Development and Fuzzy Logic-Based Optimization of Golden Milk Formulations Using RW-Dried Turmeric Powder: A Study on Shelf Life, Sensory Attributes, and Functional Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials, Chemicals, and Sample Preparation
2.2. Refractance Window Drying
2.3. Fortification with Sodium Ferric Ethylenediaminetetraacetate and Folic Acid
2.4. Evaluation of Sorption Characteristics
2.5. Shelf-Life Characteristics
2.6. Nutritional and Physical Characteristics of Stored Dry Curcuma Longa Powder Samples
2.7. Sensory Analysis
2.8. Characterization of Optimal Gold Milk Formulation
2.8.1. Total Phenolic Content
2.8.2. Total Flavonoid Content
2.8.3. Antioxidant Activity
2.8.4. Curcumin Content
2.9. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Sorption Characteristics of Powder Products
3.2. Permeability of Packaging Material
3.3. Shelf-Life Assessment
3.4. Sensory Assessment of Powder Product
3.4.1. Hedonic Scale Based Sensory Analysis
3.4.2. Fuzzy Logic-Based Sensory Analysis
3.5. Nutritional Properties of the Optimal Golden Milk Formulation
3.6. Storage Assessment Based on Nutritional and Physical Characteristics of Powder Products
3.6.1. Moisture Content During Storage
3.6.2. Antioxidant Activity During Storage
3.6.3. Total Phenolic Content During Storage
3.6.4. Total Flavonoid Content During Storage
3.6.5. Curcumin Content During Storage
3.6.6. Color Indices During Storage
3.6.7. Folic Acid Content During Storage
3.6.8. Iron Content During Storage
3.6.9. Bulk Density During Storage
3.6.10. Solubility During Storage
3.6.11. Swelling Power During Storage
3.6.12. Water Binding Capacity During Storage
3.6.13. Dispersion Time During Storage
3.6.14. Hygroscopicity During Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RW | Refractance Window |
RWD | Refractance Window Drying |
AA | Anti-oxidant Activity |
CC | Curcumin Content |
db | dry basis |
EMC | Equilibrium Moisture Content |
MC | Moisture Content |
TFC | Total Flavonoids Content |
TPC | Total Phenolic Content |
NaFeEDTA | Sodium Ferric Ethylenediaminetetraacetate |
References
- Nida, S.; Yoha, K.S.; Nambiar, R.B. Packaging and storage of CHD products. In Conductive Hydro Drying of Foods: Principles and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Mondal, I.H.; Rangan, L.; Uppaluri, R.V. Effect of oven and intermittent airflow assisted tray drying methods on nutritional parameters of few leafy and non-leafy vegetables of North-East India. Heliyon 2019, 5, e02934. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.M.; Chan, S.; Yago, A.J.E.; Shravya, R.; Bhandari, B.R.; Bansal, N. Changes in physicochemical properties of spray-dried camel milk powder over accelerated storage. Food Chem. 2019, 295, 224–233. [Google Scholar] [CrossRef]
- Sharma, S.; Dhalsamant, K.; Tripathy, P.P.; Manepally, R.K. Quality analysis and drying characteristics of turmeric (Curcuma longa L.) dried by hot air and direct solar dryers. LWT 2021, 138, 110687. [Google Scholar] [CrossRef]
- Sharma, S.; Dhalsamant, K.; Tripathy, P.P. Application of computer vision technique for physical quality monitoring of turmeric slices during direct solar drying. Food Meas. 2019, 13, 545–558. [Google Scholar] [CrossRef]
- Talukdar, P.; Baruah, K.N.; Barman, P.J.; Sharma, S.; Uppaluri, R.V.S. Development and Characterization of Refractance Window-Dried Curcuma longa Powder Fortified with NaFeEDTA and Folic Acid: A Study on Thermal, Morphological, and In Vitro Bio Accessibility Properties. Foods 2025, 14, 658. [Google Scholar] [CrossRef]
- Talukdar, P.; Baruah, K.N.; Barman, P.J.; Uppaluri, R.V.S. Fortification of Refractance Window Dried Curcuma Longa Powder and its Associated Characterization. Bulg. Chem. Commun. 2025, 57 Pt B, 74–79. [Google Scholar]
- Javier Moreno, F.; Corzo-Martínez, M.; Dolores del Castillo, M.; Villamiel, M. Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Res. Int. 2006, 39, 891–897. [Google Scholar] [CrossRef]
- Jaya, S.; Das, H. Accelerated Storage, Shelf Life and Color of Mango Powder. J. Food Process. Preserv. 2005, 29, 45–62. [Google Scholar] [CrossRef]
- Singh, G.; Kawatra, A.; Sehgal, S. Pragati Effect of storage on nutritional composition of selected dehydrated green leafy vegetable, herb and carrot powders. Plant Foods Hum. Nutr. 2003, 58, 1–9. [Google Scholar] [CrossRef]
- Caparino, O.A.; Tang, J.; Nindo, C.I.; Sablani, S.S.; Powers, J.R.; Fellman, J.K. Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Tontul, İ.; Ergin, F.; Eroğlu, E.; Küçükçetin, A.; Topuz, A. Physical and microbiological properties of yoghurt powder produced by refractance window drying. Int. Dairy J. 2018, 85, 169–176. [Google Scholar] [CrossRef]
- Nemzer, B.; Vargus, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Tan, S.L.; Sulaiman, R.; Rukayadi, Y.; Ramli, N.S. Physical, chemical, microbiological properties and shelf life kinetic of spray-dried cantaloupe juice powder during storage. LWT 2021, 140, 110597. [Google Scholar] [CrossRef]
- Suriwong, P.; Thinkohkaew, K.; Visuthranukul, C.; Chavarnakul, T.; Potiyaraj, P.; Suppavorasatit, I. Effect of cocoa powder on the physicochemical, microbial, and sensory properties of synbiotic freeze-dried yogurt. J. Agric. Food Res. 2025, 19, 101589. [Google Scholar] [CrossRef]
- Zhou, Z.; Parra-Escudero, C.; Du, H.; Guo, X.; Wang, Q.; Xiao, H.; Lu, J. Efficient freeze-drying of foamed strawberry puree: A study on drying kinetics and physicochemical properties†. Sustain. Food Technol. 2024, 3, 253–262. [Google Scholar] [CrossRef]
- Yıkmış, S.; Türkol, M.; Pacal, I.; Duman Altan, A.; Tokatlı, N.; Abdi, G.; Tokatlı Demirok, N.; Aadil, R.M. Optimization of bioactive compounds and sensory quality in thermosonicated black carrot juice: A study using response surface methodology, gradient boosting, and fuzzy logic. Food Chem. X 2025, 25, 102096. [Google Scholar] [CrossRef]
- Hedegaard, R.V.; Skibsted, L.H. Shelf-life of food powders. In Handbook of Food Powders: Chemistry and Technology, 2nd ed.; Woodhead Publishing: Cambridge, MA, USA, 2023; pp. 335–354. [Google Scholar] [CrossRef]
- Fikry, M.; Al-Ghamdi, S.; Alfaifi, B.; Ibrahim, M.N.; Alqahtani, N.; Umar, M.; Assatarakul, K. Mathematical modeling of sorption isotherms and the thermodynamic properties of vacuum-dried and freeze-dried Barhi dates. Sci. Rep. 2025, 15, 19781. [Google Scholar] [CrossRef] [PubMed]
- Herrera, P.A.; Santagapita, P.R.; Moreno, F.L. Refractance window drying: A new approach for producing high-quality powdered dairy products. J. Dairy Sci. 2025, 108, 2324–2339. [Google Scholar] [CrossRef]
- Kaveh, M.; Zomorodi, S.; Mariusz, S.; Dziwulska-Hunek, A. Determination of Drying Characteristics and Physicochemical Properties of Mint (Mentha spicata L.) Leaves Dried in Refractance Window. Foods 2024, 13, 2867. [Google Scholar] [CrossRef]
- Largo-Avila, E.; Rico-Rodríguez, F.; Peñaloza-Figueroa, J.K.; López-Padilla, A. Effect of Refractance WindowTM and oven drying on physicochemical and sensory properties of peach (Prunus persica L.) surplus. Front. Nutr. 2024, 11, 1307423. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Karimi, R.; Garmakhany, A.D.; Aghajani, N.; Shayganfar, A. Journal of Food Science and Technology. J. Chem. Inf. Model. 2019, 53, 1689–1699. [Google Scholar]
- Anukiruthika, T.; Jayas, D.S. AI-driven grain storage solutions: Exploring current technologies, applications, and future trends. J. Stored Prod. Res. 2025, 111, 102588. [Google Scholar] [CrossRef]
- Nassiri, S.M.; Tahavoor, A.; Jafari, A. Fuzzy logic classification of mature tomatoes based on physical properties fusion. Inf. Process. Agric. 2022, 9, 547–555. [Google Scholar] [CrossRef]
- Asharaf, F.; Blossom, K.L.; Safeena, M.P.; Martin Xavier, K.A.; Abdullah, S. Debittered tilapia protein hydrolysate incorporated functionalized nutrition bar: Application of fuzzy modeling for sensory analysis. Food Humanit. 2025, 4, 100568. [Google Scholar] [CrossRef]
- Daulay, A.S.; Taufik, M.; Ridwanto; Syahputra, R.A.; Astriliana. Effect of Particle Size on Fresh Turmeric (Curcuma longa L.) and Simplicia Toward Content of Curcumin Compound. In Proceedings of the AISTSSE 2018, Medan, Indonesia, 18–19 October 2019; Volume 1. [Google Scholar]
- Tripathi, B.; Platel, K. Iron fortification of finger millet (Eleucine coracana) flour with EDTA and folic acid as co-fortificants. Food Chem. 2011, 126, 537–542. [Google Scholar] [CrossRef]
- Karn, S.K.; Chavasit, V.; Kongkachuichai, R.; Tangsuphoom, N. Shelf stability, sensory qualities, and bioavailability of iron-fortified Nepalese curry powder. Food Nutr. Bull. 2011, 32, 13–22. [Google Scholar] [CrossRef]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef]
- Modupe, O.; Krishnaswamy, K.; Diosady, L.L. Technology for Triple Fortification of Salt with Folic Acid, Iron, and Iodine. J. Food Sci. 2019, 84, 2499–2506. [Google Scholar] [CrossRef] [PubMed]
- Cremonini, E.; Iglesias, D.E.; Kang, J.; Lombardo, G.E.; Mostofinejad, Z.; Wang, Z.; Zhu, W.; Oteiza, P.I. (−)-Epicatechin and the comorbidities of obesity. Arch. Biochem. Biophys. 2020, 690, 108505. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mishra, H.N. Storage stability of mango soy fortified yoghurt powder in two different packaging materials: HDPP and ALP. J. Food Eng. 2004, 65, 569–576. [Google Scholar] [CrossRef]
- Talukdar, P.; Uppaluri, R. Process and product characteristics of refractance window dried Curcuma longa. J. Food Sci. 2021, 86, 443–453. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Mao, X.; Huang, H.; Wang, T.; Qu, Z.; Miao, J.; Gao, W. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours. Food Chem. 2017, 224, 224–232. [Google Scholar] [CrossRef]
- Castoldi, M.; Zotarelli, M.F.; Durigon, A.; Carciofi, B.A.M.; Laurindo, J.B. Production of Tomato Powder by Refractance Window Drying. Dry. Technol. 2015, 33, 1463–1473. [Google Scholar] [CrossRef]
- Contreras-Jiménez, B.; Torres-Vargas, O.L.; Rodríguez-García, M.E. Physicochemical characterization of quinoa (Chenopodium quinoa) flour and isolated starch. Food Chem. 2019, 298, 124982. [Google Scholar] [CrossRef]
- Akasapu, K.; Uppaluri, R.V.S. Efficacy of score deviation method as a novel sensory evaluation technique for the identification of optimal mixed vegetable soup formulations. Int. J. Gastron. Food Sci. 2023, 33, 100761. [Google Scholar] [CrossRef]
- Sidel, J.L.; Stone, H. The role of sensory evaluation in the food industry. Food Qual. Prefer. 1993, 4, 65–73. [Google Scholar] [CrossRef]
- Tharasena, B.; Lawan, S. Phenolics, Flavonoids and Antioxidant Activity of Vegetables as Thai Side Dish. APCBEE Procedia 2014, 8, 99–104. [Google Scholar] [CrossRef]
- Sutanto, H.; Himawan, E.; Kusumocahyo, S.P. Ultrasound Assisted Extraction of Bitter Gourd Fruit (Momordica charantia) and Vacuum Evaporation to Concentrate the Extract. Procedia Chem. 2015, 16, 251–257. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. J. Food Eng. 2005, 66, 35–42. [Google Scholar] [CrossRef]
- Seth, D.; Dash, K.K.; Mishra, H.N.; Deka, S.C. Thermodynamics of sorption isotherms and storage stability of spray dried sweetened yoghurt powder. J. Food Sci. Technol. 2018, 55, 4139–4147. [Google Scholar] [CrossRef]
- Pasagadi, A.S.; Prakash, A.K.; Veerendrasimha, V.S.H.; Geethambika, S.B.; Franklin, M.E.E.; Pushpadass, H.A. Shelf-life prediction of milk-millet powders. J. Food Process Eng. 2022, 46, e14204. [Google Scholar] [CrossRef]
- Maria Sirangelo, T. Sensory Descriptive Evaluation of Food Products: A Review. J. Food Sci. Nutr. Res. 2019, 2, 354–363. [Google Scholar] [CrossRef]
- Hingne, P.; Chavan, S.D.; Shelke, R.R. Sensory evaluation of herbal milk fortified with Aloe vera (Aloe barbadensis Miller) and Tulsi (Ocimum sanctum). Int. J. Chem. Stud. 2020, 8, 2140–2145. [Google Scholar] [CrossRef]
- Misra, S.; Kumar, S.; Mishra, H.N. Agricultural and Food Engineering Department, of Process Parameters for Development of Probiotic-GABA Enriched Nutri Bar by Response Surface Methodology (RSM) and Modelling Using Artificial Neural Networks (ANNs): Characterization and Sensory Evaluation by Fuzzy Logic Analysis. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef]
- Bikheet, M.M.; Hassan, H.M.; Omar, M.O.A.; Abdel-Aleem, W.M.; Galal, S.M.; Korma, S.A.; Ibrahim, S.A.; Nassar, K.S. Effects of clove (Syzygium aromaticum) extract on antibacterial activity, phytochemical properties, and storage quality of flavored milk beverages. J. Dairy Sci. 2025, 108, 3300–3313. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, H.T.; Muzammil, H.S.; Ahmad, Z.; Alsulami, T.; Waseem, M.; Mehmood, T.; Aadil, R.M.; Manzoor, M.F.; Abdi, G. Assessment of nutritional, antioxidant, physicochemical, and storage stability of carrot powder supplemented goat milk yogurt. J. Agric. Food Res. 2025, 19, 101581. [Google Scholar] [CrossRef]
- Saha, D.; Nanda, S.K.; Yadav, D.N. Shelf-life study of spray-dried groundnut milk powder. J. Food Process Eng. 2020, 43, e13259. [Google Scholar] [CrossRef]
- Teijeiro, M.; Pérez, P.F.; De Antoni, G.L.; Golowczyc, M.A. Suitability of kefir powder production using spray drying. Food Res. Int. 2018, 112, 169–174. [Google Scholar] [CrossRef]
- Flamminii, F.; D’Alessio, G.; Chiarini, M.; Di Michele, A.; De Bruno, A.; Mastrocola, D.; Di Mattia, C.D. Valorization of Onion By-Products Bioactive Compounds by Spray Drying Encapsulation Technique. Foods 2025, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Zafar, U.; Vivacqua, V.; Calvert, G.; Ghadiri, M.; Cleaver, J.A.S. A review of bulk powder caking. Powder Technol. 2017, 313, 389–401. [Google Scholar] [CrossRef]
- Tavares, I.M.d.C.; Sumere, B.R.; Gómez-Alonso, S.; Gomes, E.; Hermosín-Gutiérrez, I.; Da-Silva, R.; Lago-Vanzela, E.S. Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Res. Int. 2020, 128, 108750. [Google Scholar] [CrossRef] [PubMed]
- Dip, G.; Aggarwal, P.; Kaur, S. Morphological, phytochemical, techno-functional characterization and antimicrobial potential of Bauhinia variegata L. flower and bud powder for various food applications. J. Food Meas. Charact. 2025, 19, 1992–2006. [Google Scholar] [CrossRef]
- Henríquez, C.; Córdova, A.; Lutz, M.; Saavedra, J. Storage stability test of apple peel powder using two packaging materials: High-density polyethylene and metalized films of high barrier. Ind. Crops Prod. 2013, 45, 121–127. [Google Scholar] [CrossRef]
- Udomkun, P.; Nagle, M.; Argyropoulos, D.; Mahayothee, B.; Latif, S.; Müller, J. Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food Chem. 2016, 196, 712–719. [Google Scholar] [CrossRef]
- Del-Toro-Sánchez, C.L.; Gutiérrez-Lomelí, M.; Lugo-Cervantes, E.; Zurita, F.; Robles-García, M.A.; Ruiz-Cruz, S.; Aguilar, J.A.; Morales-Del Rio, J.A.; Guerrero-Medina, P.J. Storage effect on phenols and on the antioxidant activity of extracts from anemopsis californica and inhibition of elastase enzyme. J. Chem. 2015, 2015, 602136. [Google Scholar] [CrossRef]
- Razmkhah, S.; Tan, C.P.; Long, K.; Nyam, K.L. Quality Changes and Antioxidant Properties of Microencapsulated Kenaf (Hibiscus cannabinus L.) Seed Oil during Accelerated Storage. JAOCS J. Am. Oil Chem. Soc. 2013, 90, 1859–1867. [Google Scholar] [CrossRef]
- Mrmosanin, J.; Pavlovic, A.; Veljkovic, J.; Mitic, S.; Tosic, S.; Mitic, M. The effect of storage temperature and thermal processing on catechins, procyanidins and total flavonoid stability in commercially available cocoa powders. Facta Univ.—Ser. Phys. Chem. Technol. 2015, 13, 39–49. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Mykhalevych, A.; Urbański, J.; Hadijeva, I.; Berthold-Pluta, A.; Banach, M. Storage quality and antioxidant properties of yogurt fortified with highly bioavailable formula of curcumin. LWT 2025, 223, 117798. [Google Scholar] [CrossRef]
- Pua, C.K.; Sheikh, N.; Tan, C.P.; Mirhosseini, H.; Abdul Rahman, R.; Rusul, G. Storage stability of jackfruit (Artocarpus heterophyllus) powder packaged in aluminium laminated polyethylene and metallized co-extruded biaxially oriented polypropylene during storage. J. Food Eng. 2008, 89, 419–428. [Google Scholar] [CrossRef]
- Vega-Castro, O.; Diego, V.M.; Santiago, C.T.; Laura, V.M.; Valentina, V.A.; Daniel, H.G.; Faver, G.N. Exploring the Potential of Spray-Dried Blackberry Powder Enriched with Zinc and Folic Acid as a Nutritional Alternative for Children and Pregnant Women. Food Biophys. 2025, 20, 11. [Google Scholar] [CrossRef]
- Dehnad, D.; Ghorani, B.; Emadzadeh, B.; Emadzadeh, M.; Assadpour, E.; Rajabzadeh, G.; Jafari, S.M. Recent advances in iron encapsulation and its application in food fortification. Crit. Rev. Food Sci. Nutr. 2023, 64, 12685–12701. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.K.; Patil, V. Effect of packaging material on storage ability of mango milk powder and the quality of reconstituted mango milk drink. Powder Technol. 2013, 239, 86–93. [Google Scholar] [CrossRef]
- Teichmann, H.; Anzmann, T.; Haas, K.; Kohlus, R. Swelling of food powders: Kinetics measurement and quantification using NMR relaxometry. Food Hydrocoll. 2024, 155, 110169. [Google Scholar] [CrossRef]
- Ren, Y.; Jia, F.; Li, D. Ingredients, structure and reconstitution properties of instant powder foods and the potential for healthy product development: A comprehensive review. Food Funct. 2023, 15, 37–61. [Google Scholar] [CrossRef]
- Rahman, M.N.; Islam, M.N.; Mia, M.M.; Hossen, S.; Dewan, M.F.; Mahomud, M.S. Fortification of set yoghurts with lemon peel powders: An approach to improve physicochemical, microbiological, textural and sensory properties. Appl. Food Res. 2024, 4, 100386. [Google Scholar] [CrossRef]
S. No. | Samples | C | K | Mo | R2 |
---|---|---|---|---|---|
1. | Unfortified | 0.476 | 0.996 | 0.358 | 0.99 |
2. | Folic acid fortified | 0.650 | 0.920 | 0.271 | 0.99 |
3. | NaFeEDTA fortified | 0.630 | 0.931 | 0.280 | 0.98 |
Sl. No. | Attribute | 0 g | 0.5 g | 1 g | 1.5 g | 2 g |
---|---|---|---|---|---|---|
1. | Color | 0.1757 | 0.6377 | 0.8038 | 0.8250 | 0.6769 |
2. | Taste | 0.2233 | 0.7648 | 0.8813 | 0.7863 | 0.5181 |
3. | Aroma | 0.2043 | 0.7017 | 0.8436 | 0.8255 | 0.6426 |
4. | Mouthfeel | 0.2239 | 0.7669 | 0.8832 | 0.7865 | 0.5164 |
5. | Aftertaste | 0.2903 | 0.8732 | 0.9283 | 0.7351 | 0.4115 |
6. | Consistency | 0.2239 | 0.7669 | 0.8832 | 0.7865 | 0.5164 |
7. | Overall Acceptability | 0.2160 | 0.7394 | 0.8690 | 0.8114 | 0.5816 |
(a) | ||||||
S. No. | Day | Samples | AA (%) | TPC (mg GAE/100 mL) | TFC (mg Quercetin/100 mL) | CC (% w/w) |
1. | 0 | Unfortified | 24.50 ± 2 | 876.21 ± 1 | 784.61 ± 2 | 4.20 ± 0.1 |
2. | Folic acid fortified | 23.50 ± 1 | 878.01 ± 3 | 788.97 ± 1 | 4.21 ± 0.1 | |
3. | NaFeEDTA fortified | 24.10 ± 2 | 870.87 ± 1 | 787.49 ± 2 | 4.19 ± 0.2 | |
(b) | ||||||
S. No | Day | Samples | AA (%) | TPC (mg GAE/100 mL) | TFC (mg Quercetin/100 mL) | CC (% w/w) |
1. | 1 | Unfortified | 22.50 ± 1 | 830.14 ± 3 | 710.76 ± 2 | 4.14 ± 0.1 |
2. | Folic acid fortified | 22.80 ± 2 | 825.51 ± 3 | 716.87 ± 3 | 4.16 ± 0.2 | |
3. | NaFeEDTA fortified | 22.68 ± 1 | 829.84 ± 3 | 717.54 ± 3 | 4.14 ± 0.1 | |
1. | 2 | Unfortified | 20.90 ± 2 | 784.29 ± 3 | 650.71 ± 3 | 4.10 ± 0.1 |
2. | Folic acid fortified | 20.12 ± 2 | 786.31 ± 2 | 646.15 ± 3 | 4.10 ± 0.2 | |
3. | NaFeEDTA fortified | 21.00 ± 2 | 781.62 ± 2 | 649.25 ± 2 | 4.11 ± 0.1 |
(a) Moisture Content (%) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 4.00 ± 0.1 | 4.90 ± 0.1 | 6.10 ± 0.1 | 7.81 ± 0.2 | ||||||||
2. | Folic acid fortified | 4.00 ± 0.2 | 4.95 ± 0.2 | 6.10 ± 0.1 | 7.80 ± 0.2 | ||||||||
3. | NaFeEDTA fortified | 4.00 ± 0.3 | 4.91 ± 0.2 | 6.30 ± 0.1 | 7.83 ± 0.3 | ||||||||
(b) Anti-Oxidant Activity (%) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 90.00 ± 0.5 | 88.60 ± 0.6 | 85.40 ± 0.3 | 84.80 ± 0.3 | ||||||||
2. | Folic acid fortified | 89.91 ± 0.6 | 88.70 ± 0.2 | 85.90 ± 0.5 | 84.00 ± 0.4 | ||||||||
3. | NaFeEDTA fortified | 89.97 ± 0.6 | 87.40 ± 0.5 | 85.10 ± 0.2 | 84.50 ± 0.5 | ||||||||
(c) Total Phenolic Content (mg GAE/g sample) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 189.76 ± 2 | 180.00 ± 3 | 175.23 ± 2 | 167.01 ± 2 | ||||||||
2. | Folic acid fortified | 190.00 ± 2 | 179.12 ± 2 | 176.31 ± 2 | 165.00 ± 2 | ||||||||
3. | NaFeEDTA fortified | 189.01 ± 4 | 181.15 ± 2 | 173.47 ± 2 | 166.25 ± 2 | ||||||||
(d) Total Flavonoid Content (mg quercetin/g sample) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 160.00 ± 4 | 153.00 ± 5 | 145.00 ± 2 | 139.00 ± 4 | ||||||||
2. | Folic acid fortified | 159.10 ± 3 | 152.00 ± 5 | 147.00 ± 2 | 138.00 ± 3 | ||||||||
3. | NaFeEDTA fortified | 161.02 ± 2 | 151.00 ± 4 | 146.00 ± 1 | 140.00 ± 3 | ||||||||
(e) Curcumin Content (% w/w) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 4.84 ± 0.02 | 4.75 ± 0.03 | 4.70 ± 0.02 | 4.65 ± 0.01 | ||||||||
2. | Folic acid fortified | 4.80 ± 0.01 | 4.76 ± 0.03 | 4.71 ± 0.02 | 4.67 ± 0.01 | ||||||||
3. | NaFeEDTA fortified | 4.83 ± 0.02 | 4.77 ± 0.02 | 4.72 ± 0.02 | 4.68 ± 0.02 | ||||||||
(f) Color Indices | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
L | a | b | L | A | b | L | a | b | L | a | b | ||
1. | Unfortified | 56 ± 2 | 31 ± 1 | 62 ± 3 | 55 ± 2 | 29 ± 1 | 60 ± 2 | 53 ± 1 | 26 ± 3 | 57 ± 2 | 51 ± 2 | 23 ± 1 | 53 ± 3 |
2. | Folic acid fortified | 55 ± 2 | 30 ± 2 | 61 ± 3 | 54 ± 2 | 29 ± 1 | 60 ± 2 | 52 ± 3 | 26 ± 3 | 56 ± 1 | 51 ± 2 | 23 ± 1 | 53 ± 2 |
3. | NaFeEDTA fortified | 56 ± 2 | 30 ± 1 | 61 ± 1 | 54 ± 1 | 29 ± 1 | 60 ± 1 | 53 ± 1 | 26 ± 3 | 57 ± 1 | 52 ± 2 | 23 ± 1 | 53 ± 2 |
(g) Folic Acid (mg/100 g sample) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Folic acid fortified | 20.00 ± 0.5 | 19.65 ± 0.5 | 19.01 ± 1 | 18.74 ± 1 | ||||||||
(h) Iron Content (mg/100 g sample) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | NaFeEDTA fortified | 20.00 ± 0.1 | 19.91 ± 0.2 | 19.72 ± 0.2 | 19.41 ± 0.3 | ||||||||
(i) Bulk Density (g/mL) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 0.62 ± 0.01 | 0.64 ± 0.04 | 0.67 ± 0.04 | 0.69 ± 0.01 | ||||||||
2. | Folic acid fortified | 0.65 ± 0.01 | 0.66 ± 0.05 | 0.68 ± 0.02 | 0.70 ± 0.03 | ||||||||
3. | NaFeEDTA fortified | 0.64 ± 0.03 | 0.65 ± 0.05 | 0.67 ± 0.03 | 0.69 ± 0.03 | ||||||||
(j) Solubility (%) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 29.00 ± 1 | 29.00 ± 2 | 27.00 ± 1 | 26.00 ± 3 | ||||||||
2. | Folic acid fortified | 30.00 ± 3 | 30.00 ± 2 | 28.00 ± 1 | 27.00 ± 3 | ||||||||
3. | NaFeEDTA fortified | 28.00 ± 1 | 28.00 ± 3 | 26.00 ± 1 | 25.00 ± 2 | ||||||||
(k) Swelling Power (g/g) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 1.80 ± 0.1 | 1.80 ± 0.2 | 1.70 ± 0.3 | 1.50 ± 0.1 | ||||||||
2. | Folic acid fortified | 2.00 ± 0.1 | 2.00 ± 0.2 | 1.90 ± 0.2 | 1.70 ± 0.3 | ||||||||
3. | NaFeEDTA fortified | 1.90 ± 0.2 | 1.90 ± 0.2 | 1.80 ± 0.3 | 1.60 ± 0.3 | ||||||||
(l) Water Holding Capacity (%) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 66.00 ± 1 | 66.00 ± 2 | 64.00 ± 1 | 61.00 ± 2 | ||||||||
2. | Folic acid fortified | 65.00 ± 2 | 65.00 ± 2 | 63.00 ± 1 | 59.00 ± 1 | ||||||||
3. | NaFeEDTA fortified | 67.00 ± 2 | 67.00 ± 2 | 65.00 ± 1 | 60.00 ± 1 | ||||||||
(m) Dispersion Time (s) | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 20 ± 2 | 22 ± 2 | 26 ± 1 | 30 ± 2 | ||||||||
2. | Folic acid fortified | 17 ± 2 | 21 ± 2 | 25 ± 1 | 29 ± 2 | ||||||||
3. | NaFeEDTA fortified | 19 ± 2 | 23 ± 2 | 28 ± 1 | 31 ± 2 | ||||||||
(n) Hygroscopicity | |||||||||||||
S. No. | Sample | 0 Weeks | 9 Weeks | 17 Weeks | 24 Weeks | ||||||||
1. | Unfortified | 8.70 ± 0.1 | 8.60 ± 0.1 | 8.40 ± 0.2 | 8.10 ± 0.1 | ||||||||
2. | Folic acid fortified | 8.80 ± 0.2 | 8.60 ± 0.1 | 8.50 ± 0.2 | 8.00 ± 0.2 | ||||||||
3. | NaFeEDTA fortified | 8.50 ± 0.2 | 8.40 ± 0.2 | 8.30 ± 0.1 | 8.00 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talukdar, P.; Baruah, K.N.; Barman, P.J.; Rizwana, S.; Sharma, S.; Uppaluri, R.V.S. Development and Fuzzy Logic-Based Optimization of Golden Milk Formulations Using RW-Dried Turmeric Powder: A Study on Shelf Life, Sensory Attributes, and Functional Properties. Foods 2025, 14, 2948. https://doi.org/10.3390/foods14172948
Talukdar P, Baruah KN, Barman PJ, Rizwana S, Sharma S, Uppaluri RVS. Development and Fuzzy Logic-Based Optimization of Golden Milk Formulations Using RW-Dried Turmeric Powder: A Study on Shelf Life, Sensory Attributes, and Functional Properties. Foods. 2025; 14(17):2948. https://doi.org/10.3390/foods14172948
Chicago/Turabian StyleTalukdar, Preetisagar, Kamal Narayan Baruah, Pankaj Jyoti Barman, Shagufta Rizwana, Sonu Sharma, and Ramagopal V. S. Uppaluri. 2025. "Development and Fuzzy Logic-Based Optimization of Golden Milk Formulations Using RW-Dried Turmeric Powder: A Study on Shelf Life, Sensory Attributes, and Functional Properties" Foods 14, no. 17: 2948. https://doi.org/10.3390/foods14172948
APA StyleTalukdar, P., Baruah, K. N., Barman, P. J., Rizwana, S., Sharma, S., & Uppaluri, R. V. S. (2025). Development and Fuzzy Logic-Based Optimization of Golden Milk Formulations Using RW-Dried Turmeric Powder: A Study on Shelf Life, Sensory Attributes, and Functional Properties. Foods, 14(17), 2948. https://doi.org/10.3390/foods14172948