Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Measurement of Weight Loss Rate
2.3. Measurement of Electrolyte Leakage
2.4. Measurement of Titratable Acid (TA) and Soluble Solids Content (SSC)
2.5. Measurement of Alcohol Dehydrogenase (ADH), Alcohol Acyl—Transferase (AAT) and Lipoxygenase (LOX) Activity
2.6. Measurement of Volatile Flavor Compounds
2.7. Compound Identification
2.8. The Calculation of ROAV
2.9. Descriptive Sensory Analysis
2.10. Statistical Analysis
3. Results
3.1. Effects of MAP on the Cold Storage Quality of Strawberry
3.2. Effects of 1-MCP and MAP on the Cold Storage Quality of Strawberry
3.3. Effects of 1-MCP and MAP on the ADH, AAT, LOX Activities of Strawberry Under Cold Storage
3.4. Effects of 1-MCP and MAP on the Volatile Flavor Compounds of Strawberry Under Cold Storage
3.5. Descriptive Sensory Analysis
3.6. PLSR Analysis
3.7. Systematic Clustering and Heat Map Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shakya, R.; Lal, M.A. Fruit Development and Ripening. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, M.A., Eds.; Springer Nature: Singapore, 2018; pp. 857–883. [Google Scholar]
- Paulsen, E.; Barrios, S.; Lema, P. Production of packaged ready–to–eat whole strawberries (cv. San Andreas): Packaging conditions for shelf-life extension. Food Packag. Shelf Life 2021, 29, 100696. [Google Scholar] [CrossRef]
- Matar, C.; Guillard, V.; Gauche, K.; Costa, S.; Gontard, N.; Guilbert, S.; Gaucel, S. Consumer behaviour in the prediction of postharvest losses reduction for fresh strawberries packed in modified atmosphere packaging. Postharvest Biol. Technol. 2020, 163, 111119. [Google Scholar] [CrossRef]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, T.; Jiang, J.; Shi, K.; Liu, Z.; Wang, Y.; Song, Q.; Zhang, C.; Wu, T.; Chen, D.; et al. Synergistic effects of 1-MCP and H2S co-treatment on sugar and energy metabolisms in postharvest strawberry fruit. Front. Nutr. 2025, 12, 1615783. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Frost, S.; Suh, J.H. Progress in flavor research in food: Flavor chemistry in food quality, safety, and sensory properties. Food Chem. X 2025, 25, 102071. [Google Scholar] [CrossRef]
- Ohloff, G.; Flament, I.; Pickenhagen, W. Flavor chemistry. Food Rev. Int. 1985, 1, 99–148. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Jayakumar, A.; de Souza, C.K.; Rhim, J.W.; Kim, J.T. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13417. [Google Scholar] [CrossRef]
- Dias, C.; Ribeiro, T.; Rodrigues, A.C.; Ferrante, A.; Vasconcelos, M.W.; Pintado, M. Improving the ripening process after 1-MCP application: Implications and strategies. Trends Food Sci. Technol. 2021, 113, 382–396. [Google Scholar] [CrossRef]
- Ilea, M.I.; Díaz-Mula, H.M.; García-Molina, A.; Ruiz-Aracil, M.C.; Fernández-Picazo, C.; Guillén, F. Comparative Effect of GABA and 1-MCP in Maintaining Strawberry Fruit Quality During Cold Storage. Horticulturae 2025, 11, 370. [Google Scholar] [CrossRef]
- Langer, S.E.; Marina, M.; Francese, P.; Civello, P.M.; Martínez, G.A.; Villarreal, N.M. New insights into the cell wall preservation by 1-methylcyclopropene treatment in harvest-ripe strawberry fruit. Sci. Hortic. 2022, 299, 111032. [Google Scholar] [CrossRef]
- Qian, C.; Ji, Z.; Zhu, Q.; Qi, X.; Li, Q.; Yin, J.; Liu, J.; Kan, J.; Zhang, M.; Jin, C.; et al. Effects of 1-MCP on proline, polyamine, and nitric oxide metabolism in postharvest peach fruit under chilling stress. Hortic. Plant J. 2021, 7, 188–196. [Google Scholar] [CrossRef]
- Joshi, K.; Tiwari, B.; Cullen, P.J.; Frias, J.M. Predicting quality attributes of strawberry packed under modified atmosphere throughout the cold chain. Food Packag. Shelf Life 2019, 21, 100354. [Google Scholar] [CrossRef]
- Oliveira, M.; Abadias, M.; Usall, J.; Torres, R.; Teixidó, N.; Viñas, I. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables—A review. Trends Food Sci. Technol. 2015, 46, 13–26. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.W.; Ban, Z.J.; Lu, H.Y.; Li, D.; Poverenov, E.; Luo, Z.S.; Li, L. The aroma volatile repertoire in strawberry fruit: A review. J. Sci. Food Agric. 2018, 98, 4395–4402. [Google Scholar] [CrossRef]
- Du, X.; Plotto, A.; Baldwin, E.; Rouseff, R. Evaluation of volatiles from two subtropical strawberry cultivars using GC–olfactometry, GC-MS odor activity values, and sensory analysis. J. Agric. Food Chem. 2011, 59, 12569–12577. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zhang, Y.; Tang, X.; Jin, W.; Han, Z. Differences in volatile ester composition between Fragaria × ananassa and F. vesca and implications for strawberry aroma patterns. Sci. Hortic. 2013, 150, 47–53. [Google Scholar] [CrossRef]
- Ubeda, C.; Callejón, R.M.; Troncoso, A.M.; Moreno-Rojas, J.M.; Peña, F.; Morales, M.L. A comparative study on aromatic profiles of strawberry vinegars obtained using different conditions in the production process. Food Chem. 2016, 192, 1051–1059. [Google Scholar] [CrossRef]
- Aaby, K.; Mazur, S.; Arnfinn Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef]
- Tian, H.; Xu, X.; Chen, C.; Yu, H. Flavoromics approach to identifying the key aroma compounds in traditional Chinese milk fan. J. Dairy Sci. 2019, 102, 9639–9650. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Crane, J.; Wang, Y. Integration of Volatilomics and Metabolomics Unveils Key Flavor-Related Biological Pathways in Different Carambola Cultivars. J. Agric. Food Chem. 2023, 71, 10850–10862. [Google Scholar] [CrossRef]
- Gu, Z.; Jin, Z.; Schwarz, P.; Rao, J.; Chen, B. Uncovering aroma boundary compositions of barley malts by untargeted and targeted flavoromics with HS-SPME-GC-MS/olfactometry. Food Chem. 2022, 394, 133541. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Sherman, E.; Pozo-Bayón, M.; Pinu, F.R. Application of untargeted volatile profiling and data driven approaches in wine flavoromics research. Food Res. Int. 2021, 145, 110392. [Google Scholar] [CrossRef] [PubMed]
- Thong, A.; Basri, N.; Chew, W. Comparison of untargeted gas chromatography-mass spectrometry analysis algorithms with implications to the interpretation and putative identification of volatile aroma compositions. J. Chromatogr. A 2024, 1713, 464519. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Niu, C.; Yang, X.; Xu, X.; Zheng, F.; Liu, C.; Wang, J.; Li, Q. Roles of sunlight exposure on chemosensory characteristic of broad bean paste by untargeted profiling of volatile flavors and multivariate statistical analysis. Food Chem. 2022, 381, 132115. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, X.; Wang, K.; Lv, X.; Li, R.; Ma, W. GC–MS Untargeted Analysis of Volatile Compounds in Four Red Grape Varieties (Vitis vinifera L. cv) at Different Maturity Stages near Harvest. Foods 2022, 11, 2804. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Galarraga, M.P.; Van de Velde, F.; Piagentini, A.M.; Pirovani, M.É. Kinetic modeling of the changes in bioactive compounds and quality attributes of fresh-cut strawberries stored in controlled atmospheres with high oxygen alone or with carbon dioxide. Postharvest Biol. Technol. 2022, 190, 111947. [Google Scholar] [CrossRef]
- Chaiprasart, P. Effect of 1-methylcyclopropene on postharvest qualities of ‘Parajchatan #72’ strawberry fruit. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): II International Berry Fruit Symposium: Interactions! Local and Global Berry Research and Innovation, Brisbane, Australia, 17–22 August 2014; ISHS: Korbeek-Lo, Belgium, 2016; pp. 227–230. [Google Scholar]
- Caleb, O.J.; Wegner, G.; Rolleczek, C.; Herppich, W.B.; Geyer, M.; Mahajan, P.V. Hot water dipping: Impact on postharvest quality, individual sugars, and bioactive compounds during storage of ‘Sonata’ strawberry. Sci. Hortic. 2016, 210, 150–157. [Google Scholar] [CrossRef]
- Kirnak, H.; Kaya, C.; Higgs, D.; Gercek, S. A long-term experiment to study the role of mulches in the physiology and macro-nutrition of strawberry grown under water stress. Aust. J. Agric. Res. 2001, 52, 937–943. [Google Scholar] [CrossRef]
- Powers, J.R. Enzyme Analysis and Bioassays in Food Analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Xu, Y.; Yao, L.; Wang, Y.; Shen, J.; Chen, D.; Feng, T. Comparative analysis of the aromatic profiles of citri sarcodactylis fructus from various geographical regions using GC-IMS, GC-MS, and sensory evaluation. Food Biosci. 2024, 58, 103752. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Li, R.; Sun, P.; Chen, D.; Shen, J.; Feng, T. Characteristic aroma analysis of finger citron in four different regions based on GC–MS-HS-SPME and ROAV. J. Food Process. Preserv. 2022, 46, e17191. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yang, S.; Wu, Z.; Shen, Y. Gaseous ozone treatment prolongs the shelf-life of fresh-cut kiwifruit by maintaining its ascorbic acid content. LWT 2022, 172, 114196. [Google Scholar] [CrossRef]
- Ahmed, W.; Qureshi Quarshi, H.; Azmant, R.; Chendouh-Brahmi, N. Post-Harvest Problems of Strawberry and Their Solutions. In Recent Studies on Strawberries; Kafkas, N.E.Y., Oğuz, İ., Eds.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Hu, B.; Sun, D.W.; Pu, H.; Wei, Q. Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends Food Sci. Technol. 2019, 91, 66–82. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, M.C.; Ku, K.H. Chemical, physical, and sensory properties of 1-MCP-treated Fuji apple (Malus domestica Borkh.) fruits after long-term cold storage. Appl. Biol. Chem. 2017, 60, 363–374. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Shi, J.; Zhang, S.; Lin, Y.; Lin, T. Effects of a feasible 1-methylcyclopropene postharvest treatment on senescence and quality maintenance of harvested Huanghua pears during storage at ambient temperature. LWT—Food Sci. Technol. 2015, 64, 6–13. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.; Hu, M.; Jin, M.; Rao, J. Oxalic acid and 1-methylcyclopropene alleviate chilling injury of ‘Youhou’sweet persimmon during cold storage. Postharvest Biol. Technol. 2018, 137, 134–141. [Google Scholar] [CrossRef]
- Tian, M.; Prakash, S.; Elgar, H.; Young, H.; Burmeister, D.; Ross, G. Responses of strawberry fruit to 1-methylcyclopropene (1-MCP) and ethylene. Plant Growth Regul. 2000, 32, 83–90. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Dai, B.; Wang, Y.; Du, X.; Huan, C.; Zheng, X. 1-methylcyclopropylene or methyl jasmonate-induced chilling tolerance in a stony hard peach cultivar. Sci. Hortic. 2022, 304, 111279. [Google Scholar] [CrossRef]
- Li, L.; Lichter, A.; Chalupowicz, D.; Gamrasni, D.; Goldberg, T.; Nerya, O.; Ben-Arie, R.; Porat, R. Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biol. Technol. 2016, 111, 322–329. [Google Scholar] [CrossRef]
- Khan, A.S.; Singh, Z. 1-Methylcyclopropene application and modified atmosphere packaging affect ethylene biosynthesis, fruit softening, and quality of ‘Tegan Blue’ Japanese plum during cold storage. J. Am. Soc. Hortic. Sci. 2008, 133, 290–299. [Google Scholar] [CrossRef]
- Jiang, Y.; Joyce, D.C.; Terry, L.A. 1-Methylcyclopropene treatment affects strawberry fruit decay. Postharvest Biol. Technol. 2001, 23, 227–232. [Google Scholar] [CrossRef]
- Bahmani, R.; Razavi, F.; Mortazavi, S.N.; Gohari, G.; Juárez-Maldonado, A. Enhancing Postharvest Quality and Shelf Life of Strawberries through Advanced Coating Technologies: A Comprehensive Investigation of Chitosan and Glycine Betaine Nanoparticle Treatments. Plants 2024, 13, 1136. [Google Scholar] [CrossRef]
- Yarılgaç, T.; Kadim, H.; Ozturk, B. Role of maturity stages and modified-atmosphere packaging on the quality attributes of cornelian cherry fruits (Cornus mas L.) throughout shelf life. J. Sci. Food Agric. 2019, 99, 421–428. [Google Scholar] [CrossRef]
- Wei, H.; Seidi, F.; Zhang, T.; Jin, Y.; Xiao, H. Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chem. 2020, 337, 127750. [Google Scholar] [CrossRef]
- Li, X.; Xiong, T.; Zhu, Q.; Zhou, Y.; Lei, Q.; Lu, H.; Chen, W.; Li, X.; Zhu, X. Combination of 1-MCP and modified atmosphere packaging (MAP) maintains banana fruit quality under high temperature storage by improving antioxidant system and cell wall structure. Postharvest Biol. Technol. 2023, 198, 112265. [Google Scholar] [CrossRef]
- Gu, Z.; Jin, Z.; Schwarz, P.; Rao, J.; Chen, B. Unraveling the role of germination days on the aroma variations of roasted barley malts via gas chromatography-mass spectrometry based untargeted and targeted flavoromics. Food Chem. 2023, 426, 136563. [Google Scholar] [CrossRef]
- Bovi, G.G.; Caleb, O.J.; Ilte, K.; Rauh, C.; Mahajan, P.V. Impact of modified atmosphere and humidity packaging on the quality, off-odour development and volatiles of ‘Elsanta’ strawberries. Food Packag. Shelf Life 2018, 16, 16204–16210. [Google Scholar] [CrossRef]
- Both, V.; Brackmann, A.; Thewes, F.R.; Weber, A.; Schultz, E.E.; Ludwig, V. The influence of temperature and 1-MCP on quality attributes of ‘Galaxy’apples stored in controlled atmosphere and dynamic controlled atmosphere. Food Packag. Shelf Life 2018, 16, 168–177. [Google Scholar] [CrossRef]
- Hendges, M.V.; Neuwald, D.A.; Steffens, C.A.; Vidrih, R.; Zlatić, E.; Amarante, C.V.T.D. 1-MCP and storage conditions on the ripening and production of aromatic compounds in Conference and Alexander Lucas pears harvested at different maturity stages. Postharvest Biol. Technol. 2018, 146, 18–25. [Google Scholar] [CrossRef]
- Cai, H.; An, X.; Han, S.; Jiang, L.; Yu, M.; Ma, R.; Yu, Z. Effect of 1-MCP on the production of volatiles and biosynthesis-related gene expression in peach fruit during cold storage. Postharvest Biol. Technol. 2018, 141, 50–57. [Google Scholar] [CrossRef]
CK 0 | CK 15 | MAP1 15 | 1-MCP 15 | 1-MCP + M AP1 15 | CK 15 + 2 | MAP1 15 + 2 | 1-MCP 15 + 2 | 1-MCP + MAP1 15 + 2 | |
---|---|---|---|---|---|---|---|---|---|
Esters | 11 | 18 | 22 | 20 | 23 | 28 | 22 | 25 | 23 |
Aldehydes | 16 | 16 | 16 | 15 | 16 | 12 | 15 | 12 | 16 |
Hydrocarbons | 8 | 10 | 12 | 12 | 13 | 11 | 12 | 13 | 12 |
Alcohols | 3 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | 4 |
Acids | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 3 | 1 |
Ketones | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 3 | 2 |
Furans | 1 | 2 | 1 | 2 | 1 | 3 | 3 | 3 | 2 |
Terpenoids | 2 | 4 | 2 | 4 | 1 | 3 | 2 | 3 | 0 |
Others | 2 | 4 | 4 | 4 | 4 | 3 | 4 | 4 | 4 |
Total | 49 | 60 | 61 | 63 | 62 | 66 | 65 | 70 | 64 |
CK 0 | CK 15 | MAP1 15 | 1-MCP 15 | 1-MCP + M AP1 15 | CK 15 + 2 | MAP1 15 + 2 | 1-MCP 15 + 2 | 1-MCP + MAP1 15 + 2 | |
---|---|---|---|---|---|---|---|---|---|
Concentrations (μg/kg eq.) | |||||||||
Esters | 27.7 | 413.56 | 749.2 | 277.8 | 302.24 | 382.82 | 117.57 | 291.54 | 227.57 |
Aldehydes | 93.59 | 88.76 | 86.66 | 55.99 | 42.37 | 47.66 | 29.16 | 34.11 | 49.69 |
Hydrocarbons | 3.2 | 7.37 | 8.68 | 6.12 | 6.42 | 5.45 | 4.37 | 3.35 | 3.82 |
Alcohols | 11.01 | 0 | 0 | 0 | 0 | 1.75 | 3.54 | 2.39 | 19.37 |
Acids | 9.62 | 9.03 | 3.29 | 17.46 | 1.49 | 11.02 | 0.56 | 18.18 | 2.3 |
Ketones | 1.56 | 2.06 | 1.89 | 1.23 | 0.75 | 1.01 | 0.76 | 2.07 | 1.43 |
Furans | 1.04 | 10.71 | 1.62 | 8.8 | 0.6 | 11.47 | 4.93 | 11.25 | 5.79 |
Terpenoids | 9.74 | 10.03 | 0.35 | 5.13 | 0.02 | 85.7 | 1.02 | 41.33 | 0 |
Others | 1.07 | 2.42 | 2.02 | 1.73 | 1.07 | 3.41 | 1.70 | 2.48 | 3.45 |
Total | 158.53 | 543.94 | 853.71 | 374.26 | 354.96 | 550.29 | 163.61 | 406.7 | 313.42 |
Concentrations (μg/kg eq.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VOC | Code | LRI | CK 0 | CK 15 | MAP1 15 | 1-MCP 15 | 1-MCP + MA P1 15 | CK 15 + 2 | MAP1 15 + 2 | 1-MCP 15 + 2 | 1-MCP + MAP1 15 + 2 |
Esters | |||||||||||
Ethyl hexanoate | E1 | 1008 | ND | 16.45 ± 0.11 cd | 17.6 ± 1.11 c | 14.89 ± 0.14 cd | 9.59 ± 0.82 ef | 81.46 ± 6.68 a | 6.79 ± 0.68 f | 40.97 ± 2.78 b | 12.18 ± 0.10 de |
Ethyl benzoate | E2 | 1181 | ND | ND | 2.13 ± 0.18 b | ND | 0.68 ± 0.01 e | 2.80 ± 0.2 a | 1.42 ± 0.04 d | 1.81 ± 0.15 c | 2.91 ± 0.08 a |
Propyl myristate | E3 | 1872 | 1.42 ± 0.05 e | 31.49 ± 0.29 a | 14.37 ± 0.03 b | 9.04 ± 0.60 c | 6.46 ± 0.22 d | ND | ND | ND | ND |
(Z)-3-Hexenyl acetate | E4 | 1012 | ND | 10.61 ± 0.10 b | 22.23 ± 1.07 a | 9.61 ± 0.47 c | 9.52 ± 0.40 c | 10.25 ± 0.38 bc | 2.63 ± 0.20 e | 8.28 ± 0.73 d | 2.53 ± 0.01 e |
Hexyl acetate | E5 | 1021 | 6.18 ± 0.03 f | 140.51 ± 9.49 b | 242.52 ± 11.4 a | 72.26 ± 3.26 d | 102.53 ± 2.67 c | 96.22 ± 6.33 c | 28.24 ± 2.27 e | 70.49 ± 2.13 d | 68.25 ± 2.05 d |
2-Hexenol acetate | E6 | 1023 | 11.72 ± 0.23 h | 193.08 ± 9.01 b | 389.25 ± 16.74 a | 155.27 ± 6.03 c | 155.55 ± 12.91 c | 88.51 ± 3.00 e | 35.22 ± 1.8 g | 116.55 ± 9.16 d | 72.92 ± 1.57 f |
Ethyl 2-hexenoate | E7 | 1055 | ND | ND | 0.57 ± 0.03 b | ND | 0.18 ± 0.01 e | 0.73 ± 0.01 a | 0.23 ± 0.02 d | ND | 0.42 ± 0.03 c |
Methyl caprylate | E8 | 1133 | 0.21 ± 0.00 c | 0.24 ± 0.02 c | ND | 0.15 ± 0.00 d | ND | 0.53 ± 0.00 b | ND | 0.93 ± 0.08 a | ND |
benzyl acetate | E9 | 1172 | 0.24 ± 0.01 e | 0.35 ± 0.00 e | 0.55 ± 0.04 e | 0.41 ± 0.00 e | 0.3 ± 0.01 e | 4.87 ± 0.44 b | 2.13 ± 0.17 c | 1.81 ± 0.12 d | 5.20 ± 0.01 a |
Hexyl butyrate | E10 | 1201 | ND | 2.95 ± 0.18 a | ND | 1.43 ± 0.01 c | ND | ND | ND | 1.79 ± 0.04 b | ND |
2(E)-Hexenyl butanoate | E11 | 1203 | 0.14 ± 0 c | 1.91 ± 0.08 a | ND | 1.01 ± 0.01 b | ND | ND | ND | ND | ND |
Ethyl octanoate | E12 | 1206 | ND | ND | 1.31 ± 0.11 c | ND | 0.56 ± 0.06 d | 12.05 ± 0.66 a | 0.62 ± 0.04 d | 2.78 ± 0.15 b | 2.89 ± 0.21 b |
octyl acetate | E13 | 1221 | ND | ND | ND | ND | 0.20 ± 0.02 c | 0.35 ± 0.01 a | ND | 0.26 ± 0.02 b | ND |
Hexyl isopentanoate | E14 | 1253 | ND | 0.13 ± 0.01 b | ND | ND | ND | ND | ND | 0.45 ± 0.01 a | ND |
trans-2-Hexenyl isovalerate | E15 | 1255 | ND | 0.24 ± 0.02 b | ND | 0.16 ± 0.00 c | ND | ND | ND | 0.39 ± 0.01 a | ND |
β-Phenethyl acetate | E16 | 1265 | ND | ND | ND | ND | ND | 0.42 ± 0.02 c | 0.56 ± 0.01 b | ND | 0.66 ± 0.06 a |
Methyl cinnamate | E17 | 1397 | 0.46 ± 0.04 g | ND | 1.63 ± 0.08 d | 2.93 ± 0.13 c | 1.28 ± 0.07 e | 3.57 ± 0.15 b | 0.77 ± 0.04 f | 12.64 ± 0.49 a | 0.95 ± 0.01 f |
trans-2-Hexenyl hexanoate | E18 | 1398 | 0.38 ± 0.01 c | 0.69 ± 0.05 a | ND | 0.56 ± 0.04 b | ND | ND | ND | ND | ND |
Ethyl caprinate | E19 | 1405 | ND | ND | 0.12 ± 0.01 c | 0.01 ± 0 de | 0.03 ± 0 de | 1.55 ± 0.05 a | 0.04 ± 0 d | 0.09 ± 0.01 c | 0.32 ± 0 b |
Ethyl cinnamate | E20 | 1478 | ND | 0.79 ± 0.03 ef | 4.21 ± 0.37 d | 0.64 ± 0.03 ef | 1.46 ± 0.07 e | 30.88 ± 1.52 a | 8.16 ± 0.16 c | 3.23 ± 0.14 d | 29.33 ± 0.79 b |
2-Ethylhexyl salicylate | E21 | 1836 | 5.13 ± 0.40 b | ND | ND | ND | ND | 6.49 ± 0.07 a | 1.14 ± 0.01 c | 0.73 ± 0.03 b | 1.01 ± 0.04 c |
Dibutyl phthalate | E22 | 1948 | 0.52 ± 0.05 a | ND | ND | ND | ND | 0.45 ± 0.00 c | ND | 0.37 ± 0.01 d | 0.48 ± 0.01 b |
Ethyl butanoate | E23 | 807 | ND | ND | 27.47 ± 1.63 a | ND | ND | 21.07 ± 0.18 b | 11.63 ± 0.14 d | 10.77 ± 0.51 d | 13.55 ± 0.20 c |
Isopropyl butyrate | E24 | 843 | ND | 0.28 ± 0.02 b | ND | 0.22 ± 0.02 c | ND | 0.11 ± 0.01 d | ND | 0.31 ± 0.00 a | ND |
Methacrylic acid, ethyl ester | E25 | 847 | ND | ND | 0.85 ± 0.03 c | ND | 0.31 ± 0.02 d | 0.07 ± 0.00 e | 1.28 ± 0.04 c | ND | 2.01 ± 0.01 a |
Ethyl 2-methylbutanoate | E26 | 851 | ND | ND | 8.16 ± 0.32 b | ND | 4.74 ± 0.34 c | 9.92 ± 0.60 a | 3.63 ± 0.11 d | 0.79 ± 0.05 f | 2.00 ± 0.02 e |
Isopentyl acetate | E27 | 881 | ND | 0.79 ± 0.02 f | 7.03 ± 0.16 b | 1.55 ± 0.13 e | 4.50 ± 0.05 c | 4.38 ± 0.09 c | 9.64 ± 0.49 a | 3.23 ± 0.21 d | 6.70 ± 0.55 b |
Prenyl acetate | E28 | 920 | ND | 0.41 ± 0.03 b | 0.49 ± 0.01 a | 0.38 ± 0 c | 0.22 ± 0.01 e | 0.25 ± 0.02 d | ND | ND | ND |
Amyl acetate | E29 | 922 | ND | 1.77 ± 0.03 a | 1.74 ± 0.16 a | 0.70 ± 0.04 c | 0.50 ± 0.04 d | 0.92 ± 0.02 b | 0.47 ± 0.01 d | 0.65 ± 0.00 c | 0.54 ± 0.03 d |
2-Methyl-2-butenyl acetate | E30 | 930 | ND | ND | 1.60 ± 0.05 a | 0.19 ± 0.01 f | 1.06 ± 0.01 b | 0.76 ± 0.06 c | 0.28 ± 0.00 e | 0.48 ± 0.05 d | 0.29 ± 0.01 e |
Methyl caproate | E31 | 931 | 1.30 ± 0.11 e | 10.87 ± 0.54 b | 1.19 ± 0.04 e | 6.39 ± 0.01 c | 0.76 ± 0.03 ef | 2.74 ± 0.09 d | ND | 11.66 ± 0.83 a | 0.53 ± 0 fg |
Ethyl 2-methyl-2-butenoate | E32 | 948 | ND | ND | 3.71 ± 0.33 a | ND | 1.53 ± 0.10 d | 0.91 ± 0.01 e | 2.02 ± 0.14 b | ND | 1.77 ± 0.17 c |
Ethyl acetoacetate | E33 | 957 | ND | ND | 0.47 ± 0.01 a | ND | 0.19 ± 0.01 c | 0.21 ± 0.01 b | 0.13 ± 0.01 d | 0.08 ± 0.01 e | 0.13 ± 0.01 d |
Ethyl 3-acetoxybutyrate | E34 | 1120 | ND | ND | ND | ND | 0.09 ± 0.00 c | 0.35 ± 0.00 b | 0.54 ± 0.03 a | ND | ND |
Aldehydes | |||||||||||
(E)-2-Octenal | A1 | 1055 | 2.01 ± 0.01 b | 2.93 ± 0.08 a | 0.66 ± 0.06 c | 0.35 ± 0.03 d | 0.25 ± 0.02 e | ND | 0.18 ± 0.02 f | 0.18 ± 0.00 f | 0.23 ± 0.00 ef |
Benzaldehyde | A2 | 970 | 6.39 ± 0.13 d | 11.86 ± 0.38 b | 14.06 ± 0.01 a | 6.50 ± 0.64 d | 4.63 ± 0.42 e | 4.78 ± 0.23 e | 3.59 ± 0.3 f | 3.94 ± 0.22 f | 10.13 ± 0.07 c |
(Z)-2-Heptenal | A3 | 965 | 1.84 ± 0.03 b | 1.94 ± 0.19 b | 3.24 ± 0.17 a | 1.31 ± 0.13 d | 1.34 ± 0.05 d | 0.97 ± 0.03 e | 1.51 ± 0.05 cd | 1.07 ± 0.10 e | 1.61 ± 0.14 c |
(Z)-4-nonenal | A4 | 1105 | 0.16 ± 0.01 c | 0.06 ± 0.00 d | 0.17 ± 0.00 b | 0.03 ± 0.00 e | ND | ND | ND | ND | 0.20 ± 0.01 a |
Hexanal | A5 | 808 | 56.43 ± 0.55 a | 29.1 ± 2.56 b | 27.47 ± 0.44 b | 17.53 ± 0.18 d | 16.45 ± 1.36 de | 21.07 ± 1.36 c | 11.63 ± 0.51 g | 14.76 ± 1.29 ef | 13.55 ± 0.55 fg |
Nonanal | A6 | 1113 | 20.6 ± 0.74 a | 15.41 ± 0.82 b | 11.77 ± 0.52 c | 8.42 ± 0.57 d | 5.66 ± 0.11 e | 10.81 ± 0.29 c | 4.97 ± 0.01 e | 9.14 ± 0.07 d | 11.03 ± 0.92 c |
trans-2-trans-6-Nonadienal | A7 | 1162 | 0.42 ± 0.01 e | 0.84 ± 0.00 c | 2.25 ± 0.01 a | 0.61 ± 0.06 d | 0.80 ± 0.03 c | 0.42 ± 0.01 e | 0.35 ± 0.01 f | 0.65 ± 0.05 d | 0.97 ± 0.01 b |
2-Nonenal | A8 | 1169 | 1.01 ± 0.09 ef | 1.52 ± 0.05 c | 5.41 ± 0.47 a | 1.15 ± 0.02 def | 1.86 ± 0.18 b | 0.85 ± 0.04 fg | 0.59 ± 0.05 g | 1.20 ± 0.07 de | 1.45 ± 0.08 cd |
Decanal | A9 | 1216 | 0.98 ± 0.04 c | 0.75 ± 0.07 d | 1.34 ± 0.02 a | 0.54 ± 0.02 e | 0.61 ± 0.01 e | 1.03 ± 0.09 c | 0.54 ± 0.04 e | 1.18 ± 0.11 b | 1.13 ± 0.02 b |
(E; E)-2,4-nonadienal | A10 | 1227 | ND | 0.22 ± 0.02 a | 0.19 ± 0 b | ND | 0.18 ± 0.01 b | ND | ND | ND | ND |
(Z)-2-Decenal | A11 | 1273 | 0.96 ± 0.09 a | 0.44 ± 0.04 c | 0.61 ± 0.01 b | 0.3 ± 0.03 d | 0.29 ± 0.02 d | 0.43 ± 0.01 c | 0.92 ± 0.03 a | 0.57 ± 0.04 b | 0.36 ± 0.00 d |
2,4-Decadienal | A12 | 1305 | 0.38 ± 0.02 cd | 0.47 ± 0.02 c | 1.83 ± 0.14 a | 0.52 ± 0.01 b | 0.51 ± 0.04 b | 0.43 ± 0.04 bcd | 0.19 ± 0.01 f | 0.26 ± 0.02 ef | 0.34 ± 0.02 de |
Undecanal | A13 | 1318 | 0.13 ± 0.01 c | ND | ND | ND | 0.19 ± 0.02 a | ND | 0.13 ± 0.01 c | ND | 0.16 ± 0.01 b |
2-Undecenal | A14 | 1375 | 0.59 ± 0.04 a | 0.25 ± 0.00 d | 0.45 ± 0.03 b | 0.20 ± 0.01 f | 0.21 ± 0.01 ef | 0.24 ± 0 de | 0.39 ± 0.00 c | 0.36 ± 0.00 c | 0.26 ± 0.02 d |
Dodecanal | A15 | 1418 | 0.17 ± 0.01 e | 0.25 ± 0.02 c | 0.30 ± 0.00 b | 0.17 ± 0.01 e | 0.14 ± 0.00 f | ND | 0.14 ± 0.01 f | 0.23 ± 0.02 d | 0.36 ± 0.01 a |
2-Hexenal | A16 | 854 | 0.52 ± 0.03 h | 22.03 ± 0.06 a | 16.28 ± 1.06 c | 17.92 ± 1.42 d | 8.84 ± 0.44 d | 6.10 ± 0.49 f | 3.59 ± 0.11 g | ND | 7.23 ± 0.37 e |
Heptanal | A17 | 909 | 1.00 ± 0.02 a | 0.69 ± 0.05 b | 0.63 ± 0.05 c | 0.44 ± 0.02 e | 0.41 ± 0.04 e | 0.53 ± 0.03 d | 0.44 ± 0.00 e | 0.57 ± 0.00 d | 0.68 ± 0.03 bc |
Hydrocarbons | |||||||||||
Tridecane, 3-methylene- | H1 | 1413 | 0.19 ± 0.01 c | 0.16 ± 0.01 d | 0.46 ± 0.02 a | 0.18 ± 0.01 cd | 0.22 ± 0.02 b | 0.18 ± 0.01 cd | 0.18 ± 0.02 cd | 0.13 ± 0.00 e | 0.10 ± 0.01 f |
Cetene | H3 | 1604 | 0.16 ± 0.00 d | ND | ND | 0.25 ± 0.01 b | 0.29 ± 0.01 a | ND | 0.22 ± 0.02 c | 0.10 ± 0.01 e | ND |
o-Cymene | H4 | 1033 | 0.14 ± 0.01 b | ND | 0.18 ± 0.01 a | ND | 0.09 ± 0.00 c | ND | ND | ND | 0.17 ± 0.02 a |
(1-Butylheptyl)benzene | H5 | 1646 | 0.31 ± 0.02 d | ND | 0.70 ± 0.03 a | 0.39 ± 0.02 b | 0.32 ± 0.02 d | 0.37 ± 0.03 bc | 0.25 ± 0.00 e | 0.27 ± 0.00 e | 0.34 ± 0.03 cd |
(1-Propyloctyl)benzene | H6 | 1657 | 0.25 ± 0.02 c | 0.23 ± 0.01 cd | 0.25 ± 0.02 c | 0.13 ± 0.00 e | 0.14 ± 0.00 e | 0.32 ± 0.02 a | 0.21 ± 0.01 d | 0.21 ± 0.01 d | 0.28 ± 0.01 b |
3-Phenylundecane | H7 | 1678 | 0.21 ± 0.01 e | 0.24 ± 0.02 d | 0.32 ± 0.02 b | 0.18 ± 0.01 f | 0.18 ± 0.01 f | 0.38 ± 0.00 a | 0.29 ± 0.01 c | 0.25 ± 0.02 d | 0.31 ± 0.02 bc |
(1-Methyldecyl)benzene | H8 | 1716 | ND | 0.32 ± 0.03 c | 0.54 ± 0.04 a | 0.33 ± 0.02 c | 0.27 ± 0.02 d | 0.5 ± 0.01 a | 0.36 ± 0.01 bc | 0.51 ± 0.05 a | 0.40 ± 0.03 b |
(1-Pentylheptyl)benzene | H9 | 1741 | ND | 0.29 ± 0.02 bc | 0.27 ± 0.00 cd | 0.21 ± 0.00 e | 0.22 ± 0 e | 0.33 ± 0.02 a | 0.26 ± 0.01 d | 0.30 ± 0.02 b | 0.26 ± 0.03 d |
(1-Butyloctyl)benzene | H10 | 1746 | ND | 0.24 ± 0.02 bc | 0.22 ± 0.01 cd | 0.15 ± 0 e | 0.16 ± 0.02 e | 0.35 ± 0.02 a | 0.21 ± 0.02 d | 0.25 ± 0.02 b | 0.23 ± 0.02 bcd |
(1-Propylnonyl)benzene | H11 | 1759 | ND | 0.22 ± 0.01 c | 0.28 ± 0.01 b | 0.15 ± 0.01 f | 0.18 ± 0.01 e | 0.31 ± 0.01 a | 0.19 ± 0.01 de | 0.20 ± 0.00 d | 0.20 ± 0.01 d |
3-Phenyldodecane | H12 | 1781 | ND | 0.33 ± 0.00 a | 0.27 ± 0.02 c | 0.21 ± 0.01 d | 0.16 ± 0.01 e | 0.30 ± 0.01 b | 0.16 ± 0.01 e | 0.19 ± 0.02 d | 0.21 ± 0.01 d |
Ethylbenzene | H13 | 862 | 0.61 ± 0.05 e | 0.95 ± 0.05 b | 1.34 ± 0.02 a | 0.70 ± 0.01 d | 0.83 ± 0.01 c | 0.83 ± 0.05 c | 0.67 ± 0.03 d | 0.22 ± 0.00 g | 0.37 ± 0.00 f |
p-Xylene | H14 | 900 | 1.33 ± 0.05 d | 4.39 ± 0.39 a | 3.85 ± 0.22 b | 3.14 ± 0.25 c | 3.36 ± 0.01 c | 1.58 ± 0.09 d | 1.37 ± 0.03 d | 0.72 ± 0.03 e | 0.95 ± 0.06 e |
Alcohols | |||||||||||
(2Z)-2-Octen-1-ol | AL1 | 1077 | 0.08 ± 0.00 c | ND | ND | ND | ND | ND | 0.17 ± 0.01 b | 0.09 ± 0.00 c | 0.26 ± 0.02 a |
Benzyl alcohol | AL2 | 1046 | ND | ND | ND | ND | ND | ND | 0.12 ± 0 c | 0.16 ± 0.01 b | 0.93 ± 0.03 a |
Cedrol | AL3 | 1628 | 0.17 ± 0.00 c | ND | ND | ND | ND | 0.21 ± 0.02 a | 0.14 ± 0.00 d | 0.17 ± 0.00 c | 0.19 ± 0.01 b |
Z-2-Hexen-1-ol | AL4 | 868 | 10.76 ± 0.12 b | ND | ND | ND | ND | 1.54 ± 0.01 d | 3.11 ± 0.22 c | 1.97 ± 0.17 d | 17.99 ± 0.85 a |
Acids | |||||||||||
Hexanoic acid | AC1 | 992 | 8.21 ± 0.01 c | 6.25 ± 0.56 d | 2.91 ± 0.06 e | 16.01 ± 1.23 a | 1.22 ± 0.06 f | 10.33 ± 0.68 b | ND | 16.28 ± 1.58 a | ND |
Octanoic acid | AC2 | 1181 | 0.88 ± 0.06 d | 2.30 ± 0.15 a | ND | 1.17 ± 0.01 c | ND | ND | ND | 1.46 ± 0.01 b | ND |
Ketones | |||||||||||
1-Octen-3-one | K1 | 985 | 0.63 ± 0.06 b | 0.44 ± 0.02 c | 1.08 ± 0.10 a | 0.28 ± 0.02 d | 0.39 ± 0.03 c | 0.37 ± 0.01 c | 0.41 ± 0.01 c | 0.29 ± 0.02 d | 0.65 ± 0.01 b |
6,10-Dimethyl-5,9-undecadien-2-one | K2 | 1455 | 0.65 ± 0.04 b | 0.57 ± 0.02 c | 0.81 ± 0.01 a | 0.32 ± 0.01 d | 0.36 ± 0.01 d | 0.64 ± 0.05 b | 0.35 ± 0.02 d | 0.6 ± 0.02 bc | 0.78 ± 0.07 a |
2-Heptanone | K3 | 896 | 0.28 ± 0.01 d | 1.05 ± 0.05 b | ND | 0.63 ± 0.06 c | ND | ND | ND | 1.18 ± 0.06 a | ND |
Furans | |||||||||||
DMMF | F1 | 1068 | ND | 9.29 ± 0.14 b | ND | 7.99 ± 0.01 c | ND | 10.04 ± 0.07 a | 3.96 ± 0.19 e | 10.28 ± 0.38 a | 4.41 ± 0.08 d |
DMHF | F2 | 1070 | ND | ND | ND | ND | ND | 0.33 ± 0.00 a | 0.17 ± 0.02 b | 0.07 ± 0.00 c | ND |
trans-Linalool oxide (furanoid) | F3 | 1095 | 1.04 ± 0.06 c | 1.42 ± 0.00 b | 1.62 ± 0.12 a | 0.81 ± 0.04 d | 0.60 ± 0.06 e | 1.10 ± 0.09 c | 0.80 ± 0.03 d | 0.90 ± 0.07 d | 1.38 ± 0.12 b |
Terpenoids | |||||||||||
Linalool | T2 | 1109 | 9.39 ± 0.19 c | 2.32 ± 0.20 d | 0.31 ± 0.02 f | 1.26 ± 0.07 e | ND | 17.08 ± 0.18 b | ND | 17.51 ± 0.27 a | ND |
(E)-Nerolidol | T3 | 1576 | 0.35 ± 0.01 e | 3.88 ± 0.21 b | ND | 1.95 ± 0.05 c | ND | 34.31 ± 0.3 a | 00.51 ± 0.02 de | 0.65 ± 0.04 d | ND |
(Z)-Nerolidol | T4 | 1589 | ND | 3.8 ± 0.17 c | ND | 1.91 ± 0.09 cd | ND | 34.31 ± 3.23 a | 0.51 ± 0.03 d | 23.17 ± 1.64 b | ND |
Lactones | |||||||||||
γ-Dodecalactone | L1 | 1691 | ND | 0.56 ± 0.04 b | 0.22 ± 0.00 d | 0.57 ± 0.04 b | 0.05 ± 0 f | 0.93 ± 0.02 a | 0.14 ± 0.00 e | 0.90 ± 0.07 a | 0.28 ± 0.01 c |
Relative Odor Activity Value | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Code | Threshold (μg/Kg) | Odor Descriptor | CK 0 | CK 15 | MAP1 15 | 1-MCP 15 | 1-MCP + MAP1 15 | CK 15 + 2 | MAP1 15 + 2 | 1-MCP 15 + 2 | 1-MCP + MAP1 15 + 2 |
E1 | 1 | sweet fruity pineapple waxy green banana | 0 | 18.693 | 8.148 | 26.589 | 12.295 | 110.081 | 8.28 | 70.638 | 9.369 |
E2 | 55 | fruity dry musty sweet wintergreen | 0 | 0 | 0.018 | 0 | 0.016 | 0.069 | 0.031 | 0.057 | 0.041 |
E4 | 8 | fresh green sweet fruity banana apple grassy | 0 | 1.507 | 1.286 | 2.145 | 1.526 | 1.731 | 0.401 | 1.784 | 0.243 |
E5 | 2 | fruity green apple banana sweet | 2.452 | 79.835 | 56.139 | 64.518 | 65.724 | 65.014 | 17.22 | 60.767 | 26.25 |
E8 | 200 | waxy green sweet orange aldehydic vegetable herbal | 0.001 | 0.001 | 0 | 0.001 | 0 | 0.004 | 0 | 0.008 | 0 |
E9 | 2 | sweet floral fruity jasmin fresh | 0.095 | 0.199 | 0.127 | 0.366 | 0.192 | 3.291 | 1.299 | 1.56 | 2 |
E10 | 250 | green sweet fruity apple waxy soapy | 0 | 0.013 | 0 | 0.01 | 0 | 0 | 0 | 0.012 | 0 |
E11 | 15 | green fruity apricot ripe banana cortex orchid fermented | 0.007 | 0.145 | 0 | 0.12 | 0 | 0 | 0 | 0 | 0 |
E12 | 1.6 | fruity wine waxy sweet apricot banana brandy pear | 0 | 0 | 0.379 | 0 | 0.449 | 10.177 | 0.473 | 2.996 | 1.389 |
E13 | 12 | green earthy mushroom herbal waxy | 0 | 0 | 0 | 0 | 0.021 | 0.039 | 0 | 0.037 | 0 |
E15 | 19 | green waxy apple pear banana grape | 0 | 0.014 | 0 | 0.015 | 0 | 0 | 0 | 0.035 | 0 |
E16 | 19 | floral rose sweet honey fruity tropical | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.036 | 0 | 0.027 |
E18 | 781 | green natural cognac herbal waxy clean | 0 | 0.001 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 |
E19 | 5 | sweet waxy fruity apple grape oily brandy | 0 | 0 | 0.011 | 0.004 | 0.008 | 0.419 | 0.01 | 0.031 | 0.049 |
E20 | 17 | sweet balsam fruity spicy powdery berry plum | 0 | 0.053 | 0.115 | 0.067 | 0.11 | 2.455 | 0.585 | 0.328 | 1.327 |
E23 | 1 | fruity juicy fruit pineapple cognac | 0 | 0 | 12.718 | 0 | 0 | 28.473 | 14.183 | 18.569 | 10.423 |
E24 | 43 | sweet fruity estery ether pineapple ripe | 0 | 0.007 | 0 | 0.009 | 0 | 0.003 | 0 | 0.012 | 0 |
E25 | 2 | acrylate | 0 | 0 | 0.197 | 0 | 0.199 | 0.047 | 0.78 | 0 | 0.773 |
E26 | 0.01 | sharp sweet green apple fruity | 0 | 0 | 377.778 | 0 | 607.692 | 1340.541 | 442.683 | 136.207 | 153.846 |
E27 | 0.15 | sweet fruity banana solvent | 0 | 5.985 | 21.698 | 18.452 | 38.462 | 39.459 | 78.374 | 37.126 | 34.359 |
E29 | 0.01 | ethereal fruity banana pear banana apple | 0 | 201.136 | 80.556 | 125 | 64.103 | 124.324 | 57.317 | 112.069 | 41.538 |
E31 | 10 | fruity pineapple ether | 0.103 | 1.235 | 0.055 | 1.141 | 0.097 | 0.37 | 0 | 2.01 | 0.041 |
E33 | 520 | fresh fruity green apple fatty | 0 | 0 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 |
A1 | 0.3 | fresh cucumber fatty green herbal banana waxy green leaf | 5.317 | 11.098 | 1.019 | 2.083 | 1.068 | 0 | 0.732 | 1.034 | 0.59 |
A2 | 320 | strong sharp sweet bitter almond cherry | 0.016 | 0.042 | 0.02 | 0.036 | 0.019 | 0.02 | 0.014 | 0.021 | 0.024 |
A5 | 4.5 | fresh green fatty aldehydic grass leafy fruity sweaty | 9.952 | 7.348 | 2.826 | 6.956 | 4.687 | 6.327 | 3.152 | 5.655 | 2.316 |
A6 | 1 | waxy aldehydic rose fresh orris orange peel fatty peely | 16.349 | 17.511 | 5.449 | 15.036 | 7.256 | 14.608 | 6.061 | 15.759 | 8.485 |
A7 | 0.5 | fresh citrus green cucumber melon | 0.667 | 1.909 | 2.083 | 2.179 | 2.051 | 1.135 | 0.854 | 2.241 | 1.492 |
A8 | 0.1 | fatty green waxy cucumber melon | 8.016 | 17.273 | 25.046 | 20.536 | 23.846 | 11.486 | 7.195 | 20.69 | 11.154 |
A9 | 1 | sweet aldehydic waxy orange peel citrus floral | 0.778 | 0.852 | 0.62 | 0.964 | 0.782 | 1.392 | 0.659 | 2.034 | 0.869 |
A10 | 0.062 | fatty melon waxy green violet leaf cucumber tropical fruit chicken fat | 0 | 4.032 | 1.419 | 0 | 3.722 | 0 | 0 | 0 | 0 |
A12 | 0.3 | orange sweet fresh citrus fatty green | 1.005 | 1.78 | 2.824 | 3.095 | 2.179 | 1.937 | 0.772 | 1.494 | 0.872 |
A13 | 0.03 | waxy soapy floral aldehydic citrus green fatty fresh laundry | 3.439 | 0 | 0 | 0 | 8.12 | 0 | 5.285 | 0 | 4.103 |
A15 | 0.1 | soapy waxy aldehydic citrus green floral | 1.349 | 2.841 | 1.389 | 3.036 | 1.795 | 0 | 1.707 | 3.966 | 2.769 |
A16 | 30 | sweet almond fruity green leafy apple plum vegetable | 0.014 | 0.834 | 0.251 | 1.067 | 0.378 | 0.275 | 0.146 | 0 | 0.185 |
A17 | 3 | fresh aldehydic fatty green herbal wine-lee ozone | 0.265 | 0.261 | 0.097 | 0.262 | 0.175 | 0.239 | 0.179 | 0.328 | 0.174 |
H13 | 2 | pungent dry tarry | 0.242 | 0.54 | 0.31 | 0.625 | 0.532 | 0.561 | 0.409 | 0.19 | 0.142 |
H14 | 530 | 0.002 | 0.009 | 0.003 | 0.011 | 0.008 | 0.004 | 0.003 | 0.002 | 0.001 | |
AL2 | 100 | floral rose phenolic balsamic | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0.003 | 0.007 |
AL4 | 359 | green cortex leafy green bean nasturtium herbal soapy aldehydic narcissus phenolic | 0.024 | 0 | 0 | 0 | 0 | 0.006 | 0.011 | 0.009 | 0.039 |
AC1 | 35 | sour fatty sweat cheese | 0.186 | 0.203 | 0.038 | 0.817 | 0.045 | 0.399 | 0 | 0.802 | 0 |
AC2 | 1000 | fatty waxy rancid oily vegetable cheesy | 0.001 | 0.003 | 0 | 0.002 | 0 | 0 | 0 | 0.003 | 0 |
AC3 | 3000 | waxy dirty cheese cultured dairy | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 |
K1 | 0.005 | herbal mushroom earthy musty dirty | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
F1 | 0.04 | sweet moldy mushroom vegetable potato burnt sugar nut skin wasabi caramellic fruity brandy | 0 | 263.92 | 0 | 356.696 | 0 | 339.189 | 120.732 | 443.103 | 84.808 |
F2 | 0.03 | sweet cotton candy caramel strawberry sugar | 0 | 0 | 0 | 0 | 0 | 14.865 | 6.911 | 4.023 | 0 |
F3 | 60 | floral | 0.014 | 0.027 | 0.013 | 0.024 | 0.013 | 0.025 | 0.016 | 0.026 | 0.018 |
T1 | 10 | terpene pine herbal peppery | 0 | 0.003 | 0.002 | 0.002 | 0.003 | 0 | 0 | 0 | 0 |
T2 | 0.22 | citrus floral sweet bois de rose woody green blueberry | 33.874 | 11.983 | 0.652 | 10.227 | 0 | 104.914 | 0 | 137.226 | 0 |
T3 | 10 | floral green waxy citrus woody | 0.028 | 0.441 | 0 | 0.348 | 0 | 4.636 | 0.062 | 0.112 | 0 |
L1 | 0.43 | fatty peach sweet metallic fruity | 0 | 1.48 | 0.237 | 2.367 | 0.149 | 2.923 | 0.397 | 3.609 | 0.501 |
Sour | Sweet | Ripe Fruit Smell | Aroma Persistence | Alcoholic Smell | Acceptability | |
---|---|---|---|---|---|---|
CK0 | 8.67 ± 0.58 a | 4.67 ± 1.15 b | 6 ± 1 ab | 6 ± 1 b | 4 ± 0 b | 7.33 ± 1.53 a |
CK15 | 6.67 ± 0.58 b | 7.67 ± 0.58 a | 7.67 ± 0.58 a | 7.33 ± 0.58 ab | 7 ± 1.73 a | 8 ± 0 a |
MAP1 15 | 7 ± 1 a | 6.67 ± 0.58 ab | 7 ± 1 ab | 7 ± 1 ab | 7 ± 0 a | 6.33 ± 0.58 a |
1-MCP 15 | 6.33 ± 0.58 b | 7 ± 1.73 ab | 6.67 ± 0.58 ab | 7 ± 1 ab | 6.67 ± 1.53 a | 7 ± 1 a |
1-MCP + MAP1 15 | 6.33 ± 1.53 b | 7.67 ± 1.53 a | 7.33 ± 1.15 a | 8 ± 1 a | 7 ± 2 a | 8.33 ± 1.15 a |
CK15 + 2 | 5.67 ± 0.58 b | 7 ± 1.73 ab | 7 ± 0 ab | 7 ± 0 ab | 8.33 ± 1.53 a | 6.67 ± 1.15 a |
MAP1 15 + 2 | 6.33 ± 1.53 b | 5.67 ± 1.53 ab | 5.33 ± 1.15 b | 7 ± 1 ab | 8.67 ± 1.15 a | 6.67 ± 1.15 a |
1-MCP 15 + 2 | 6 ± 1 b | 5.33 ± 1.53 ab | 5.33 ± 1.53 b | 6.33 ± 1.15 ab | 9 ± 1 a | 6.33 ± 1.15 a |
1-MCP + MAP1 15 + 2 | 6.67 ± 1.53 b | 7 ± 1 ab | 7 ± 0 ab | 7.33 ± 1.53 ab | 7 ± 1 a | 7 ± 1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Xu, M.; Liu, J.; Kan, J.; Zhang, M.; Xiao, L.; Yang, X.; Qi, X.; Qian, C. Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis. Foods 2025, 14, 2936. https://doi.org/10.3390/foods14172936
Gu Y, Xu M, Liu J, Kan J, Zhang M, Xiao L, Yang X, Qi X, Qian C. Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis. Foods. 2025; 14(17):2936. https://doi.org/10.3390/foods14172936
Chicago/Turabian StyleGu, Yukang, Minghui Xu, Jun Liu, Juan Kan, Man Zhang, Lixia Xiao, Xiaodong Yang, Xiaohua Qi, and Chunlu Qian. 2025. "Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis" Foods 14, no. 17: 2936. https://doi.org/10.3390/foods14172936
APA StyleGu, Y., Xu, M., Liu, J., Kan, J., Zhang, M., Xiao, L., Yang, X., Qi, X., & Qian, C. (2025). Combined Effects of 1-MCP and Modified Atmosphere Packaging on Flavor Quality and Volatile Profile of Cold-Stored Strawberries Revealed by Untargeted GC-MS Analysis. Foods, 14(17), 2936. https://doi.org/10.3390/foods14172936