. Abalone Muscle Texture Evaluation and Prediction Based on TPA Experiment. J. Food Qual. 2017, 2017, 2069470. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, J.M.; Su, W.M.; Chen, G.; Zhang, J.H. Effects of mango and partridge tea extracts on microbial, physical, and chemical properties of tilapia fillets treated with in-package cold plasma during refrigerator storage. Food Qual. Saf. 2024, 8, fyae001. [Google Scholar] [CrossRef]
- GB 5009.228-2016; National Food Safety Standard—Food Microbiological Inspection—Sampling and Sample Processing of Aquatic Products and Their Products; Method for Analysis of Hygienic Standard of Fish and Other Aquatic Products. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016. Available online: https://www.chinesestandard.net/PDF.aspx/GB5009.228-2016 (accessed on 19 August 2025).
- GB 4789.20-2024; National Food Safety Standard—Food Microbiological Inspection—Sampling and Sample Processing of Aquatic Products and Their Products; Method for Analysis of Hygienic Standard of Fish and Other Aquatic Products. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2024. Available online: https://www.chinesestandard.net/PDF.aspx/GB4789.20-2024 (accessed on 19 August 2025).
- Cao, J.; Guo, M.; Qiu, W.; Mei, J.; Xie, J. Effect of tea polyphenol–trehalose complex coating solutions on physiological stress and flesh quality of marine-cultured turbot Scophthalmus maximus during waterless transport. J. Aquat. Anim. Health 2024, 36, 151–163. [Google Scholar] [CrossRef]
- Yang, X.; Fang, S.; Xie, Y.; Mei, J.; Xie, J. Preservative Effects of Flaxseed Gum-Sodium Alginate Active Coatings Containing Carvacrol on Quality of Turbot (Scophthalmus maximus) during Cold Storage. Coatings 2024, 14, 338. [Google Scholar] [CrossRef]
- Yu, Y.; Wei, Y.; Chen, S.; Wang, Y.; Huang, H.; Li, C.; Wang, D.; Shi, W.; Li, J.; Zhao, Y. Correlation analysis of phosphorylation of myofibrillar protein and muscle quality of tilapia during storage in ice. Food Chem. 2024, 451, 139502. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Gong, Z.; Murium, S.; Xiong, S.; Du, H. Targeted screening of baicalein inhibitor with controlling lipid and protein oxidation for quality preservation of grass carp fillets. LWT 2024, 191, 115526. [Google Scholar] [CrossRef]
- Shi, P.; Mei, J.; Xie, J. Impact of pretreatment sterilization techniques and ginger (Zingiber officinale roscoe) essential oil-based active packaging on the quality of crucian carp (Carassius auratus) during cold storage. J. Stored Prod. Res. 2025, 112, 102598. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, T.; Wang, T.; Liang, F. Effects of interaction between rice glutelin and starch on starch gelatinization in a simulated storage system. J. Stored Prod. Res. 2020, 88, 101660. [Google Scholar] [CrossRef]
- Ma, X.; Mei, J.; Xie, J. Effects of multi-frequency ultrasound on the freezing rates, quality properties and structural characteristics of cultured large yellow croaker (Larimichthys crocea). Ultrason. Sonochem. 2021, 76, 105657. [Google Scholar] [CrossRef]
- Gadallah, A.H.; Hafez, R.S.; Fahim, K.M.; Ahmed, L.I. Application of rosemary oil nano-emulsion as antimicrobial and antioxidant natural alternative in pasteurized cream and karish cheese. Int. J. Food Microbiol. 2024, 422, 110823. [Google Scholar] [CrossRef]
- Al-Sakkaf, M.K.; Onaizi, S.A. Crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant: Effects of acidity/basicity and salinity on emulsion characteristics, stability, and demulsification. Fuel 2023, 344, 128052. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Zhang, C.; Mei, J.; Xie, J. Physicochemical properties of chitosan-based emulsions containing Ocimum gratissimum essential oil prepared by multifrequency ultrasound-assisted homogenization technique. J. Food Meas. Charact. 2025, 19, 2765–2776. [Google Scholar] [CrossRef]
- Sankhla, A.; Sharma, R.; Yadav, R.S.; Kashyap, D.; Kothari, S.L.; Kachhwaha, S. Biosynthesis and characterization of cadmium sulfide nanoparticles—An emphasis of zeta potential behavior due to capping. Mater. Chem. Phys. 2016, 170, 44–51. [Google Scholar] [CrossRef]
- Jiaojiao, D.; Rong, N.; Jing, D.; Haoxuan, S.; Guorong, L. Effect of Nanoemulsion Containing Enterocin GR17 and Cinnamaldehyde on Microbiological, Physicochemical and Sensory Properties and Shelf Life of Liquid-Smoked Salmon Fillets. Foods 2022, 12, 78. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, D.; Yu, D.; Regenstein, J.M.; Jiang, Q.; Dong, J.; Chen, W.; Xia, W. Modulating physicochemical, antimicrobial and release properties of chitosan/zein bilayer films with curcumin/nisin-loaded pectin nanoparticles. Food Hydrocoll. 2022, 133, 107955. [Google Scholar] [CrossRef]
- Lu, W.-C.; Huang, D.-W.; Wang, C.-C.R.; Yeh, C.-H.; Tsai, J.-C.; Huang, Y.-T.; Li, P.-H. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 2018, 26, 82–89. [Google Scholar] [CrossRef]
- Hu, Z.; Chin, Y.; Huang, J.; Zhou, J.; Li, G.; Hu, Y.; Yuan, C.; Chen, J. Inhibition of citral nanoemulsion to growth, spoilage ability and AI-2/luxS quorum sensing system of Shewanella putrefaciens CN-32: A study on bacteriostasis from in vitro culture and gene expression analysis. Food Qual. Saf. 2022, 6, fyac044. [Google Scholar] [CrossRef]
- Chu, Y.; Yi, Z.; Yan, J.; Xie, J. The role of gspE in regulating biofilm structure, spoilage potential, and cellular metabolism of Shewanella putrefaciens in refrigerated bigeye tuna (Thunnus obesus) in the type II secretion system. Food Biosci. 2025, 71, 107217. [Google Scholar] [CrossRef]
- Liang, C.; Chen, S.; Zhu, W.; Dou, H.; Xia, X. Anti-bacterial and anti-biofilm effect of punicalagin against pseudomonas fluorescens and its application in reducing spoilage of tilapia fillets induced by pseudomonas fluorescens. Food Control 2025, 176, 111345. [Google Scholar] [CrossRef]
- Suriyatem, R.; Auras, R.; Rachtanapun, C.; Rachtanapun, P. Biodegradable rice starch/carboxymethyl chitosan films with added propolis extract for potential use as active food packaging. Polymers 2018, 10, 954. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Forghani, B.; Abdollahi, M.; Undeland, I. Lipid oxidation in sorted herring (Clupea harengus) filleting co-products from two seasons and its relationship to composition. Food Chem. 2022, 373, 131523. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Zeng, Q.-H.; Liu, Y.; Liu, H.; Zhao, Y.; Wang, J.J. Application of the curcumin-mediated photodynamic inactivation for preserving the storage quality of salmon contaminated with L. monocytogenes. Food Chem. 2021, 359, 129974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, B.; Dai, B.; Wang, S.; Zhang, S.; Zhang, S.; Ji, C.; Zhu, B.; Lin, X. Insights into the balance of safety, flavor, and texture in fermented fish: A study based on full-length sequencing of fermented largemouth bass (Micropterus salmoides). Int. J. Food Microbiol. 2025, 439, 111240. [Google Scholar] [CrossRef]
- Wei, P.; Zhu, K.; Cao, J.; Dong, Y.; Li, M.; Shen, X.; Duan, Z.; Li, C. The inhibition mechanism of the texture deterioration of tilapia fillets during partial freezing after treatment with polyphenols. Food Chem. 2021, 335, 127647. [Google Scholar] [CrossRef]
- Fox, J.B.; Ackerman, S.A.; Jenkins, R.K. Effect of anionic gums on the texture of pickled frankfurters. J. Food Sci. 1983, 48, 1031–1035. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, G.; Liu, Y.; Li, M.; Shun, L.; Cai, G. The texture characteristics and advances of meat products. Food Mach. 2009, 25, 125–128. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Li, S.; Li, Y.; Zhao, Y.; Zeng, Q.; Liu, H.; Wang, J.J. Novel antimicrobial polyvinyl alcohol film by incorporating β-cyclodextrin/berberine inclusion complex preserving the storage quality of salmon fillets. Food Packag. Shelf Life 2024, 46, 101354. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, M.; Bai, W.; Yang, W.; Lv, X.; Bai, X.; Li, X.; Zhang, D.; Li, J. Preparation and application of bioadhesive hydrogel powder loaded with quorum sensing inhibitor isomaltitol for salmon preservation. Food Bioprod. Process. 2025, 151, 73–83. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, S.; Gao, Y.; Ye, C.; Wang, H. Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT 2017, 75, 59–64. [Google Scholar] [CrossRef]
- Feng, X.; Bansal, N.; Yang, H. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chem. 2016, 200, 283–292. [Google Scholar] [CrossRef]
- Rath, C.; Devi, S.; Dash, S.; Mishra, R. Antibacterial potential assessment of jasmine essential oil against E. coli. Indian J. Pharm. Sci. 2008, 70, 238. [Google Scholar] [CrossRef]
- Ambrosio, R.L.; Gogliettino, M.; Agrillo, B.; Proroga, Y.T.R.; Balestrieri, M.; Gratino, L.; Cristiano, D.; Palmieri, G.; Anastasio, A. An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods 2022, 11, 338. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Wang, X.; Ma, C. Integrating hypoxanthine and K value for reliable and rapid freshness assessment in marine fish. Food Chem. 2025, 470, 142630. [Google Scholar] [CrossRef]
- Wang, H.-F.; Yih, K.-H.; Yang, C.-H.; Huang, K.-F. Anti-oxidant activity and major chemical component analyses of twenty-six commercially available essential oils. J. Food Drug Anal. 2017, 25, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Soliva-Fortuny, R.; Rojas-Graü, M.A.; McClements, D.J.; Martín-Belloso, O. Edible nanoemulsions as carriers of active ingredients: A review. Annu. Rev. Food Sci. Technol. 2017, 8, 439–466. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Guo, M.; Chen, B.; Zhang, C.; Li, D.; Xie, J. Molecular characterization of spoilage microbiota in high CO2 refrigerated large yellow croaker (Larimichthys crocea) fillets using metagenomic and metabolomic approaches. Food Biosci. 2023, 56, 103227. [Google Scholar] [CrossRef]
- Chen, H.-M.; Zhou, Q.; Huang, L.-J.; Lin, J.; Liu, J.-F.; Huang, Z.-Y.; Zhang, R.-L.; Wang, J.-J.; Zhao, Y.; Wu, Y.-N.; et al. Curcumin-mediated photodynamic treatment extends the shelf life of salmon (Salmo salar) sashimi during chilled storage: Comparisons of preservation effects with five natural preservatives. Food Res. Int. 2023, 173, 113325. [Google Scholar] [CrossRef]
- Liu, J.; Lan, W.; Wu, Y.; Sun, X.; Mei, J.; Chen, Y.; Xie, J. The preservation effects of chitosan copolymers (gallic acid and protocatechuic acid) on sea bass (Lateolabrax japonicus) fillets. Aquac. Fish. 2023, 8, 305–315. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Cao, J.; Wu, H.; Yao, Z. The polysaccharide-based nanoemulsions: Preparation, mechanism, and application in food preservation—A review. Int. J. Biol. Macromol. 2025, 309, 142898. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Wang, H.; Bai, B.; Wang, Y.; Bai, T.; Shi, W.; Wang, X.; Wang, W.; Yang, J.; Pan, S. Current trends and perspectives on the color of fish during low-temperature preservation: A focus on evaluation methods, discoloration mechanism, and protection methods. Food Chem. 2025, 474, 143199. [Google Scholar] [CrossRef]
- Jung, S.; Ghoul, M.; De Lamballerie-Anton, M. Influence of high pressure on the color and microbial quality of beef meat. LWT Food Sci. Technol. 2003, 36, 625–631. [Google Scholar] [CrossRef]
- Pujol, A.; Ospina-E, J.C.; Alvarez, H.; Muñoz, D.A. Myoglobin content and oxidative status to understand meat products’ color: Phenomenological based model. J. Food Eng. 2023, 348, 111439. [Google Scholar] [CrossRef]
- Sissener, N.H.; Rosenlund, G.; Larsson, T.; Sæle, Ø.; Ruyter, B.; Philip, A.J.P.; Stubhaug, I. Saturated fat and cholesterol in atlantic salmon (Salmo salar L.) feeds are important for fish performance, fillet quality and colour. Aquaculture 2025, 607, 742642. [Google Scholar] [CrossRef]
- Lee, D.; Tang, J.; Lee, S.H.; Jun, S. Effect of Oscillating Magnetic Fields (OMFs) and Pulsed Electric Fields (PEFs) on Supercooling Preservation of Atlantic Salmon (Salmo salar L.) Fillets. Foods 2024, 13, 2525. [Google Scholar] [CrossRef] [PubMed]
- Özden, Ö. Changes in amino acid and fatty acid composition during shelf-life of marinated fish. J. Sci. Food Agric. 2005, 85, 2015–2020. [Google Scholar] [CrossRef]
- Yu-Shun, L.; Gui-Xiao, Y.; Jiang, Y.; Jing, Q.; Yong-Zhong, Q.; Xuan-Yun, H.; Yan-Yang, X. Optimization and Detection of Freshness Biomarkers of Atlantic Salmon Subjected to Different Vacuum Packaging Conditions during Storage at 0 °C by Metabolomics and Molecular Docking. Foods 2024, 13, 2714. [Google Scholar] [CrossRef]
- Liu, M.-J.; Gao, J.; Guo, H.-Y.; Zhu, K.-C.; Liu, B.-S.; Zhang, N.; Zhu, T.-F.; Zhang, D.-C. Influence of aquaculture environments on the muscle quality of golden pompano (Trachinotus ovatus) in the beibu gulf: A multifaceted analysis of nutritional, textural, and flavor profiles. LWT 2024, 212, 116957. [Google Scholar] [CrossRef]
- Bassoli, A.; Borgonovo, G.; Caremoli, F.; Mancuso, G. The taste of D- and L-amino acids: In vitro binding assays with cloned human bitter (TAS2Rs) and sweet (TAS1R2/TAS1R3) receptors. Food Chem. 2014, 150, 27–33. [Google Scholar] [CrossRef]
- Rosa, R.; Nunes, M.L. Nutritional quality of red shrimp, Aristeus antennatus (risso), pink shrimp, Parapenaeus longirostris (lucas), and norway lobster, Nephrops norvegicus (linnaeus). J. Sci. Food Agric. 2004, 84, 89–94. [Google Scholar] [CrossRef]
- Kirkholt, E.M.; Dikiy, A.; Shumilina, E. Changes in the composition of atlantic salmon upon the brown seaweed (Saccharina latissima) treatment. Foods 2019, 8, 625. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Jia, S.; Zhang, L.; Luo, Y. The effect of essential oils on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets during chilled storage. Int. J. Food Microbiol. 2018, 266, 52–59. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Y.; Yin, X.; Bao, Y.; Feng, L. Biogenic amine and quality changes in lightly salt- and sugar-salted black carp (Mylopharyngodon piceus) fillets stored at 4 °C. Food Chem. 2014, 159, 20–28. [Google Scholar] [CrossRef]
- Souza, B.W.S.; Cerqueira, M.A.; Ruiz, H.A.; Martins, J.T.; Casariego, A.; Teixeira, J.A.; Vicente, A.A. Effect of Chitosan-based coatings on the shelf life of Salmon (Salmo salar). J. Agric. Food Chem. 2010, 58, 11456–11462. [Google Scholar] [CrossRef]
- Tavakoli, S.; Mubango, E.; Tian, L.; Bohoussou Ńdri, Y.; Tan, Y.; Hong, H.; Luo, Y. Novel intelligent films containing anthocyanin and phycocyanin for nondestructively tracing fish spoilage. Food Chem. 2023, 402, 134203. [Google Scholar] [CrossRef]
- Yu, T.Y.; Xu, J.W. Characteristics of Films Prepared from Wheat Gluten and Phenolic Extracts from Porphyra haitanensis and Its Application for Salmon Preservation. Foods 2024, 13, 2442. [Google Scholar] [CrossRef] [PubMed]
- Günal-Köroğlu, D.; Yılmaz, H.; Gultekin Subasi, B.; Capanoglu, E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res. Int. 2025, 200, 115378. [Google Scholar] [CrossRef] [PubMed]
- Konfo, T.R.C.; Djouhou, F.M.C.; Koudoro, Y.A.; Dahouenon-Ahoussi, E.; Avlessi, F.; Sohounhloue, C.K.D.; Simal-Gandara, J. Essential oils as natural antioxidants for the control of food preservation. Food Chem. Adv. 2023, 2, 100312. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Brandelli, A.; López-Caballero, M.E.; Montero, P.; Gómez-Guillén, M.D.C. Structural features of myofibrillar fish protein interacting with phosphatidylcholine liposomes. Food Res. Int. 2020, 137, 109687. [Google Scholar] [CrossRef]
- Garrido Ruiz, D.; Sandoval-Perez, A.; Rangarajan, A.V.; Gunderson, E.L.; Jacobson, M.P. Cysteine oxidation in proteins: Structure, biophysics, and simulation. Biochemistry 2022, 61, 2165–2176. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, F.; Zhang, L.; Wang, H.; Wang, X.-C. Effect of different extent of protein oxidation on the frozen storage stability of muscle protein in obscure pufferfish (Takifugu obscurus). LWT 2021, 137, 110416. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Zhao, L.; Chen, L.; He, Y.; Yang, H. Vacuum impregnation of fish gelatin combined with grape seed extract inhibits protein oxidation and degradation of chilled tilapia fillets. Food Chem. 2019, 294, 316–325. [Google Scholar] [CrossRef]
- Squier, T.C. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 2001, 36, 1539–1550. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Shi, Q.; Du, Y.; Zeng, Q.; Liu, H.; Zhang, Z.; Zheng, H.; Wang, J.J. Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: Insights into protein quality. Food Chem. 2024, 444, 138685. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Thongkaew, C.; Tanaka, M. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. Food Res. Int. 2003, 36, 787–795. [Google Scholar] [CrossRef]
- Lv, L.; Lin, H.; Li, Z.; Wang, J.; Ahmed, I.; Chen, H. Changes of structure and IgE binding capacity of shrimp (Metapenaeus ensis) tropomyosin followed by acrolein treatment. Food Funct. 2017, 8, 1028–1036. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, W.; Cao, A.; Cao, M.; Li, J. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of sciaenops ocellatus (Red drum). Ultrason. Sonochem. 2019, 55, 96–104. [Google Scholar] [CrossRef]
- Li, Y.; Mei, J.; Xie, J. Effect of air-conditioned packaging combined with temperature fluctuations on the preservation of mandarin fish (Siniperca chuatsi). Food Chem. 2025, 480, 143893. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Yang, Y.; Lin, H.; Cui, L.; Zhen, Z.; Li, X.; Zhang, C.; Li, X.; Li, J. Evaluation of the water state and protein characteristics of tibetan pork under the storage conditions of modified atmosphere packaging: Effect of oxygen concentration. Food Chem. X 2024, 24, 101825. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Xu, Z.; Mei, J.; Xie, J. Effects of triple-frequency orthogonal ultrasound-assisted freezing on the quality properties of large yellow croaker (larimichthys crocea). LWT 2025, 217, 117429. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, C.; Tang, D.; Yang, X.; Zhang, L.; Yu, Q. Effects of selenium yeast and jujube powder dietary supplements on conformational and functional properties of post-mortem chicken myofibrillar protein. Front. Nutr. 2022, 9, 954397. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, L.; Qiu, Z.; Yu, Z.; Shi, W.; Wang, X. Comparison of oxidation extent, structural characteristics, and oxidation sites of myofibrillar protein affected by hydroxyl radicals and lipid-oxidizing system. Food Chem. 2022, 396, 133710. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Emara, A.M.; Hu, Y.; Wang, Z.; Wang, M.; He, Z. Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles. Food Chem. 2020, 315, 126226. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, X.; Wang, Y.; Wang, B.; Wang, S.; Chang, J.; Liu, S.; Wang, H. Proanthocyanidin B2 and transglutaminase synergistically improves gel properties of oxidized myofibrillar proteins. Food Chem. 2022, 391, 133262. [Google Scholar] [CrossRef]
- Khoder, R.M.; Deng, X.; Zhang, L.; Huang, Q.; You, J.; Liu, R.; Ma, H.; Yin, T. Effect of cinnamaldehyde and tannic acid nano-emulsions on meat quality and protein oxidation during cold storage. Food Packag. Shelf Life 2025, 48, 101462. [Google Scholar] [CrossRef]
Group | Packaging Material | Modified Atmosphere Packaging |
---|---|---|
Control Check (CK) | - | - |
WO | WP-OCS complex | - |
WOM | JEO-loaded nanoemulsion | - |
WOM-MAP | JEO-loaded nanoemulsion | N2: 60%; CO2: 40% |
Inhibition Zone Diameter (mm) | MIC (μL/mL) | |
---|---|---|
Staphylococcus aureus | 14.0 ± 1.0 | 5 |
Shewanella putrefaciens | 13.5 ± 0.5 | 10 |
Pseudomonas fluorescens | 21.5 ± 2.0 | 10 |
Group | Asp | Thr | Ser | Glu | Gly | Ala |
---|---|---|---|---|---|---|
d0CK | 4.25 ± 0.18 d | 35.14 ± 1.32 a | 25.94 ± 0.91 e | 43.35 ± 1.55 a | 67.24 ± 1.91 ab | 143.44 ± 4.35 d |
d8CK | 2.26 ± 0.05 f | 26.76 ± 0.58 f | 29.24 ± 0.94 c | 3.08 ± 0.09 f | 70.11 ± 1.65 a | 173.55 ± 4.26 a |
d8WO | 0.93 ± 0.03 g | 29.18 ± 1.1 d | 13.62 ± 0.65 g | 7.8 ± 0.33 e | 67.28 ± 2.29 ab | 162.77 ± 6 b |
d8WOM | 5.7 ± 0.3 c | 26.11 ± 1.15 f | 21.67 ± 1.37 f | 23.07 ± 1.27 c | 58.77 ± 2.77 d | 151.15 ± 7.45 c |
d8WOM-MAP | 10.23 ± 0.07 b | 33.19 ± 0.18 b | 33.22 ± 0.16 b | 36 ± 0.22 b | 52.13 ± 0.12 e | 133.87 ± 0.21 e |
d20CK | 3.55 ± 0.1 e | 27.53 ± 0.77 ef | 27.48 ± 0.85 d | 2.69 ± 0.17 f | 66.81 ± 1.82 b | 166.3 ± 4.63 b |
d20WO | 2.35 ± 0.07 f | 28.31 ± 0.36 de | 22.54 ± 0.37 f | 2.31 ± 0.03 f | 66.65 ± 0.2 b | 160.13 ± 0.45 b |
d20WOM | 4.51 ± 0.18 d | 26.13 ± 0.47 f | 33 ± 0.26 b | 2.93 ± 0.04 f | 63.36 ± 0.4 c | 162.05 ± 1.16 b |
d20WOM-MAP | 13.15 ± 0.19 a | 31.73 ± 0.58 c | 44.99 ± 0.49 a | 12.26 ± 0.35 d | 56.93 ± 0.95 d | 151.99 ± 2.05 c |
Group | Cyst | Val | Met | Ile | Leu | Tyr |
d0CK | 11.7 ± 0.18 a | 24.44 ± 0.77 f | 7.3 ± 0.28 f | 9.5 ± 0.35 e | 24.66 ± 0.87 g | 26.56 ± 16.21 a |
d8CK | 11.03 ± 0.19 b | 35.36 ± 0.91 c | 10 ± 0.26 d | 11.96 ± 0.32 d | 39.4 ± 1.15 d | 24.88 ± 0.54 a |
d8WO | 10.97 ± 0.41 b | 28.27 ± 1.17 e | 7.33 ± 0.33 f | 7.74 ± 0.29 f | 26.11 ± 0.96 fg | 0.65 ± 0.16 b |
d8WOM | 9.92 ± 0.53 c | 27.05 ± 1.41 e | 6.99 ± 0.37 f | 7.48 ± 0.43 f | 27.01 ± 1.37 f | 20.13 ± 1.12 a |
d8WOM-MAP | 8.13 ± 0.08 e | 31.15 ± 0.05 d | 9.47 ± 0.1 e | 11.74 ± 0.08 d | 35.4 ± 0.15 e | 21.05 ± 0.11 a |
d20CK | 8.19 ± 0.28 e | 43.08 ± 1.29 a | 16.58 ± 0.47 bc | 16.37 ± 0.46 a | 46.03 ± 1.40 b | 1.98 ± 0.1 b |
d20WO | 7.73 ± 0.09 e | 42.99 ± 0.07 a | 17.09 ± 0.04 b | 15.54 ± 0.08 b | 40.15 ± 0.04 d | 18.35 ± 0.08 a |
d20WOM | 9.14 ± 0.25 d | 40.02 ± 0.36 b | 16.28 ± 0.17 c | 14.1 ± 0.17 c | 42.04 ± 0.39 c | 17.86 ± 0.16 a |
d20WOM-MAP | 7.77 ± 0.26 e | 41.93 ± 0.68 a | 19.16 ± 0.39 a | 16.54 ± 0.26 a | 48.42 ± 0.93 a | 19.73 ± 0.08 a |
Group | Phe | Lys | His | Arg | Pro | Total |
d0CK | 16.94 ± 0.62 e | 478.78 ± 20.41 a | 138.13 ± 5.49 a | 7.60 ± 0.30 a | 5.91 ± 0.52 f | 1288.24 ± 47.12 a |
d8CK | 31.59 ± 0.35 a | 456.61 ± 12.69 a | 43.52 ± 1.34 d | 0.68 ± 0.06 de | 9.51 ± 0.69 d | 1038.16 ± 19.36 b |
d8WO | 20.63 ± 0.78 d | 380.6 ± 18.42 cd | 10.05 ± 0.07 g | 0.46 ± 0.02 f | 8.11 ± 0.77 e | 832.82 ± 36.65 f |
d8WOM | 25.96 ± 1.71 c | 418.53 ± 25.88 b | 51.52 ± 3.04 c | 0.77 ± 0.07 d | 6.34 ± 0.95 f | 921.5 ± 50.57 cde |
d8WOM-MAP | 28.08 ± 0.14 b | 370.52 ± 1.42 cd | 64.81 ± 0.13 b | 1.14 ± 0.03 c | 7.94 ± 0.45 e | 931.39 ± 1.03 cd |
d20CK | 25.34 ± 0.68 c | 393.13 ± 11.85 c | 18.55 ± 0.59 f | 0.58 ± 0.01 def | 13.98 ± 0.29 b | 938.19 ± 26.72 cd |
d20WO | 16.91 ± 0.05 e | 356.3 ± 0.99 d | 1.54 ± 0.03 h | 0.51 ± 0.01 ef | 15.38 ± 0.04 a | 870.31 ± 0.93 ef |
d20WOM | 26.06 ± 0.36 c | 373.61 ± 4.62 cd | 6.71 ± 0.16 g | 0.64 ± 0.02 def | 11.24 ± 0.06 c | 902.97 ± 8.78 de |
d20WOM-MAP | 30.79 ± 0.34 a | 363.06 ± 4.18 d | 33.9 ± 0.75 e | 1.63 ± 0.02 b | 11.33 ± 1.03 c | 965.05 ± 14.72 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Li, S.; Shi, P.; Zheng, Y.; Mei, J. Preservation of Atlantic Salmon (Salmo salar) Fillets Using Jasmine Essential Oil-Loaded Nanoemulsions Stabilized with a Whey Protein/Oxidized Corn Starch Complex. Foods 2025, 14, 3024. https://doi.org/10.3390/foods14173024
Shen J, Li S, Shi P, Zheng Y, Mei J. Preservation of Atlantic Salmon (Salmo salar) Fillets Using Jasmine Essential Oil-Loaded Nanoemulsions Stabilized with a Whey Protein/Oxidized Corn Starch Complex. Foods. 2025; 14(17):3024. https://doi.org/10.3390/foods14173024
Chicago/Turabian StyleShen, Jie, Song Li, Peng Shi, Yibin Zheng, and Jun Mei. 2025. "Preservation of Atlantic Salmon (Salmo salar) Fillets Using Jasmine Essential Oil-Loaded Nanoemulsions Stabilized with a Whey Protein/Oxidized Corn Starch Complex" Foods 14, no. 17: 3024. https://doi.org/10.3390/foods14173024
APA StyleShen, J., Li, S., Shi, P., Zheng, Y., & Mei, J. (2025). Preservation of Atlantic Salmon (Salmo salar) Fillets Using Jasmine Essential Oil-Loaded Nanoemulsions Stabilized with a Whey Protein/Oxidized Corn Starch Complex. Foods, 14(17), 3024. https://doi.org/10.3390/foods14173024