Studies on the Structure and Properties of Ultrasound-Assisted Enzymatic Digestion of Collagen Peptides Derived from Chinemys reevesii Skin
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Methods
2.2.1. Preparation of Turtle Skin Collagen
2.2.2. Preparation of Conventional Enzymatic Collagen Hydrolysates (CE)
2.2.3. Preparation of Turtle Collagen Hydrolysates by Ultrasound Pretreatment-Assisted Enzymatic Hydrolysis (UPH)
2.2.4. Preparation of Turtle Collagen Hydrolysates by Whole-Process Ultrasound-Assisted Enzymatic Hydrolysis (WUH)
2.2.5. Determination of Degree of Hydrolysis (DH)
2.2.6. Determination of Molecular Weight Distribution
2.2.7. Determination of Amino Acid Composition
2.2.8. Circular Dichroic (CD) Color Spectroscopy
2.2.9. Scanning Electron Microscopy (SEM) Analysis
2.2.10. Surface Hydrophobicity
2.2.11. Determination of Sulfhydryl and Disulfide Bond Content
2.2.12. Measurement of ABTS Free Radical Scavenging Rate
2.2.13. Measurement of DPPH Free Radical Scavenging Rate
2.2.14. Reducing Power Determination
2.2.15. Statistical Analysis
3. Results
3.1. Effect of Different Ultrasound-Assisted Modes on the Degree of Hydrolysis
3.2. Molecular Weight Distribution Analysis
3.3. Amino Acid Composition Analysis
3.4. Circular Dichroism (CD) Spectroscopy
3.5. Scanning Electron Microscope Analysis (SEM)
3.6. Surface Hydrophobicity Analysis
3.7. Sulfhydryl and Disulfide Bond Content
3.8. In Vitro Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UP | Ultrasound pretreatment |
US | Ultrasound simultaneous treatment |
CCHs | Chinemys reevesii skin collagen hydrolysates |
CE | Conventional enzymatic treatment |
UPH | Ultrasound pretreatment-assisted enzymatic hydrolysis |
WUH | Whole-process ultrasound-assisted hydrolysates |
TSE | Transmissible spongiform encephalopathy |
FMD | Foot-and-mouth disease |
AI | Avian influenza |
ABTS | 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
References
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, L.; Gallo, N.; Natali, M.L.; Campa, L.; Lunetti, P.; Madaghiele, M.; Blasi, F.S.; Corallo, A.; Capobianco, L.; Sannino, A. Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Mater. Sci. Eng. C 2020, 113, 110963. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.O.; Alves, A.L.; Carvalho, D.N.; Martins, E.; Oliveira, C.; Silva, T.H.; Reis, R.L. Acid and enzymatic extraction of collagen from Atlantic cod (Gadus morhua) swim bladders envisaging health-related applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, P.G.; Suh, J.H.; Pegg, R.B.; Chen, J.; Mis Solval, K. The emergence of jellyfish collagen: A comprehensive review on research progress, industrial applications, and future opportunities. Trends Food Sci. Technol. 2023, 141, 104206. [Google Scholar] [CrossRef]
- Senadheera, T.R.L.; Dave, D.; Shahidi, F. Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Mar. Drugs 2020, 18, 471. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Wu, W.; Wang, P. Extraction, Characterization and Osteogenic Activity of a Type I Collagen from Starfish (Asterias amurensis). Mar. Drugs 2023, 21, 274. [Google Scholar] [CrossRef]
- Hiransuchalert, R.; Oonwiset, N.; Imarom, Y.; Chindudsadeegul, P.; Laongmanee, P.; Arnupapboon, S. Extraction and characterization of pepsin-soluble collagen from different mantis shrimp species. Fish. Aquat. Sci. 2021, 24, 406–414. [Google Scholar] [CrossRef]
- Araújo, T.A.T.; de Souza, A.; Santana, A.F.; Braga, A.R.C.; Custódio, M.R.; Simões, F.R.; Araújo, G.M.; Miranda, A.; Alves, F.; Granito, R.N.; et al. Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In Vitro Biological Analysis. Membranes 2021, 11, 522. [Google Scholar] [CrossRef]
- Fimbres-Romero, M.J.; Cabrera-Chávez, F.; Ezquerra-Brauer, J.M.; Márquez-Ríos, E.; Suárez-Jiménez, G.M.; Del Toro-Sanchez, C.L.; Ramírez-Torres, G.I.; Torres-Arreola, W. Utilisation of collagenolytic enzymes from sierra fish (Scomberomorus sierra) and jumbo squid (Dosidicus gigas) viscera to generate bioactive collagen hydrolysates from jumbo squid muscle. J. Food Sci. Technol. 2021, 58, 2725–2733. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, L.; Cai, P.; Li, P.; Zhang, M.; Sun, Z.; Sun, C.; Xu, W.; Wang, D. Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. Int. J. Biol. Macromol. 2017, 105, 1602–1610. [Google Scholar] [CrossRef]
- Li, C.; Song, W.; Wu, J.; Lu, M.; Zhao, Q.; Fang, C.; Wang, W.; Park, Y.-D.; Qian, G.-Y. Thermal stable characteristics of acid- and pepsin-soluble collagens from the carapace tissue of Chinese soft-shelled turtle (Pelodiscus sinensis). Tissue Cell 2020, 67, 101424. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Wang, H.; Admassu, H.; Mahdi, A.A.; Ma, C.; Fu, A.W. In vitro antioxidant, cytotoxic and antidiabetic activities of protein hydrolysates prepared from Chinese pond turtle (Chinemys reevesii). Food Technol. Biotechnol. 2021, 59, 360–375. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Yan, J.-Y.; Ren, J.; Li, S.-X. Differentiating Trachemys scripta elegans shell glue from Chinemys reevesii shell glue by UPLC-QTOF/MS coupled with binary compare tool of UNIFI. Digital Chin. Med. 2019, 2, 50–58. [Google Scholar] [CrossRef]
- Yu, D.; Wei, W.; Guan, L.; Chen, W.; Cao, H. Effects of Acid and Enzymatic Extraction on the Structure and Physicochemical Characterization of Collagen from Chinemys reevesii Skin. Sci. Technol. Food Ind. 2025, 46, 79–86. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, D.; Jiang, N. Extraction and analysis of turtle-skin collagen. Food Res. Dev. 2006, 27, 62–64. [Google Scholar] [CrossRef]
- Ding, D.; Du, B.; Zhang, C.; Zaman, F.; Huang, Y. Isolation and identification of an antioxidant collagen peptide from skipjack tuna (Katsuwonus pelamis) bone. RSC Adv. 2019, 9, 27032–27041. [Google Scholar] [CrossRef]
- Zhang, Q. The study of Chinese Soft-Shelled Turtle Calipash Collagen Extraction and Mechanism of Collagen Peptides on Rat Wound Healing. Master’s Thesis, Jiangnan University, Wuxi, China, 2019. [Google Scholar]
- Wu, D.; Tang, L.; Huang, Z.; Yang, M.; Dai, X.; Yu, C.; Chen, D. Absorption of several peptides in isolated rat small intestine. Pharm. Biotechnol. 2007, 14, 356–360. [Google Scholar] [CrossRef]
- Xu, S. Extraction and Activity Validation of Collagen Peptidesfrom the Skin and Bones of Pollock. Master’s Thesis, Yantai University, Yantai, China, 2023. [Google Scholar]
- Wang, C.; Dong, S.; Zhang, L.; Zhao, Y.; Huang, L.; Gong, X.; Wang, H.; Shang, D. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci. Rep. 2017, 7, 8293. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Zhao, Y.-Q.; Zhao, G.-X.; Chi, C.-F.; Wang, B. Antioxidant Peptides from Collagen Hydrolysate of Redlip Croaker (Pseudosciaena polyactis) Scales: Preparation, Characterization, and Cytoprotective Effects on H2O2-Damaged HepG2 Cells. Mar. Drugs 2020, 18, 156. [Google Scholar] [CrossRef]
- Maeda, K. Skin-moisturizing effect of collagen peptides taking orally. J. Nutr. Food Sci. 2018, 8, 682. [Google Scholar] [CrossRef]
- Veldhorst, M.A.B.; Nieuwenhuizen, A.G.; Hochstenbach-Waelen, A.; Westerterp, K.R.; Engelen, M.P.K.J.; Brummer, R.-J.M.; Deutz, N.E.P.; Westerterp-Plantenga, M.S. Effects of high and normal soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and ‘satiety’ hormone responses. Eur. J. Nutr. 2009, 48, 92–100. [Google Scholar] [CrossRef]
- Yousefi, M.; Ariffin, F.; Huda, N. An alternative source of type I collagen based on by-product with higher thermal stability. Food Hydrocoll. 2017, 63, 372–382. [Google Scholar] [CrossRef]
- Qiu, Y.-T.; Wang, Y.-M.; Yang, X.-R.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Scales: Preparation, Identification and Activity Evaluation. Mar. Drugs 2019, 17, 565. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hongxin, W.; Admassu, H.; Noman, A.; Ma, C.; Wei, F.A. Degree of hydrolysis, functional and antioxidant properties of protein hydrolysates from Grass Turtle (Chinemys reevesii) as influenced by enzymatic hydrolysis conditions. Food Sci. Nutr. 2021, 9, 4031–4047. [Google Scholar] [CrossRef]
- Indriani, S.; Sae-leaw, T.; Benjakul, S.; Quan, T.H.; Karnjanapratum, S.; Nalinanon, S. Impact of different ultrasound-assisted processes for preparation of collagen hydrolysates from Asian bullfrog skin on characteristics and antioxidative properties. Ultrason. Sonochem. 2022, 89, 106163. [Google Scholar] [CrossRef]
- Sun, N. Moderate Ultrasound-Assisted Enzymolysis to Prepare Antioxidant Peptides from Nannochloropsis oceanica. Master’s Thesis, Jiangsu University, Wuxi, China, 2021. [Google Scholar]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.C. Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chem. 2018, 242, 147–155. [Google Scholar] [CrossRef]
- Yu, D.; Wei, W.; Guan, L.; Chen, W.; Cao, H. Optimization of Preparation Technology of Chinemys reevesii Skin Collagen Peptide by Compound Enzymes Enzymatic Hydrolysis Method. China Condiment 2024, 49, 28–33. [Google Scholar] [CrossRef]
- Lee, J.E.; Noh, S.-K.; Kim, M.J. Effects of Enzymatic- and Ultrasound-Assisted Extraction on Physicochemical and Antioxidant Properties of Collagen Hydrolysate Fractions from Alaska Pollack (Theragra chalcogramma) Skin. Antioxidants 2022, 11, 2112. [Google Scholar] [CrossRef]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Foh, M.B.K.; Kamara, M.T.; Amadou, I.; Foh, B.M.; Wenshui, X. Chemical and Physicochemical Properties of Tilapia (Oreochromis niloticus) Fish Protein Hydrolysate and Concentrate. Int. J. Biol. Chem. 2011, 5, 21–36. [Google Scholar] [CrossRef]
- Wang, J.; Pei, X.; Liu, H.; Zhou, D. Extraction and characterization of acid-soluble and pepsin-soluble collagen from skin of loach (Misgurnus anguillicaudatus). Int. J. Biol. Macromol. 2018, 106, 544–550. [Google Scholar] [CrossRef]
- Song, W.; Kong, X.; Hua, Y.; Li, X.; Zhang, C.; Chen, Y. Antioxidant and antibacterial activity and in vitro digestion stability of cottonseed protein hydrolysates. LWT 2020, 118, 108724. [Google Scholar] [CrossRef]
- Huang, J.-j.; Li, H.-l.; Xiong, G.-q.; Cai, J.; Liao, T.; Zu, X.-y. Extraction, identification and anti-photoaging activity evaluation of collagen peptides from silver carp (Hypophthalmichthys molitrix) skin. LWT 2023, 173, 114384. [Google Scholar] [CrossRef]
- Latorres, J.M.; Rios, D.G.; Saggiomo, G.; Wasielesky, W., Jr. Prentice-Hernandez, C. Functional and antioxidant properties of protein hydrolysates obtained from white shrimp (Litopenaeus vannamei). J. Food Sci. Technol. 2018, 55, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Famuwagun, A.A.; Alashi, A.M.; Gbadamosi, S.O.; Taiwo, K.A.; Oyedele, D.; Adebooye, O.C.; Aluko, R.E. Effect of protease type and peptide size on the in vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf protein hydrolysates. Foods 2021, 10, 1112. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, L.; Chen, W.; Wang, J.; Wang, S. Influence of ultrasound-assisted ionic liquid pretreatments on the functional properties of soy protein hydrolysates. Ultrason. Sonochem. 2021, 73, 105546. [Google Scholar] [CrossRef]
- He, L.; Cao, Y.; Wang, X.; Wang, Y.; Han, L.; Yu, Q.; Zhang, L. Synergistic modification of collagen structure using ionic liquid and ultrasound to promote the production of DPP-IV inhibitory peptides. J. Sci. Food Agric. 2023, 103, 4603–4613. [Google Scholar] [CrossRef]
- Peng, P.; Yu, H.; Xian, M.; Qu, C.; Guo, Z.; Li, S.; Zhu, Z.; Xiao, J. Preparation of Acetylcholinesterase Inhibitory Peptides from Yellowfin Tuna Pancreas Using Moderate Ultrasound-Assisted Enzymatic Hydrolysis. Mar. Drugs 2025, 23, 75. [Google Scholar] [CrossRef]
- Wang, B.; Atungulu, G.G.; Khir, R.; Geng, J.; Ma, H.; Li, Y.; Wu, B. Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein. Food Biophys. 2015, 10, 244–252. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, G.; Wang, X.; Deng, W.; Mao, K.; Sang, Y. Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). Ultrason. Sonochem. 2021, 79, 105770. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hu, Y.; Zhao, X.; Wan, W.; Du, X.; Kong, B.; Xia, X. Effects of different ultrasound powers on the structure and stability of protein from sea cucumber gonad. Lebensm. Wiss. Technol. 2021, 137, 110403. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, H.; Selomulya, C.; Chen, X.D.; Zhong, H.; Wang, S.; Sun, W.; Zhou, Q. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem. 2012, 134, 1360–1367. [Google Scholar] [CrossRef]
- Habinshuti, I.; Nsengumuremyi, D.; Muhoza, B.; Ebenezer, F.; Yinka Aregbe, A.; Antoine Ndisanze, M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem. 2023, 423, 136313. [Google Scholar] [CrossRef]
- Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Huo, J.; Cui, Z.; Zhang, R.; Ouyang, H.; Liu, X.; Wang, P.; Yu, X.; Xie, T.; Gao, S.; Li, S. Study on the effect and mechanism of ultrasonic-assisted enzymolysis on antioxidant peptide activity in walnuts. Ultrason. Sonochem. 2025, 112, 107159. [Google Scholar] [CrossRef]
- Yang, J.; Shao, J.; Duan, Y.; Geng, F.; Jin, W.; Zhang, H.; Peng, D.; Deng, Q. Insights into digestibility, biological activity, and peptide profiling of flaxseed protein isolates treated by ultrasound coupled with alkali cycling. Food Res. Int. 2024, 190, 114629. [Google Scholar] [CrossRef]
- Benjakul, S.; Thiansilakul, Y.; Visessanguan, W.; Roytrakul, S.; Kishimura, H.; Prodpran, T.; Meesane, J. Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). J. Sci. Food Agric. 2010, 90, 132–138. [Google Scholar] [CrossRef]
- Pezeshk, S.; Rezaei, M.; Abdollahi, M. Impact of ultrasound on extractability of native collagen from tuna by-product and its ultrastructure and physicochemical attributes. Ultrason. Sonochem. 2022, 89, 106129. [Google Scholar] [CrossRef]
- Rajapakse, N.; Mendis, E.; Jung, W.K.; Je, J.Y.; Kim, S.K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 2005, 38, 175–182. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, Y.-Q.; Hu, F.-Y.; Wang, B. Preparation and identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. J. Funct. Foods 2016, 25, 220–230. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Liu, Y. Effects of partial hydrolysis on the structural, functional and antioxidant properties of oat protein isolate. Food Funct. 2020, 11, 3144–3155. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Agrawal, H.; Joshi, R.; Gupta, M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res. Int. 2019, 120, 697–707. [Google Scholar] [CrossRef]
- Oliveira, V.d.M.; Dias Assis, C.R.; Marques Costa, B.d.A.; de Araujo Neri, R.C.; Duarte Monte, F.T.; Vasconcelos Freitas, H.M.S.d.C.; Penha Franca, R.C.; Santos, J.F.; Bezerra, R.d.S.; Figueiredo Porto, A.L. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J. Mol. Struct. 2021, 1224, 129023. [Google Scholar] [CrossRef]
- Usha, R.; Ramasami, T. The effects of urea and n-propanol on collagen denaturation: Using DSC, circular dicroism and viscosity. Thermochim. Acta 2004, 409, 201–206. [Google Scholar] [CrossRef]
- Shen, Q.; Ou, A.; Liu, S.; Elango, J.; Wang, S.; da Silva, T.H.; Wu, W.; Robinson, J.; Bao, B. Effects of ion concentrations on the hydroxyl radical scavenging rate and reducing power of fish collagen peptides. J. Food Biochem. 2019, 43, e12789. [Google Scholar] [CrossRef]
- Drzewiecki, K.E.; Grisham, D.R.; Parmar, A.S.; Nanda, V.; Shreiber, D.I. Circular dichroism spectroscopy of collagen fibrillogenesis: A new use for an old technique. Biophys. J. 2016, 111, 2377–2386. [Google Scholar] [CrossRef]
- Kaewbangkerd, K.; Hamzeh, A.; Yongsawatdigul, J. Ultrasound-assisted extraction of collagen from broiler chicken trachea and its biochemical characterization. Ultrason. Sonochem. 2023, 95, 106372. [Google Scholar] [CrossRef]
- Jin, J.; Ma, H.; Qu, W.; Wang, K.; Zhou, C.; He, R.; Luo, L.; Owusu, J. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study. Ultrason. Sonochem. 2015, 27, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Jiang, L.; Qi, B.; Zhou, L. Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment. J. Chem. 2014, 2014, 475389. [Google Scholar] [CrossRef]
- Jia, J. Effect and Mechanism of Ultrasound on Enzymatic Preparation of ACE-Inhibitory Peptides from Wheat Germ Protein. Ph.D. Thesis, Jiangsu University, Wuxi, China, 2009. [Google Scholar]
- Zhang, S.; Qi, L.; Li, D.; Zhong, L.; Wu, D.; Lin, S. The regulatory mechanism of pulsed electric field (PEF) targeting at C-terminal glutamine of shrimp antioxidant peptide QMDDQ based on MD simulation. LWT 2021, 141, 110930. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Li, P.; Zhang, J.; Wang, S.; Ma, H. Effects of low intensity ultrasound on cellulase pretreatment. Bioresour. Technol. 2012, 117, 222–227. [Google Scholar] [CrossRef]
- Shi, L.S.; Yang, X.Y.; Gong, T.; Hu, C.Y.; Shen, Y.H.; Meng, Y.H. Ultrasonic treatment improves physical and oxidative stabilities of walnut protein isolate-based emulsion by changing protein structure. LWT 2023, 173, 114269. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Li, J.; Sun, H.; Liu, Y. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocoll. 2019, 97, 105222. [Google Scholar] [CrossRef]
- Zhou, C.; Ma, H.; Yu, X.; Liu, B.; Yagoub, A.E.-G.A.; Pan, Z. Pretreatment of defatted wheat germ proteins (by-products of flour mill industry) using ultrasonic horn and bath reactors: Effect on structure and preparation of ACE-inhibitory peptides. Ultrason. Sonochem. 2013, 20, 1390–1400. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S.; Kijroongrojana, K. Effect of ultrasonication on physicochemical and foaming properties of squid ovary powder. Food Hydrocoll. 2018, 77, 286–296. [Google Scholar] [CrossRef]
- Kingwascharapong, P.; Chaijan, M.; Karnjanapratum, S. Ultrasound-assisted extraction of protein from Bombay locusts and its impact on functional and antioxidative properties. Sci. Rep. 2021, 11, 17320. [Google Scholar] [CrossRef]
- Jia, N.; Wang, L.; Shao, J.; Liu, D.; Kong, B. Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification. Meat Sci. 2017, 127, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-J.; Yu, J.-X.; He, F.-Y.; Huang, Y.-N.; Wu, Z.-P.; Chen, Y.-W. Physicochemical and functional characteristics of glycated collagen protein from giant salamander skin induced by ultrasound Maillard reaction. Int. J. Biol. Macromol. 2024, 254, 127558. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Yin, Y.; Zhang, W.; Yang, Y. Effects of ultrasound-assisted emulsification on the emulsifying and rheological properties of myofibrillar protein stabilized pork fat emulsions. Foods 2021, 10, 1201. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Handa, C.L.; Xu, J. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chem. 2017, 218, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Patrick, P.S.; Swaisgood, H.E. Sulfhydryl and disulfide groups in skim milk as affected by direct ultra-high-temperature heating and subsequent storage. J. Dairy Sci. 1976, 59, 594–600. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Hu, H.; Cheung, I.W.Y.; Pan, S.; Li-Chan, E.C.Y. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocoll. 2015, 45, 102–110. [Google Scholar] [CrossRef]
- Abadia-Garcia, L.; Castano-Tostado, E.; Ozimek, L.; Romero-Gomez, S.; Ozuna, C.; Amaya-Llano, S.L. Impact of ultrasound pretreatment on whey protein hydrolysis by vegetable proteases. Innov. Food Sci. Emerg. Technol. 2016, 37, 84–90. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, W.; Li, Q.; Chen, Y.; Zheng, D.; Zou, Y.; Zhang, M.; Zhao, T.; Mao, G.; Feng, W.; et al. Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochem. 2016, 51, 431–443. [Google Scholar] [CrossRef]
- Xu, X.; Guo, S.; Hao, X.; Ma, H.; Bai, Y.; Huang, Y. Improving antioxidant and antiproliferative activities of colla corii asini hydrolysates using ginkgo biloba extracts. Food Sci. Nutr. 2018, 6, 765–772. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, F.; Yu, L.; Jiang, B.; Cao, J.; Sun, Z.; Cheng, J. Effect of ultrasound on the characterization and peptidomics of foxtail millet bran protein hydrolysates. Ultrason. Sonochem. 2024, 110, 107044. [Google Scholar] [CrossRef]
- Asaduzzaman, A.K.M.; Getachew, A.T.; Cho, Y.-J.; Park, J.-S.; Haq, M.; Chun, B.-S. Characterization of pepsin-solubilised collagen recovered from mackerel (Scomber japonicus) bone and skin using subcritical water hydrolysis. Int. J. Biol. Macromol. 2020, 148, 1290–1297. [Google Scholar] [CrossRef]
- Dean, R.T.; Fu, S.; Stocker, R.; Davies, M.J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 1997, 324, 1–18. [Google Scholar] [CrossRef]
- Mirzaee, H.; Ahmadi Gavlighi, H.; Nikoo, M.; Udenigwe, C.C.; Khodaiyan, F. Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci. Nutr. 2023, 11, 1257–1271. [Google Scholar] [CrossRef]
- Pownall, T.L.; Udenigwe, C.C.; Aluko, R.E. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J. Agric. Food. Chem. 2010, 58, 4712–4718. [Google Scholar] [CrossRef]
- Habinshuti, I.; Mu, T.-H.; Zhang, M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrason. Sonochem. 2020, 69, 105262. [Google Scholar] [CrossRef]
Molecular weight (kDa) | CE | UPH | WUH | ||||||
---|---|---|---|---|---|---|---|---|---|
Content (%) | Mn | Mw | Content (%) | Mn | Mw | Content (%) | Mn | Mw | |
>10 | 0.53 | 15,083 | 15,965 | 0.90 | 15,591 | 17,830 | 0.63 | 15,695 | 17,508 |
10–5 | 0.63 | 6560 | 6829 | 1.70 | 6597 | 6821 | 0.58 | 6644 | 6944 |
5–3 | 1.00 | 3697 | 3779 | 1.44 | 3784 | 3869 | 0.84 | 3755 | 3840 |
3–2 | 1.17 | 2411 | 2445 | 1.57 | 2401 | 2435 | 1.16 | 2405 | 2439 |
2–1 | 5.94 | 1276 | 1326 | 6.70 | 1297 | 1348 | 7.53 | 1265 | 1312 |
1–0.5 | 24.53 | 644 | 666 | 23.03 | 655 | 678 | 27.51 | 661 | 684 |
0.5–0.18 | 46.74 | 275 | 296 | 42.16 | 278 | 300 | 44.07 | 281 | 302 |
<0.18 | 19.47 | / | / | 22.50 | / | / | 17.69 | / | / |
Amino Acids | CE | UPH | WUH |
---|---|---|---|
Glycine (Gly) | 253.15 ± 0.36 a | 242.46 ± 0.34 c | 245.25 ± 0.13 b |
Serine (Ser) | 66.71 ± 0.58 a | 66.09 ± 0.04 ab | 65.90 ± 0.16 b |
Histidine (His) | 16.27 ± 0.25 a | 16.32 ± 0.30 a | 15.99 ± 0.37 a |
Glutamic acid (Glu) | 82.87 ± 0.85 a | 76.52 ± 0.51 b | 77.44 ± 0.42 b |
Aspartic acid (Asp) | 67.88 ± 0.67 ab | 67.79 ± 0.61 b | 69.04 ± 0.36 a |
Threonine (Thr) | 39.74 ± 0.53 a | 39.69 ± 0.48 a | 39.20 ± 0.04 a |
Arginine (Arg) | 46.72 ± 0.22 a | 45.90 ± 0.04 b | 46.43 ± 0.58 ab |
Tyrosine (Tyr) | 16.35 ± 0.36 b | 17.08 ± 0.09 a | 16.89 ± 0.29 ab |
Lysine (Lys) | 42.29 ± 0.40 a | 42.12 ± 0.23 a | 42.14 ± 0.21 a |
# Alanine (Ala) | 100.65 ± 0.51 a | 100.84 ± 0.70 a | 101.63 ± 0.10 a |
# Valine (Val) | 49.45 ± 0.43 b | 50.16 ± 0.13 a | 48.16 ± 0.12 c |
# Methionine (Met) | 9.08 ± 0.18 a | 8.97 ± 0.12 a | 8.92 ± 0.17 a |
# Phenylalanine (Phe) | 19.40 ± 0.37 c | 36.90 ± 0.87 b | 39.00 ± 0.24 a |
# Isoleucine (Ile) | 34.17 ± 0.58 b | 36.27 ± 0.48 a | 33.38 ± 0.41 b |
# Leucine (Leu) | 50.13 ± 0.90 a | 51.03 ± 0.01 a | 47.91 ± 0.12 b |
# Proline (Pro) | 105.16 ± 0.51 a | 101.88 ± 0.21 b | 102.71 ± 0.63 b |
Hydrophobic amino acid | 368.04 ± 0.29 c | 386.03 ± 1.72 a | 381.71 ± 0.40 b |
Sample | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
CE | - | 8.97 ± 0.67 b | 33.47 ± 0.47 a | 57.57 ± 0.25 c |
UPH | - | 4.00 ± 0.26 c | 30.87 ± 0.40 b | 65.13 ± 0.31 a |
WUH | - | 18.40 ± 0.70 a | 21.03 ± 0.32 c | 60.23 ± 0.21 b |
Sample | Sulfhydryl (μmol/g) | Disulfide Bond (μmol/g) |
---|---|---|
CE | 23.69 ± 0.18 b | 36.60 ± 0.17 a |
UPH | 24.15 ± 0.19 a | 33.16 ± 0.51 b |
WUH | 20.87 ± 0.03 c | 36.05 ± 0.83 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Yu, D.; Guan, L.; Cao, H. Studies on the Structure and Properties of Ultrasound-Assisted Enzymatic Digestion of Collagen Peptides Derived from Chinemys reevesii Skin. Foods 2025, 14, 2960. https://doi.org/10.3390/foods14172960
Chen W, Yu D, Guan L, Cao H. Studies on the Structure and Properties of Ultrasound-Assisted Enzymatic Digestion of Collagen Peptides Derived from Chinemys reevesii Skin. Foods. 2025; 14(17):2960. https://doi.org/10.3390/foods14172960
Chicago/Turabian StyleChen, Wenzhuo, Dandan Yu, Li Guan, and Hui Cao. 2025. "Studies on the Structure and Properties of Ultrasound-Assisted Enzymatic Digestion of Collagen Peptides Derived from Chinemys reevesii Skin" Foods 14, no. 17: 2960. https://doi.org/10.3390/foods14172960
APA StyleChen, W., Yu, D., Guan, L., & Cao, H. (2025). Studies on the Structure and Properties of Ultrasound-Assisted Enzymatic Digestion of Collagen Peptides Derived from Chinemys reevesii Skin. Foods, 14(17), 2960. https://doi.org/10.3390/foods14172960