Potential of Hairless Canary Seed as a Food-Based Remedy for Celiac Disease and Diabetes †
Abstract
1. Introduction
2. Hairless Canary Seed as a Novel Food
3. Uniqueness of Hairless Canary Seed Proteins
4. Potential of Hairless Canary Seed in Celiac Disease Remedy
5. Hairless Canary Seed in Diabetes and Oxidative Stress Remedies
6. Hairless Canary Seed and Health of Eyes and Brain
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nation (FAO). FAO Stat: Crops and Livestock Products, 2023. Update 20 December 2024. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 17 March 2025).
- Abdel-Aal, E.M.; Hucl, P.; Sosulski, F.W. Structural and compositional characteristics of canaryseed (Phalaris canariensis L.). J. Agric. Food Chem. 1997, 45, 3049–3055. [Google Scholar] [CrossRef]
- O’Neill, C.H.; Hodges, G.M.; Riddle, P.N.; Jordan, P.W.; Newman, R.H.; Flood, R.J.; Toulson, E.C. A fine fibrous silica contaminant of flour in the high esophageal cancer area of north-east Iran. Int. J. Cancer 1980, 26, 617–628. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M. Nutritional and functional attributes of hairless canary seed groats and components and their potential as functional ingredients. Trends Food Sci. Technol. 2021, 111, 680–687. [Google Scholar] [CrossRef]
- US-FDA 2015. US Food and Drug Administration. Agency Response Letter GRAS Notice No. GRN 000529. Available online: https://www.hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=grasnotices&id=529 (accessed on 17 March 2025).
- Health Canada 2016. Health Canada, Food and Nutrition, Novel Foods. Available online: http://www.hc-sc.gc.ca/fn-an/gmf-agm/appro/canary-seed-lang-graine-alpiste-eng.php (accessed on 17 March 2025).
- Mason, E.; L’Hocine, L.; Achouri, A.; Pitre, M.; Karboune, S. Health promoting bioactive properties of novel hairless canary seed flour after in vitro gastrointestinal digestion. Foods 2020, 9, 932. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Hernandez, M.; Rabalski, I.; Hucl, P. Composition of hairless canary seed oil and starch-associated lipid and its relationship to pasting and thermal properties of starch. LWT—Food Sci. Technol. 2020, 125, 109257. [Google Scholar] [CrossRef]
- Ben Salah, H.; Kchaou, M.; Ben Abdallah Kolsi, R.; Abdennabi, R.; Ayedi, M.; Gharsallah, N.; Allouche, N. Chemical composition, characteristics, profiles and bioactivities of Tunisian Phalaris canariensis seed: A potential source of ω-6 and ω-9 fatty acids. J. Oleo Sci. 2018, 67, 801–812. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Rabalski, I.; Hernandez, M.; L’Hocine, L.; Patterson, C.A.; Hucl, P. Effect of sodium chloride, sucrose, and xanthan gum on pasting properties and gel syneresis of hairless canary seed starch. Cereal Chem. 2019, 96, 908–919. [Google Scholar] [CrossRef]
- Irani, M.; Abdel-Aal, E.M.; Razavi, S.M.A.; Hucl, P.; Patterson, C.A. Thermal and functional properties of hairless canary seed (Phalaris canariensis L.) starch in comparison with wheat starch. Cereal Chem. 2017, 94, 341–348. [Google Scholar] [CrossRef]
- Irani, M.; Razavi, S.M.A.; Abdel-Aal, E.M.; Hucl, P.; Patterson, C.A. Viscoelastic and textural properties of canary seed starch gels in comparison with wheat starch gel. Int. J. Biol. Macromol. 2019, 124, 270–281. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Hucl, P.; Miller, S.S.; Patterson, C.A.; Gray, D. Microstructure and nutrient composition of hairless canary seed and its potential as a blending flour for food use. Food Chem. 2011, 125, 410–416. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Mats, L.; Rabalski, I. Identification of carotenoids in hairless canary seed and the effect of baking on their composition in bread and muffin products. Molecules 2022, 27, 1307. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Rabalski, I. Changes in phenolic acids and antioxidant properties during baking of bread and muffin made from blends of hairless canary seed, Wheat, and Corn. Antioxidant 2022, 11, 1059. [Google Scholar] [CrossRef]
- Amahrous, A.; Taib, M.; Meftah, S.; Oukani, E.; Lahboub, B. Chemical composition, health benefits and future prospects of hairless canary seed (Phalaris canariensis L.): A Review. J. Oleo Sci. 2024, 73, 1361–1375. [Google Scholar] [CrossRef]
- Patterson, C.A.; Malcolmson, L.; Lukie, C.; Young, G.; Hucl, P.; Abdel-Aal, E.M. Glabrous canary seed: A novel food ingredient. Cereal Foods World 2018, 63, 194–200. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Hucl, P. Hairless canary seed: A potential food crop. In Specialty Grains for Food and Feed; Abdel-Aal, E.M., Wood, P., Eds.; American Association of Cereal Chemists, Inc.: Eagan, MN, USA, 2005; pp. 203–221. [Google Scholar]
- Abdel-Aal, E.M.; Hucl, P.; Patterson, C.A.; Gray, D. Fractionation of hairless canary seed (Phalaris canariensis L.) into starch, protein and oil. J. Agric. Food Chem. 2010, 58, 7046–7050. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Yao, K.; Fang, J.; Yin, Y.-l.; Feng, Z.-M.; Tang, Z.-R.; Wu, G. Tryptophan metabolism in animals: Important roles in nutrition and health. Front. Biosci. 2011, S3, 286–297. [Google Scholar] [CrossRef]
- Nayak, B.N.; Singh, R.B.; Buttar, H.S. Role of tryptophan in health and disease: Systematic review of the anti-oxidant, anti-inflammation, and nutritional aspects of tryptophan and its metabolites. World Heart J. 2019, 11, 161–178. [Google Scholar]
- Passos, C.S.; Carvalho, L.N.; Pontes, R.B.; Campos, R.R.; Ikuta, O.; Boim, M.A. Blood pressure reducing effects of Phalaris canariensis in normotensive and spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 2012, 90, 201–212. [Google Scholar] [CrossRef]
- Venkatesh, R.; Srinivasan, K.; Singh, S.A. Effect of arginine:lysine and glycine:methionine intake ratios on dyslipidemia and selected biomarkers implicated in cardiovascular disease: A study with hypercholesterolemic rats. Biomed. Pharmacother. 2017, 91, 408–414. [Google Scholar] [CrossRef]
- Newkirk, R.W.; Ram, J.I.; Hucl, P.; Patterson, C.A.; Classen, H.L. A study of nutrient digestibility and growth performance of broiler chicks fed hairy and hairless canary seed (Phalaris canariensis L.) products. Poult. Sci. 2011, 90, 2782–2789. [Google Scholar] [CrossRef]
- Classen, H.; Cho, M.; Hucl, P.; Gomis, S.; Patterson, C.A. Performance, health and tissue weights of broiler chickens fed graded levels of hairless hulled yellow and brown canary seed (Phalaris canariensis L.). Can. J. Anim. Sci. 2014, 94, 669–678. [Google Scholar] [CrossRef]
- Thacker, P.A. Performance and carcass characteristics of growing-finishing pigs fed diets containing graded levels of canaryseed. Can. J. Anim. Sci. 2003, 83, 89–93. [Google Scholar] [CrossRef]
- L’Hocine, L.; Achouri, A.; Mason, E.; Pitre, M.; Martineau-Côté, D.; Sirois, S.; Karboune, S. Assessment of protein nutritional quality of novel hairless canary seed in comparison to wheat and oat using in vitro static digestion models. Nutrients 2023, 15, 1347. [Google Scholar] [CrossRef]
- Rajamohamed, S.H.; Aryee, A.N.A.; Hucl, P.; Patterson, C.A.; Boye, J.I. In vitro gastrointestinal digestion of glabrous canaryseed proteins as affected by variety and thermal treatment. Plant Foods Hum. Nutr. 2013, 68, 306–312. [Google Scholar] [CrossRef]
- Moura, M.A.F.; Perera, S.; Ren, Y.; Takahashi, J.A.; Ai, Y.; Nickerson, M.T. Functional characteristics and protein quality of selected commercially obtained brown and yellow canary seed flours and prepared isolates. Cereal Chem. 2020, 97, 783–794. [Google Scholar] [CrossRef]
- Kurppa, K.; Mulder, C.J.; Stordal, K.; Kaukinen, K. Celiac disease affects 1% of global population: Who will manage all these patients? Gastroenterology 2024, 167, 148–158. [Google Scholar]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef]
- Boye, J.I.; Achouri, A.; Raymond, N.; Cleroux, C.; Weber, D.; Koerner, T.B.; Hucl, P.; Patterson, C.A. Analysis of glabrous canary seeds by ELISA, mass spectrometry, and western blotting for the absence of cross-reactivity with major plant food allergens. J. Agric. Food Chem. 2013, 61, 6102–6112. [Google Scholar] [CrossRef] [PubMed]
- Dios Sanz, E.; Sanmartino, T.; Campderrós, M.E.; Rodriguez Furlán, L.T. Obtaining and evaluating of enzymatic extracts from hairless canary seed (CDC Maria) as gluten-free bread-improving agents. J. Food Sci. Technol. 2024, 61, 539–550. [Google Scholar] [CrossRef]
- Burrows, V.D. Hulless oats. In Specialty Grains for Food and Feed; Abdel-Aal, E.M., Wood, P., Eds.; American Association of Cereal Chemists, Inc.: Eagan, MN, USA, 2005; pp. 223–251. [Google Scholar]
- Codex Standard 118-1979; Draft Revised Codex Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten. Codex Alimentarius Commission: Rome, Italy, 2008.
- Herrera-Quintana, L.; Navajas-Porras, B.; Vázquez-Lorente, H.; Hinojosa-Nogueira, D.; Corrales-Borrego, F.J.; Lopez-Garzon, M.; Plaza-Diaz, J. Celiac disease: Beyond diet and food awareness. Foods 2025, 14, 377. [Google Scholar] [CrossRef]
- Bjorck, I.; Ostman, E.; Kristensen, M.; Anson, N.M.; Price, R.K.; Haenen, G.R.M.M.; Havenaar, R.; Knudson, K.E.B.; Frid, A.; Mykkanen, H.; et al. Cereal grain for nutrition and health benefits: An overview of results in vitro, animal and human studies in health grain project. Trends Food Sci. Technol. 2012, 25, 87–100. [Google Scholar] [CrossRef]
- Jones, J.M.; García, C.G.; Braun, H.J. Perspective: Whole and Refined Grains and Health-Evidence Supporting “Make Half Your Grains Whole”. Adv. Nutr. 2020, 11, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Idehen, E.; Zhao, Y.; Chu, Y.F. Emerging science on whole grain intake and inflammation. Nutr. Rev. 2020, 78, 21–28. [Google Scholar] [CrossRef]
- Seal, C.J.; Brownlee, I.A. Whole grains and health, evidence from observational and intervention studies. Cereal Chem. 2010, 87, 167–174. [Google Scholar] [CrossRef]
- Perez Gutierrez, R.M.; Ahuatzi, D.M.; Horcacitas, M.C.; Baez, E.F.; Victoria, T.C.; Motaflores, J.M. Ameliorative effect of hexane extract of Phalaris canariensis on high fat diet-induced obese and streptozotocin-induced diabetic mice. Evid. Based Complement. Altern. Med. 2014, 2014, 145901. [Google Scholar] [CrossRef]
- Yu, J.; Chen, G.; Jin, Y.; Zhang, M.; Wu, T. Research progress of bioactive peptides in improving type II diabetes. Foods 2025, 14, 340. [Google Scholar] [CrossRef]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef]
- Gong, X.; An, Q.; Le, L.; Geng, F.; Jiang, L.; Yan, J.; Wan, Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit. Rev. Food Sci. Nutr. 2020, 62, 2855–2871. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, Z.; Zhou, Z.; Jin, M.; Li, Q.; Zhou, X. Recent advances in bioactive peptides from cereal-derived foodstuffs. Int. J. Food Sci. Nutr. 2022, 73, 875–888. [Google Scholar] [CrossRef]
- Valverde, M.E.; Orona-Tamayo, D.; Nieto-Rendon, B.; Paredes-Lopez, O. Antioxidant and antihypertensive potential of protein fractions from flour and milk substitutes from canary seeds (Phalaris canariensis L.). Plant Food Hum. Nutr. 2017, 72, 20–25. [Google Scholar] [CrossRef]
- Estrada-Salas, P.A.; Montero-Moran, G.M.; Martinez-Cuevas, P.P.; Gonzalez, C.; Barba de la Rosa, A.P. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides. J. Agric. Food Chem. 2014, 62, 427–433. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.C.; Aguilar-Toalá, J.E.; Liceaga, A.M. Hairless canary seeds (Phalaris canariensis L.) as a potential source of antioxidant, antihypertensive, antidiabetic, and antiobesity biopeptides. Food Prod. Process. Nutr. 2021, 3, 6. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; Liceaga, A.M.; Reddivari, L.; Li, S.; Kim, K.H.; Anderson, J.M. Enzyme kinetics, molecular docking, and in silico characterization of canary seed (Phalaris canariensis L.) peptides with ACE and pancreatic lipase inhibitory activity. J. Funct. Foods 2022, 88, 10489. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; Kim, K.-H.; Reddivari, L.; Anderson, J.M.; Liceaga, A.M. Oxidative stress protection by canary seed (Phalaris canariensis L.) peptides in Caco-2 cells and Caenorhabditis elegans. Nutrients 2022, 14, 2415. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; Liceaga, A.M.; Reddivari, L.; Li, S.; Kim, K.H.; Cox, A.D.; Anderson, J.M. Canary seed (Phalaris canariensis L.) peptides prevent obesity and glucose intolerance in mice fed a Western diet. Int. J. Mol. Sci. 2022, 23, 14927. [Google Scholar] [CrossRef]
- Ojeda, L.; Ruiz, Y.D.; Martínez, F.; Odreman, R.; Torri, J.; Villegas, R.; Ybarra, L.P.; Machado, N.N. Effects of the seed of Phalaris Canariensis and the changes of diet on serum lipids in rats. Emir. J. Food Agric. 2021, 33, 287–292. [Google Scholar] [CrossRef]
- Perez Gutierrez, R.M.; Ahuatzi, D.M.; Victoria, T.C. Inhibition by seeds of Phalaris canariensis extracts of key enzymes linked to obesity. Altern. Ther. Health Med. 2016, 22, 8–14. [Google Scholar] [PubMed]
- Rayburn, K. Canary seed in diabetes: Sweet harmony? Altern. Ther. Health Med. 2016, 22, 16–19. [Google Scholar]
- Escalante-Figueroa, F.; Castellanos-Ruelas, A.; Castañeda-Pérez, E.; Chel-Guerrero, L.; Betancur-Ancona, D. Development of low glycemic index pancakes formulated with canary seed (Phalaris canariensis) Flour. Plant Foods Hum. Nutr. 2024, 79, 120–126. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Prasad, R.; Ali, S.; Doble, M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 2013, 20, 488–494. [Google Scholar] [CrossRef]
- Jung, E.H.; Kim, S.R.; Hwang, I.K.; Ha, T.Y. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/Ks]-db/db mice. J. Agric. Food Chem. 2007, 55, 9800–9804. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J. Enzyme Inhib. Med. Chem. 2009, 24, 1194–1200. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Hucl, P.; Patterson, C.A.; Gray, D. Phytochemicals and heavy metals content of hairless canary seed: A variety developed for food use. LWT—Food Sci. Technol. 2011, 44, 904–910. [Google Scholar] [CrossRef]
- Li, W.; Qiu, Y.; Patterson, C.A.; Beta, T. The analysis of phenolic constituents in glabrous canaryseed groats. Food Chem. 2011, 127, 10–20. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Wang, X.; Gu, Z.; Beta, T. Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination. Food Chem. 2016, 194, 608–618. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Rabalski, I.; Carey, C.; Gamel, T.H. Bioaccessibility and cellular uptake of lutein, zeaxanthin and ferulic acid from muffins and breads made from hairless canary seed, wheat and corn blends. Foods 2023, 12, 1307. [Google Scholar] [CrossRef] [PubMed]
- Park, L.; Green, C.; Arutyunyan, S.; Vasile, G.; Buckley, C.; Weiss, E. Effects of canary seed on two patients with disseminated granuloma annulare. Dermatol. Rep. 2023, 15, 9614. [Google Scholar] [CrossRef]
- Abdel-Aal, E.M.; Akhtar, M.H.; Zaheer, K.; Rashida, A. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Abdel-Aal, E.M. Dietary lutein and cognitive function in adults: A Meta-analysis of randomized controlled trials. Molecules 2021, 26, 5794. [Google Scholar] [CrossRef]
- Stringham, J.M.; Johnson, E.J.; Hammond, B.R. Lutein across the lifespan: From childhood cognitive performance to the aging eye and brain. Curr. Dev. Nutr. 2019, 3, nzz066. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Launer, L.J.; Grodstein, F.; Bernstein, P.S. Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: The AREDS2 randomized clinical trial. JAMA 2015, 4, 791–801. [Google Scholar] [CrossRef]
- Jia, Y.P.; Sun, L.; Yu, H.S.; Liang, L.P.; Li, W.; Ding, H.; Song, X.B.; Zhang, L.J. The pharmacological effects of lutein and zeaxanthin on visual disorders and cognition diseases. Molecules 2017, 22, 610. [Google Scholar] [CrossRef]
- Gong, X.; Smith, J.R.; Swanson, H.M.; Rubin, L.P. Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic gents through ROS-mediated mechanisms. Molecules 2018, 23, 905. [Google Scholar] [CrossRef]
- Leermakers, E.T.M.; Darweesh, S.K.L.; Baena, C.P.; Moreira, E.M.; Melo van Lent, D.; Tielemans, M.J.; Muka, T.; Vitezova, A.; Chowdhury, R.; Bramer, W.M.; et al. The effects of lutein on cardiometabolic health across the life course: A systematic review and meta-analysis. AJCN 2016, 103, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.M.; Young, J.C.; Rabalski, I.; Frégeau-Reid, J.; Hucl, P. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 2007, 55, 787–794. [Google Scholar] [CrossRef]
- Johnson, E.J. Intake of lutein and zeaxanthin differ with age, sex, and ethnicity. J. Am. Diet. Assoc. 2010, 110, 1357–1362. [Google Scholar] [CrossRef]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Dietary carotenoids, vitamin A, C and E, and advanced age-related macular degeneration. JAMA 1994, 272, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Read, A.; Wright, A.; Abdel-Aal, E.M. In vitro bioaccessibility and monolayer uptake of lutein from whole grain baked foods. Food Chem. 2015, 174, 263–269. [Google Scholar] [CrossRef] [PubMed]
Carotenoids | Muffin | Bread | ||||
---|---|---|---|---|---|---|
HCS (100%) | HCS/C (1:1, w/w) | HCS/C (1:2, w/w) | Wheat (100%) | Wheat/HCS (75/25, w/w) | Wheat/HCS (50/50, w/w) | |
15-cis-Lutein | 0.05 | 0.07 | 0.1 | 0.04 | 0.03 | 0.06 |
all-trans-Lutein | 1.5 | 1.7 | 2.0 | 0.3 | 0.7 | 0.8 |
all-trans-Zeaxanthin | 0.2 | 1.5 | 2.2 | 0.2 | 0.2 | 0.3 |
9-cis-Lutein | 0.2 | 0.1 | 0.1 | nd | nd | nd |
9-cis-Zeaxanthin | 0.1 | 0.1 | 0.2 | nd | nd | nd |
15-cis-β-Cryptoxanthin | 0.2 | 0.2 | 0.2 | nd | nd | nd |
all-trans-β-Cryptoxanthin | 0.1 | 0.2 | 0.2 | nd | nd | nd |
Lutein-3-O-linoleate | 1.0 | 0.4 | 0.5 | nd | 0.4 | 0.6 |
Lutein-3-O-oleate | 0.3 | 0.4 | 0.2 | nd | 0.3 | 0.4 |
Lutein dilinoleate | 0.2 | 0.1 | 0.1 | nd | 0.3 | 0.4 |
Total unbounds (free) | 2.4 | 3.9 | 5.0 | 0.5 | 0.9 | 1.2 |
Total bounds (mono- and di-esters) | 1.5 | 0.9 | 0.8 | 0.0 | 1.0 | 1.4 |
Total carotenoids | 3.9 | 4.8 | 5.8 | 0.5 | 1.9 | 2.6 |
Impact of baking process expressed as % decrease | ||||||
Total unbounds | 44.2 (18.6) a | 55.7 (13.7) | 50.0 (13.0) | 66.7 (20.0) | 59.1 (4.6) | 52.0 (4.0) |
Total bounds | 53.1 (15.6) | 40.0 (13.3) | 38.5 (7.7) | - | 37.5 (12.5) | 41.7 (12.5) |
Total carotenoids | 48.0 (17.3) | 53.4 (13.6) | 48.7 (12.4) | 66.7 (20.0) | 50.0 (7.9) | 46.9 (8.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© Attribution of Crown copyright @ His Majesty the King in Right of Canada, 2025. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Aal, E.-S.M.; Gamel, T.H. Potential of Hairless Canary Seed as a Food-Based Remedy for Celiac Disease and Diabetes. Foods 2025, 14, 3011. https://doi.org/10.3390/foods14173011
Abdel-Aal E-SM, Gamel TH. Potential of Hairless Canary Seed as a Food-Based Remedy for Celiac Disease and Diabetes. Foods. 2025; 14(17):3011. https://doi.org/10.3390/foods14173011
Chicago/Turabian StyleAbdel-Aal, El-Sayed M., and Tamer H. Gamel. 2025. "Potential of Hairless Canary Seed as a Food-Based Remedy for Celiac Disease and Diabetes" Foods 14, no. 17: 3011. https://doi.org/10.3390/foods14173011
APA StyleAbdel-Aal, E.-S. M., & Gamel, T. H. (2025). Potential of Hairless Canary Seed as a Food-Based Remedy for Celiac Disease and Diabetes. Foods, 14(17), 3011. https://doi.org/10.3390/foods14173011