The Characterization of Physicochemical, Nutritional, and Flavor Properties of Bovine Hide Gelatin Prepared from Different Raw Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Pre-Treatment of Bovine Hides
2.3. Physicochemical Properties
2.3.1. Proximate Composition Analysis
2.3.2. Measurement of Color Parameters
2.4. Nutritional Analysis
2.4.1. Distribution of Protein Molecular Weight (MW)
2.4.2. Quantitative Elemental Analysis by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.5. Flavor Compound Analysis
2.5.1. Amino Acid Composition Determination
2.5.2. Fourier Transform Infrared Spectrometer (FTIR)
2.5.3. Analysis of Volatile Substances
2.6. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Physicochemical Properties
3.2. Nutritional Functions
3.2.1. Molecular Weight Distribution
3.2.2. Elemental Analysis of Bovine Hide Gelatin
3.3. Flavor Compounds Analysis
3.3.1. Amino Acid Composition
3.3.2. FTIR Spectra
3.3.3. Volatile Substance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duthen, S.; Levasseur-Garcia, C.; Kleiber, D.; Violleau, F.; Vaca-Garcia, C.; Tsuchikawa, S.; Delgado Raynaud, C.; Daydé, J. Using near-infrared spectroscopy to determine moisture content, gel strength, and viscosity of gelatin. Food Hydrocoll. 2021, 115, 106627. [Google Scholar] [CrossRef]
- Calvarro, J.; Perez-Palacios, T.; Ruiz, J. Modification of gelatin functionality for culinary applications by using transglutaminase. Int. J. Gastron. Food Sci. 2016, 5–6, 27–32. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M.C. Gelatin-based films and coatings for food packaging applications. Coatings 2016, 6, 41. [Google Scholar] [CrossRef]
- Devi, A.; Kamatchi, P.; Leela, K. Extraction, characterization and application of gelatin from Carcharhinus amblyrhyncho and Sphyraena barracuda. IOSR J. Biotechnol. Biochem. 2016, 2, 40–49. [Google Scholar]
- Ma, K.; Cai, X.; Zhou, Y.; Wang, Y.; Jiang, T. In vitro and in vivo evaluation of tetracycline loaded chitosan—Gelatin nanosphere coatings for titanium surface functionalization. Macromol. Biosci. 2017, 17, 1600130. [Google Scholar] [CrossRef]
- Kumosa, L.S.; Zetterberg, V.; Schouenborg, J. Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury. Acta Biomater. 2018, 65, 137–149. [Google Scholar] [CrossRef]
- Ginzburg, M.A.; Kuptsova, S.V.; Voloshina, E.S. Waste-free technology for the production of hydrolyzed beef collagen from leather production waste. Casp. J. Environ. Sci. 2024, 22, 1301–1307. [Google Scholar] [CrossRef]
- Nitsuwat, S.; Zhang, P.; Ng, K.; Fang, Z. Fish gelatin as an alternative to mammalian gelatin for food industry: A meta-analysis. LWT 2021, 141, 110899. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Xing, Y.X.; Hu, F.Z. Analysis and evaluation of amino acids and mineral composition in skin glue of yak. Mod. Sci. Instrum. 2006, 16, 50–51. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; He, L.; Song, Z.; Shi, C.; Jia, P.; Yu, Q.; Han, L. Cowhide gelatin peptide as a source of antioxidants for inhibiting the deterioration of pudding quality during storage. Food Chem. X 2024, 22, 101327. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Qiu, Y.; Nan, H.; Wang, L.; Yang, D.; Zhang, L.; Yu, Q. Ultra-high pressure-assisted preparation of cowhide gelatin as a promising fat substitute: Improve the nutrition ratio and antioxidant capacity of beef patties. Food Res. Int. 2022, 157, 111260. [Google Scholar] [CrossRef]
- Long, H.; Gao, Y.F.; Ling, H.; Yu, Q.L.; Zang, R.Y. Enhanced gelling performance of oxhide gelatin prepared from cowhide scrap by high pressure-assisted extraction. J. Food Sci. 2021, 86, 2525–2538. [Google Scholar] [CrossRef]
- Yan, X.; Yue, Y.; Guo, B.; Zhang, S.; Ji, C.; Chen, Y.; Dai, Y.; Dong, L.; Zhu, B.; Lin, X. Novel microbial fermentation for the preparation of iron-chelating scallop skirts peptides-its profile, identification, and possible binding mode. Food Chem. 2024, 451, 139493. [Google Scholar] [CrossRef]
- Wang, F.; Fan, J.; An, Y.; Meng, G.; Ji, B.; Li, Y.; Dong, C. Quality evaluation, health risk assessment, and geographic origin tracing of ophiocordyceps sinensis through mineral element analysis. Microchem. J. 2024, 201, 110512. [Google Scholar] [CrossRef]
- Yang, L.; Lv, C.; Guo, X.; Liang, R. Donkey-hide gelatin peptide-iron complexes: Structural characterization, enhanced iron solubility under simulated digestion, and dual iron chelation-antioxidant functions. Foods 2025, 14, 2117. [Google Scholar] [CrossRef]
- Xu, M.; Wei, L.; Xiao, Y.; Bi, H.; Yang, H.; Du, Y. Physicochemical and functional properties of gelatin extracted from yak skin. Int. J. Biol. Macromol. 2017, 95, 1246–1253. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Yang, R.; Dong, Y.; Lin, S. Mechanism of aroma compounds changes from sea cucumber peptide powders (SCPPs) under different storage conditions. Food Res. Int. 2020, 128, 108757. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, X.; Ma, J.; Mubeen, H.M.; Zhang, T.; Lei, H.; Zhao, W.; Xu, H.; Li, M. Electronic nose, HS-GC-IMS, HS-SPME-GC-MS, and deep learning model were used to analyze and predict the changes and contents of VOCs in in-shell walnut kernels under different roasting conditions. Food Chem. 2025, 492, 145342. [Google Scholar] [CrossRef]
- Choi, S.S.; Regenstein, J.M. Physicochemical and sensory characteristics of fish gelatin. J. Food Sci. 2000, 65, 194–199. [Google Scholar] [CrossRef]
- Mulyani, S.; Setyabudi, F.M.C.S.; Pranoto, Y.; Santoso, U. The effect of pretreatment using hydrochloric acid on the characteristics of buffalo hide gelatin. J. Indones. Trop. Anim. 2017, 42, 14–22. [Google Scholar] [CrossRef]
- Ayalew, W.; Chu, M.; Liang, C.; Wu, X.; Yan, P. Adaptation mechanisms of Yak (Bos grunniens) to high-altitude environmental stress. Animals 2021, 11, 2344. [Google Scholar] [CrossRef]
- Zilhadia, Z.; Harahap, Y.; Jaswir, I.; Anwar, E. Evaluation and characterization of hard-shell capsules formulated by using goatskin gelatin. Polymers 2022, 14, 4416. [Google Scholar] [CrossRef]
- Siburian, W.Z.; Rochima, E.; Andriani, Y.; Praseptiangga, D. Fish gelatin (definition, manufacture, analysis of quality characteristics, and application): A review. Int. J. Fish. Aquat. Stud. 2020, 8, 90–95. [Google Scholar]
- Said, N.S.; Sarbon, N.M. Physical and mechanical characteristics of gelatin-based films as a potential food packaging material: A review. Membranes 2022, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Jridi, M.; Nasri, R.; Salem, R.B.S.B.; Lassoued, I. Chemical and biophysical properties of gelatins extracted from the skin of octopus (Octopus vulgaris). LWT Food Sci. Technol. 2015, 60, 881–889. [Google Scholar] [CrossRef]
- Samatra, M.Y.; Razali, U.H.M.; Shaarani, S.M.; Roslan, J.; Ramli, R.A.; Nor Qhairul Izzreen, M.N. Physicochemical and functional properties of buffalo (Bubalus bubalis) bone gelatin extracted using acid pre-treatment. Future Foods 2024, 10, 100428. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Balti, R.; Jridi, M.; Sila, A.; Souissi, N.; Nedjar-Arroume, N.; Guillochon, D.; Nasri, M. Extraction and functional properties of gelatin from the skin of cuttlefish (Sepia officinalis) using smooth hound crude acid protease-aided process. Food Hydrocoll. 2011, 25, 943–950. [Google Scholar] [CrossRef]
- Polyak, F.; Reich, G. Infrared spectroscopic study of the coil-helix transition of highly concentrated gelatin formulations. Eur. J. Pharm. Biopharm. 2019, 140, 11–19. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.; Giménez, B.; López-Caballero, M.a.; Montero, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Zawisza, B.; Pytlakowska, K.; Feist, B.; Polowniak, M.; Kita, A.; Sitko, R. Determination of rare earth elements by spectroscopic techniques: A review. J. Anal. At. Spectrom. 2011, 26, 2373–2390. [Google Scholar] [CrossRef]
- Razzaque, M.S.; Wimalawansa, S.A.-O. Minerals and human health: From deficiency to toxicity. Nutrients 2025, 17, 454. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Cui, Y.; Sun, S.; Zhang, Y.; Ge, J.; Yin, W.; Li, P.; Wang, Y. Versatile application of magnesium-related bone implants in the treatment of bone defects. Mater. Today Bio 2025, 31, 101635. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.T.; Soman, S.S.; Yee, J. Magnesium balance and measurement. Adv. Chronic Kidney Dis. 2018, 25, 224–229. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, W.; Zhang, X.-D.; Dai, Z.-Y.; Zhang, Y.-Q. Steam explosion-assisted extraction of protein from fish backbones and effect of enzymatic hydrolysis on the extracts. Foods 2021, 10, 1942. [Google Scholar] [CrossRef]
- Rigueto, C.V.T.; Rosseto, M.; Gomes, K.S.; Loss, R.A.; Biduski, B.; Manera, C.; Godinho, M.; Brião, V.B.; Dettmer, A.; Pizzutti, I.R. Steam explosion pretreatment for bovine limed hide waste gelatin extraction. Food Hydrocoll. 2023, 142, 108854. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, W.; Li, Y.; Gao, G.; Zhang, K.; Zhou, J.; Wu, Z. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature. Food Chem. 2019, 271, 527–535. [Google Scholar] [CrossRef]
- Doyle, B.B.; Bendit, E.; Blout, E.R. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolym. Orig. Res. Biomol. 1975, 14, 937–957. [Google Scholar] [CrossRef]
- Wang, X.; Tian, X.; Wang, Q.; Shen, R.; Ma, C.; Bai, L.; Wang, W. The combination of microwave and hot-air drying to prepare collagen fiber powder from cowhide. J. Food Eng. 2024, 363, 111773. [Google Scholar] [CrossRef]
- Payne, K.; Veis, A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolym. Orig. Res. Biomol. 1988, 27, 1749–1760. [Google Scholar] [CrossRef]
- Surewicz, W.K.; Mantsch, H.H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1988, 952, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, L.; Gomes, A.S.; Zezell, D.M. Collagen absorption bands in heated and rehydrated dentine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 62, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhou, Y.; Cheng, H.; Zheng, F.; Ye, X.; Sun, B. Optimization and validation of a method based on headspace-gas chromatography-ion mobility spectrometry for the rapid and visual analysis of flavor compound interactions in Baijiu. J. Food Compos. Anal. 2024, 133, 106389. [Google Scholar] [CrossRef]
Parameter Name | Parameters |
---|---|
RF power | 1550 W |
Carrier gas flow rate | 1.0 L/min |
Plasma coolant flow | 14.0 L/min |
Auxiliary flow rate | 0.8 L/min |
Sample uptake rate | 4.0 L/min |
Atomizing chamber temperature | 2 °C |
Sampling depth | 8 mm |
Scan mode | Peak hopping |
Detection mode | Automatic |
Replicates | 3 |
Samples | DYCHG | NDYCHG | DYHG | NDYHG |
---|---|---|---|---|
Proximate content | ||||
Protein (%) | 71.51 ± 1.36 c | 68.45 ± 0.35 b | 67.56 ± 0.90 ab | 66.81 ± 0.11 a |
Fat (%) | 0.27 ± 0.04 b | 0.17 ± 0.02 a | 0.38 ± 0.05 c | 0.30 ± 0.03 b |
Moisture (%) | 11.20 ± 0.43 a | 11.70 ± 0.08 b | 12.94 ± 0.26 c | 13.79 ± 0.08 d |
Ash (%) | 0.47 ± 0.07 a | 0.51 ± 0.03 a | 4.61 ± 0.16 b | 5.75 ± 0.15 c |
Color values | ||||
L | 44.67 ± 5.54 a | 52.36 ± 0.61 b | 61.41 ± 0.33 c | 66.11 ± 0.65 c |
a | 5.30 ± 0.12 c | 4.16 ± 0.09 b | 34.33 ± 0.04 d | 2.47 ± 0.19 a |
b | 32.34 ± 0.11 b | 28.34 ± 0.70 a | 84.17 ± 0.21 d | 34.23 ± 0.13 c |
Types | Limit of Detection (mg/kg) | Contents of Mineral Elements (mg/kg) | |||
---|---|---|---|---|---|
DYCHG | NDYCHG | DYHG | NDYHG | ||
Cr | 0.2 | 2.59 ± 0.040 b | 3.27 ± 0.010 c | 5.23 ± 0.090 d | 1.70 ± 0.050 a |
As | 0.005 | 0.03 ± 0.000 a | 0.03 ± 0.001 a | 0.19 ± 0.001 c | 0.07 ± 0.000 b |
Cd | 0.005 | / | / | / | / |
Hg | 0.001 | / | / | / | / |
Pb | 0.05 | 0.94 ± 0.068 c | 0.37 ± 0.028 ab | 0.48 ± 0.168 b | 0.21 ± 0.068 a |
K | 3 | 41.75 ± 4.150 c | 34.20 ± 4.000 b | 20.45 ± 0.850 a | 24.10 ± 2.800 a |
Ca | 3 | 636.05 ± 13.000 b | 468.97 ± 2.001 a | 639.47 ± 8.500 b | 737.65 ± 0.564 c |
Na | 3 | 253.39 ± 2.507 b | 251.99 ± 1.000 b | 337.09 ± 13.001 c | 229.39 ± 12.501 a |
Mg | 3 | 85.39 ± 2.900 d | 54.95 ± 0.050 b | 51.20 ± 1.800 a | 76.25 ± 0.550 c |
Al | 2 | 6.17 ± 0.145 b | 8.28 ± 0.075 c | 5.23 ± 0.050 a | 9.61 ± 0.800 d |
Fe | 3 | 86.75 ± 1.650 d | 66.61 ± 1.400 b | 78.50 ± 2.400 c | 41.52 ± 1.500 a |
Cu | 0.2 | 3.73 ± 0.105 c | 2.38 ± 0.001 b | 3.85 ± 0.015 d | 1.86 ± 0.000 a |
Zn | 2 | 11.20 ± 0.700 c | 7.99 ± 0.220 a | 9.75 ± 0.185 b | 8.58 ± 0.025 a |
Mn | 0.3 | 4.18 ± 0.110 b | 5.06 ± 0.010 c | 8.23 ± 0.115 d | 2.69 ± 0.020 a |
Se | 0.03 | 0.16 ± 0.007 a | 0.32 ± 0.025 b | 0.48 ± 0.019 c | 0.33 ± 0.001 b |
Ni | 0.5 | 1.85 ± 0.015 d | 1.09 ± 0.007 b | 1.75 ± 0.032 c | 0.64 ± 0.007 a |
Sn | 0.03 | 0.14 ± 0.010 b | 0.05 ± 0.003 a | / | / |
B | 0.3 | 2.95 ± 0.025 a | 3.61 ± 0.105 b | 8.12 ± 0.185 c | 3.28 ± 0.355 ab |
Ti | 0.05 | 0.52 ± 0.005 b | 0.41 ± 0.009 a | 0.51 ± 0.007 b | 0.58 ± 0.002 c |
V | 0.005 | / | 0.01 ± 0.001 b | 0.01 ± 0.000 a | / |
Co | 0.003 | 0.06 ± 0.001 c | 0.04 ± 0.000 a | 0.05 ± 0.001 b | 0.05 ± 0.001 b |
Sr | 0.5 | 3.19 ± 0.050 b | 2.06 ± 0.030 a | 2.06 ± 0.005 a | 3.56 ± 0.035 c |
Mo | 0.03 | 0.10 ± 0.003 c | 0.09 ± 0.002 b | 0.14 ± 0.004 d | 0.08 ± 0.001 a |
Sb | 0.03 | / | / | / | / |
Ba | 0.5 | 1.07 ± 0.020 c | 0.81 ± 0.012 a | 0.81 ± 0.003 a | 0.97 ± 0.014 b |
Tl | 0.0003 | / | / | / | / |
Amino Acid | DYCHG (µg/mL) | NDYCHG (µg/mL) | DYHG (µg/mL) | NDYHG (µg/mL) |
---|---|---|---|---|
Asp | 58.683 | 59.001 | 62.012 | 59.798 |
Thr | 17.446 | 17.529 | 18.577 | 17.971 |
Ser | 33.335 | 33.030 | 34.797 | 33.982 |
Glu | 99.581 | 98.929 | 103.502 | 100.364 |
Pro | 102.434 | 99.909 | 105.306 | 99.785 |
Gly | 195.682 | 193.846 | 197.730 | 191.418 |
Ala | 76.175 | 75.606 | 78.091 | 75.800 |
Cys | 0.908 | 0.570 | 0.583 | 0.932 |
Val | 19.890 | 19.264 | 20.743 | 19.992 |
Met | 7.084 | 6.974 | 7.078 | 7.263 |
Ile | 13.022 | 13.338 | 13.872 | 13.426 |
Leu | 25.362 | 25.734 | 26.825 | 26.422 |
Tyr | 7.255 | 7.805 | 8.376 | 7.772 |
Phe | 19.061 | 18.671 | 19.612 | 19.421 |
His | 5.813 | 6.230 | 6.972 | 6.160 |
Lys | 33.241 | 33.285 | 35.207 | 33.257 |
Arg | 73.079 | 70.585 | 74.386 | 71.420 |
Total sweet amino acids | 414.710 | 309.456 | 317.696 | 308.463 |
Total umami amino acids | 158.264 | 157.930 | 165.514 | 160.162 |
Total bitter amino acids | 123.644 | 124.327 | 131.607 | 126.450 |
Total amino acid | 788.051 | 780.306 | 813.669 | 785.083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lu, X.; Pang, C.; Liang, R.; Pan, S.; Wei, F.; Guo, X. The Characterization of Physicochemical, Nutritional, and Flavor Properties of Bovine Hide Gelatin Prepared from Different Raw Materials. Foods 2025, 14, 2941. https://doi.org/10.3390/foods14172941
Li H, Lu X, Pang C, Liang R, Pan S, Wei F, Guo X. The Characterization of Physicochemical, Nutritional, and Flavor Properties of Bovine Hide Gelatin Prepared from Different Raw Materials. Foods. 2025; 14(17):2941. https://doi.org/10.3390/foods14172941
Chicago/Turabian StyleLi, Huaiyu, Xinru Lu, Chenlu Pang, Rong Liang, Shaoxiang Pan, Fang Wei, and Xingfeng Guo. 2025. "The Characterization of Physicochemical, Nutritional, and Flavor Properties of Bovine Hide Gelatin Prepared from Different Raw Materials" Foods 14, no. 17: 2941. https://doi.org/10.3390/foods14172941
APA StyleLi, H., Lu, X., Pang, C., Liang, R., Pan, S., Wei, F., & Guo, X. (2025). The Characterization of Physicochemical, Nutritional, and Flavor Properties of Bovine Hide Gelatin Prepared from Different Raw Materials. Foods, 14(17), 2941. https://doi.org/10.3390/foods14172941