Inhibitory Effect of Honeysuckle (Lonicera japonica Thunb.) Extract on the Melanosis and Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) During Cold Storage
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Shrimp Preparation
2.3. Extraction of PPO from the Cephalothoraxes of Shrimps
2.4. Determination of PPO Inhibition
2.5. Determination of Copper-Chelating Activity
2.6. Melanosis Score
2.7. Melanosis Evaluation
2.8. Total Viable Count (TVC) Analyses
2.9. Determination of Total Volatile Base Nitrogen
2.10. Determination of Thiobarbituric Acid Reactive Substances
2.11. Liquid Chromatography–Mass Spectrometry (LC-MS) Identification of LJT Extract
2.12. Sensory Evaluation
2.13. Statistical Analysis
3. Results
3.1. Analysis of Composition Substances in LJT
3.2. PPO Inhibitory Activity by LJT Extract
3.3. Copper-Chelating Activity by LJT Extract
3.4. Changes in Shrimp Melanosis
3.5. Changes in the Microbiology of Shrimp
3.6. Changes in the TVB-N of Shrimp
3.7. Changes in the TBARSs of Shrimp
3.8. Sensory Analysis
3.9. Principal Component Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, Q.; Chen, Y.L.; Lin, D.Q.; Yang, R.Q.; Cao, K.Y.; Zhang, L.J.; Liu, Y.M.; Sun, L.C.; Cao, M.J. Expression of polyphenol oxidase of Litopenaeus vannamei and its characterization. Food Chem. 2024, 432, 137258. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Das, J.; Mishra, H.N. A comprehensive review of the spoilage of shrimp and advances in various indicators/sensors for shrimp spoilage monitoring. Food Res. Int. 2023, 173, 113270. [Google Scholar] [CrossRef]
- Shiekh, K.A.; Benjakul, S.; Sae-Leaw, T. Effect of Chamuang (Garcinia cowaRoxb.) leaf extract on inhibition of melanosis and quality changes of Pacific white shrimp during refrigerated storage. Food Chem. 2019, 270, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Sae-Leaw, T.; Benjakul, S. Prevention of melanosis in crustaceans by plant polyphenols: A review. Trends Food Sci. Technol. 2019, 85, 1–9. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L.A.; Madan, V. Clinical effects of sulphite additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef]
- Galvão, J.A.; Vazquez-Sanchez, D.; Yokoyama, V.A.; Savay-Da-Silva, L.K.; Brazaca, S.G.C.; Oetterer, M. Effect of 4-hexylresorcinol and sodium metabisulphite on spoilage and melanosis inhibition in Xiphopenaeus Kroyeri shrimps. J. Food Process. Preserv. 2017, 41, 1745–4549. [Google Scholar] [CrossRef]
- Rahman, A.; Kang, S.C. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb. Food Chem. 2009, 116, 670–675. [Google Scholar] [CrossRef]
- Mei, X.G.; Lu, Y.P.; Zhang, L.; Kang, C.Z.; Cui, Y.Y.; Zhang, L.X.; Wang, J.H.; Song, Z.Q. Widely targeted metabolomics bridges the sensory characteristics and bioactive components of three typical Lonicera japonica flower tea. Food Chem. 2025, 24, 144009. [Google Scholar] [CrossRef]
- T/CCCMHPIE 1.11-2016; Honeysuckle Extract Powder. China Chamber of Commerce of Import & Export of Medicines & Health Products: Beijing, China, 2016.
- GB/T 43808-2024; Honeysuckle Dry Extract. Standardization Administration of China (SAC): Beijing, China, 2024.
- Bermúdez-Medranda, A.E.; Panta-Vélez, R.P. Effects of 4-hexilresorcinol and sodium metabisulfite on melanosis in fresh shrimps (Penaeus vannamei). Rev. Bio Cienc. 2019, 6, e465. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Benjakul, S. Effect of ferulic acid on inhibition of polyphenoloxidase and quality changes of Pacific white shrimp (Litopenaeus vannamei) during iced storage. Food Chem. 2009, 116, 323–331. [Google Scholar] [CrossRef]
- Sae-Leaw, T.; Benjakul, S. Prevention of quality loss and melanosis of pacific white shrimp by cashew leaf extracts. Food Control 2019, 95, 257–266. [Google Scholar] [CrossRef]
- Kimbuathong, N.; Leelaphiwat, P.; Harnkarnsujarit, N. Inhibition of melanosis and microbial growth in Pacific white shrimp (Litopenaeus vannamei) using high CO2 modified atmosphere packaging. Food Chem. 2019, 312, 126114. [Google Scholar] [CrossRef]
- Ge, L.L.; Xie, Q.J.; Jiang, Y.Y.; Xiao, L.; Wan, H.Q.; Zhou, B.P.; Wu, S.P.; Tian, J.; Zeng, X.B. Genus Lonicera: New drug discovery from traditional usage to modern chemical and pharmacological research. Phytomedicine 2022, 96, 153889. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.H.; Li, S.H.; Wang, W.; Hong, Y.P.; Tang, K.J.; Luo, Q.S. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. leaves. Food Chem. 2013, 138, 327–333. [Google Scholar] [CrossRef]
- Dung, N.T.; Bajpai, V.K.; Rahman, A.; Yoon, J.I.; Kang, S.C. Phenolic contents, antioxidant and tyrosinase inhibitory activities of Lonicera japonica thumb. J. Food Biochem. 2010, 35, 148–160. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhu, S.; Liu, Q.; Zhang, Y.Q. Spectrum-effect relationship study between HPLC fingerprints and antioxidant of honeysuckle extract. Biomed. Chromatogr. 2019, 33, e4583. [Google Scholar] [CrossRef]
- Yuan, Y.; Jin, W.L.; Nazir, Y.; Fercher, C.; Blaskovich, M.A.T.; Cooper, M.A.; Barnard, R.T.; Ziora, Z.M. Tyrosinase inhibitors as potential antibacterial agents. Eur. J. Med. Chem. 2019, 187, 111892. [Google Scholar] [CrossRef]
- Nilesh, P.N.; Soottawat, B. Melanosis and quality changes of pacific white shrimp (Litopenaeus vannamei) treated with Catechin during iced storage. J. Agric. Food Chem. 2009, 57, 3578–3586. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochemistry 2003, 68, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.A.; Riley, P.A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorganic Med. Chem. 2014, 22, 2388–2395. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, X.; Tao, G.J.; Chen, J.; Zheng, Z.P. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem. 2017, 223, 40–48. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Xiong, Z.Q.; Zou, L.Q.; Chen, J.; Liu, J.P.; Zhong, J.Z. Different modes of inhibition for organic acids on polyphenoloxidase. Food Chem. 2016, 199, 439–446. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Li, Y.K.; Xie, L.; Liu, K.; Li, X.F.; Xie, F. Bioactive components and beneficial bioactivities of flowers, stems, leaves of Lonicera japonica thunberg: A review. Biochem. Syst. Ecol. 2023, 106, 104570. [Google Scholar] [CrossRef]
- Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem. 2021, 15, 113744. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.P.; Benjakul, S.; Ahmad, M.; Arfat, Y.A.; Panichayupakaranant, P. Undesirable enzymatic browning in crustaceans: Causative effects and its inhibition by phenolic compounds. Crit. Rev. Food Sci. Nutr. 2015, 55, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.P.; Oscar, M.A.; Montero, P.; Maríadel, C.G.G. Characterisation and tissue distribution of polyphenol oxidase of deepwater pink shrimp (Parapenaeus Longirostris). Food Chem. 2009, 112, 104–111. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Hu, J.K.; Hao, Y.B.; Xiang, X.W.; Yang, H.C.; Zheng, B.; Xiao, J.X. Kinetic analysis of the inhibitory effect of 4-Hexylresorcinol and ascorbic acid on polyphenoloxidase from Solenocera crassicornis. Food Sci. 2019, 40, 69–74. [Google Scholar] [CrossRef]
- Jiang, H.W.; Zhou, L.; Wang, Y.; Liu, G.X.; Peng, S.F.; Yu, W.Z.; Tian, Y.Q.; Liu, J.P.; Liu, W. Inhibition of cinnamic acid and its derivatives on polyphenol oxidase: Effect of inhibitor carboxyl group and system pH. Int. J. Biol. Macromol. 2024, 259, 129285. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Wang, L.; Zou, X.Y.; Song, R. Electrospun film polyvinyl alcohol/chitosan loaded with cinnamon essential oil and inhibitory effects on polyphenol oxidase and dominant spoilage bacteria from Pacific white shrimp. Food Hydrocoll. 2024, 156, 110372. [Google Scholar] [CrossRef]
- Byun, M.W.; Joa, C.; Jeonb, T.W.; Hong, C.H. Effects of gamma irradiation on color characteristics and biological activities of extracts of Lonicera japonica (Japanese honeysuckle) with methanol and acetone. LWT-Food Sci. Technol. 2004, 37, 29–33. [Google Scholar] [CrossRef]
- Arias, E.; González, J.; Oria, R.; Lopez-Buesa, P. Ascorbic Acid and 4-Hexylresorcinol effects on Pear PPO and PPO Catalyzed Browning Reaction. J. Food Sci. 2007, 72, C422–C429. [Google Scholar] [CrossRef]
- Yang, L.L.; Cheng, J.H.; Cui, K.B.; Shen, X.H.; Liu, J.; Zhou, X.Q.; Sun, J.; Guo, S.Z.; Chen, Q.; Zhu, X.; et al. Inhibition of enzymatic browning in freeze-thawed apricot fruit by combined chlorogenic acid and osmotic dehydration treatments. LWT-Food Sci. Technol. 2024, 198, 116066. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Tan, S.L.D.; Shiekh, K.A.; Benjakul, S.; Nirmal, N.P. Ethanolic guava leaf extracts with different chlorophyll removal processes: Anti-melanosis, antibacterial properties and the impact on qualities of Pacific white shrimp during refrigerated storage. Food Chem. 2021, 341, 128251. [Google Scholar] [CrossRef]
- Peng, S.Y.; Wei, H.M.; Zhan, S.N.; Yang, W.G.; Lou, Q.M.; Deng, S.G.; Yu, X.X.; Huang, T. Spoilage mechanism and preservation technologies on the quality of shrimp: An overview. Trends Food Sci. Technol. 2022, 129, 233–243. [Google Scholar] [CrossRef]
- Sharma, H.J. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci. Technol. 2021, 107, 130–149. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, M.J. Antibacterial activity and mechanism of Luteolin on Staphylococcus aureus. J. Microbiol. 2010, 50, 1180–1184. [Google Scholar] [CrossRef]
- Punia, B.S.; Kajla, P.; Chaudhary, V.; Sharma, N.; Ozogul, F. Luteolin: A flavone with myriads of bioactivities and food applications. Food Biosci. 2023, 52, 102366. [Google Scholar] [CrossRef]
- Qian, Y.F.; Yang, S.P.; Xie, J. Antibacterial activity of 4-hexylresorcinol against three spoilage bacteria in culture and its effect on the quality of pacific white shrimp. Food Sci. 2017, 28, 21–29. [Google Scholar] [CrossRef]
- Kim, S.H.; Jung, E.J.; Hong, D.L.; Lee, S.E.; Lee, Y.B.; Cho, S.; Kim, S.B. Quality assessment and acceptability of whiteleg shrimp (Litopenaeus vannamei) using biochemical parameters. Fish. Aquat. Sci. 2020, 23, 21. [Google Scholar] [CrossRef]
- Jia, S.L.; Liu, Y.M.; Zhuang, S.; Sun, X.H.; Li, Y.; Hong, H.; Lv, Y.M.; Luo, Y.K. Effect of ε-polylysine and ice storage on microbiota composition and quality of Pacific white shrimp (Litopenaeus vannamei) stored at 0 °C. Food Microbiol. 2019, 83, 27–35. [Google Scholar] [CrossRef]
- Hou, M.X.; Zhong, X.W.; Zheng, O.Y.; Sun, Q.X.; Liu, S.C.; Liu, M.X. Innovations in seafood freshness quality: Non-destructive detection of freshness in Litopenaeus vannamei using the YOLO-shrimp model. Food Chem. 2024, 463, 141192. [Google Scholar] [CrossRef] [PubMed]
- Khaledian, S.; Basir, S.; Shekarforoush, S.S. Shelf-life extension of pacific white shrimp using tragacanth gum-based coatings containing persian lime peel (Citrus latifolia) extract. LWT-Food Sci. Technol. 2021, 141, 110937. [Google Scholar] [CrossRef]
- Farajzadeh, F.; Motamedzadegan, A.; Shahidi, S.A.; Hamzeh, S. The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control. 2016, 67, 163–170. [Google Scholar] [CrossRef]
- Do, D.T.B.; Bui, T.H.; Phan, D.T.A. Persea Americana Mill seed extracts: Understanding insights into the antioxidant and antityrosinase activities and effects on preserving qualities of whiteleg shrimp (Litopenaus vannamei) during refrigerated storage. Food Chem. 2022, 373, 131469. [Google Scholar] [CrossRef]
- Basiri, S.; Shekarforoush, S.S.; Aminlari, M.; Akbari, S. The effect of pomegranate peel extract (PPE) on the polyphenol oxidase (PPO) and quality of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage. LWT-Food Sci. Technol. 2015, 60, 1025–1033. [Google Scholar] [CrossRef]
- Raeisi, M.; Tajik, H.; Aliakbarlu, J.; Mirhosseini, S.H.; Hosseini, S. Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Sci. Technol. 2015, 64, 898–904. [Google Scholar] [CrossRef]
- Nilsuwan, K.; Benjakul, S.; Prodpran, T. Properties and antioxidative activity of fish gelatin-based film incorporated with epigallocatechin gallate. Food Hydrocoll. 2018, 80, 212–221. [Google Scholar] [CrossRef]
- Gordon, M.H. The development of oxidative rancidity in foods. In Antioxidants in Food; Pokorny, J., Yanishlieva, N., Gordon, M., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2001; pp. 7–21. [Google Scholar]
- Gokoglu, N.; Gumus, B.; Ceylan, A.; Gokoglu, M. Storage in ice incorporated antimelanotic agent and its effects on melanosis and quality of giant red shrimp (Aristaeomorpha foliacea). Food Biosci. 2022, 46, 101599. [Google Scholar] [CrossRef]
NO. | Identified Compound | Formula | M/W | RT | RC% | Cat |
---|---|---|---|---|---|---|
1 | 1-Caffeoylquinic acid | C16H18O9 | 354.095 | 5.46 | 4.37 | Phenolic acids |
2 | Cryptochlorogenic acid | C16H18O9 | 354.309 | 5.44 | 1.88 | |
3 | Isochlorogenic acid C | C25H24O12 | 516.451 | 7.05 | 1.62 | |
4 | Chlorogenic acid | C16H18O9 | 354.31 | 5.40 | 1.59 | |
5 | Quinic acid | C7H12O6 | 192.17 | 1.00 | 1.46 | |
6 | Neochlorogenic acid | C16H18O9 | 354.309 | 4.879 | 1.43 | |
7 | Isochlorogenic acid B | C25H24O12 | 516.451 | 6.77 | 1.26 | |
8 | 4,5-DCQA isochlorogenic acid C | C25H24O12 | 516.458 | 6.93 | 1.03 | |
9 | Isochlorogenic acid A | C25H24O12 | 516.451 | 6.91 | 0.78 | |
10 | 1,5-Dicaffeoylquinic acid | C25H24O12 | 516.458 | 6.89 | 0.70 | |
11 | Cynarin | C25H24O12 | 516.458 | 6.89 | 0.66 | |
12 | Peonidin O-hexoside | C22H23O11 | 463.123 | 6.80 | 0.61 | |
13 | 1-O-Gentisoyl-D-glucoside | C13H16O9 | 316.079 | 4.56 | 0.28 | |
14 | 3-O-p-Coumaroylquinic acid | C16H18O8 | 338.1 | 5.92 | 0.25 | |
15 | Caffeic acid | C9H8O4 | 180.16 | 5.80 | 0.13 | |
16 | Protocatechuic acid | C7H6O4 | 154.12 | 4.57 | 0.06 | |
17 | 4-O-p-Coumaroylquinic acid | C16H18O8 | 338.1 | 5.93 | 0.04 | |
18 | 1-O-Feruloyl quinic acid | C17H20O9 | 368.1 | 6.23 | 0.03 | |
19 | Catechol | C6H6O2 | 110.11 | 5.29 | 0.02 | |
20 | 3,4-Dihydroxybenzaldehyde | C7H6O3 | 138.12 | 5.31 | 0.01 | |
21 | Ferulic acid | C10H10O4 | 194.19 | 6.88 | 0.01 | |
23 | Kaempferol-3-O-rutinoside | C27H30O15 | 594.526 | 6.51 | 2.14 | Flavonols and flavonols |
24 | Cyanidin O-rutinoside | C27H31O15 | 595.52 | 6.66 | 2.02 | |
25 | Lonicerin | C27H30O15 | 594.526 | 6.73 | 1.97 | |
26 | Luteolin 7-O-glucoside | C21H20O11 | 448.38 | 6.66 | 1.80 | |
27 | Kaempferol7-O-beta-D-glucopyranoside | C21H20O11 | 448.377 | 6.65 | 1.71 | |
28 | D-Pyroglutamic acid | C5H7NO3 | 129.114 | 1.62 | 1.64 | |
29 | Kaempferol 3-O-robinobioside | C27H30O15 | 594.159 | 6.55 | 1.62 | |
30 | Trifolin | C21H20O11 | 448.101 | 6.62 | 1.55 | |
31 | Chrysoeriol 7-O-hexoside | C22H22O11 | 448.4 | 7.20 | 1.55 | |
32 | Luteolin-4′-O-glucoside | C21H20O11 | 448.101 | 6.80 | 1.48 | |
33 | Homoplantaginin | C22H22O11 | 462.403 | 7.19 | 1.42 | |
34 | Chrysoeriol 7-O-rutinoside | C28H32O15 | 608.545 | 6.94 | 1.37 | |
35 | Chrysoeriol 5-O-hexoside | C22H22O11 | 462.404 | 7.18 | 1.34 | |
36 | Sophoricoside | C21H20O10 | 432.38 | 7.04 | 1.16 | |
37 | Neodiosmin | C28H32O15 | 608.545 | 7.12 | 1.07 | |
38 | Resokaempferol 7-O-hexoside | C21H20O10 | 434.4 | 7.08 | 0.91 | |
39 | Rhoifolin | C27H30O14 | 578.52 | 6.94 | 0.91 | Flavonols and flavonols |
40 | Isorhoifolin | C27H30O14 | 578.52 | 6.84 | 0.88 | |
41 | Rutin | C27H30O16 | 610.518 | 6.45 | 0.61 | |
42 | Kaempferol-3-gentiobioside | C27H30O16 | 610.525 | 6.28 | 0.36 | |
43 | Gallocatechin-gallocatechin | C30H26O14 | 610.2 | 6.24 | 0.25 | |
44 | Chrysoeriol O-hexosyl-O-pentoside | C27H30O15 | 594.526 | 7.10 | 0.22 | |
45 | Chalcone | C15H12O | 208.255 | 6.47 | 0.22 | |
46 | Tricin 5-O-hexoside | C23H24O12 | 492.43 | 7.19 | 0.18 | |
47 | Apigenin O-hexosyl-O-pentoside | C26H28O14 | 564.1 | 6.83 | 0.14 | |
48 | Diosmetin | C16H12O6 | 300.26 | 8.91 | 0.13 | |
49 | Luteolin | C15H10O6 | 286.24 | 8.06 | 0.13 | |
50 | Tricin 7-O-hexoside | C23H24O12 | 492.436 | 7.63 | 0.10 | |
51 | Malvidin 3-O-galactoside | C23H25O12 | 493 | 7.63 | 0.07 | |
52 | Delphinidin 3-O-rutinoside | C27H31O16 | 611.5 | 6.35 | 0.05 | |
53 | P-Hydroxy-cinnamic acid | C9H8O3 | 164.16 | 6.53 | 0.10 | |
54 | trans-3,5-dimethoxy-4-hydroxycinnamaldehyde | C11H12O4 | 208.211 | 6.49 | 0.05 | Cinnamic acids and derivatives |
55 | 2-Hydroxycinnamate | C9H8O3 | 164.047 | 6.48 | 0.05 | |
56 | p-coumaric acid | C9H8O3 | 164.16 | 6.55 | 0.05 | |
57 | Ferulaldehyde | C10H10O3 | 178.185 | 7.53 | 0.04 | |
58 | 2-Methylcinnamic acid | C10H10O2 | 162.185 | 5.53 | 0.04 | |
59 | Hydroxycinnamate | C9H8O3 | 164.158 | 5.54 | 0.03 | |
60 | Cinnamic acid | C9H8O2 | 148.16 | 0.87 | 0.03 | |
61 | Isoacteoside | C29H36O15 | 624.595 | 6.44 | 0.03 | |
62 | Caffeic acid O-glucoside | C15H18O9 | 342 | 5.38 | 0.02 | |
63 | Sinapinic acid | C11H12O5 | 224.21 | 6.87 | 0.02 | |
64 | 3,5-Dihydroxybenzoic acid | C7H6O4 | 154.12 | 4.46 | 0.21 | Benzoic acids and derivatives |
65 | 2,6-Dihydroxybenzoic acid | C7H6O4 | 154.12 | 6.13 | 0.07 | |
66 | Terephthalic acid | C8H6O4 | 166.13 | 5.80 | 0.04 | |
67 | Dibutyl phthalate | C16H22O4 | 278.152 | 13.42 | 0.04 | |
68 | Gallic acid O-hexoside | C13H16O10 | 332 | 4.13 | 0.03 | |
69 | 2,3-Dihydroxybenzoic acid | C7H6O4 | 154.027 | 6.21 | 0.03 | |
70 | Succinic acid | C4H6O4 | 118.09 | 1.94 | 2.63 | Other small molecule organic acid and its derivatives |
71 | Citric acid | C6H8O7 | 192.12 | 1.52 | 1.45 | |
72 | L(-)-Malic acid | C4H6O5 | 134.022 | 1.08 | 1.29 | |
73 | Isocitrate | C6H8O7 | 192.124 | 1.49 | 1.24 | |
74 | Methylmalonate | C4H6O4 | 118.09 | 1.94 | 1.09 | |
75 | D-threo-isocitric acid | C6H8O7 | 192.124 | 1.41 | 0.48 | |
76 | D-Xylonic acid | C5H10O6 | 166.048 | 0.9 | 0.47 | |
77 | Lactic acid | C3H6O3 | 90.078 | 1.48 | 0.26 | |
78 | Punicic acid | C18H30O2 | 278.3 | 12.65 | 0.20 | |
79 | Glutaric acid | C5H8O4 | 132.115 | 0.70 | 0.16 | |
80 | Dimethylmalonic acid | C5H8O4 | 132.042 | 0.67 | 0.16 | |
81 | Oxalacetic acid | C4H4O5 | 132.07 | 0.69 | 0.14 | |
82 | D-Galactonic acid | C6H12O7 | 196.155 | 0.92 | 0.12 | |
83 | 4-Hydroxy-2-oxoglutaric Acid | C5H6O6 | 162.098 | 0.70 | 0.12 | |
84 | N-(2-Hydroxyethyl)iminodiacetic acid | C6H11NO5 | 177.155 | 1.02 | 0.11 |
Storage Time (d) | Sample | Appearance | Odor | Color | Muscle Morphology | Texture | Taste | Overall |
---|---|---|---|---|---|---|---|---|
0 | Control | 9.87 ± 0.13 Aa | 9.87 ± 0.13 Aa | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 9.53 ± 0.27 Aa | 10.00 ± 0.00 Aa |
LJT | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 9.27 ± 0.27 Aa | 10.00 ± 0.00 Aa | |
4-HR | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 10.00 ± 0.00 Aa | 9.67 ± 0.33 Aa | 9.87 ± 0.07 Aa | 9.13 ± 0.59 Aa | 10.00 ± 0.00 Aa | |
3 | Control | 7.20 ± 0.31 Bb | 7.53 ± 0.37 Bb | 6.53 ± 0.07 Bb | 8.53 ± 0.07 Ba | 7.27 ± 0.35 Bb | 7.87 ± 0.13 Ba | 6.60 ± 0.31 Bb |
LJT | 8.53 ± 0.07 Ba | 8.80 ± 0.12 Ba | 7.67 ± 0.18 Ba | 8.27 ± 0.13 Ba | 8.33 ± 0.18 Ba | 8.13 ± 0.18 Ba | 8.13 ± 0.13 Ba | |
4-HR | 8.67 ± 0.13 Ba | 8.47 ± 0.18 Ba | 7.93 ± 0.13 Ba | 8.20 ± 0.20 Ba | 8.07 ± 0.68 Bab | 8.00 ± 0.20 Ba | 8.13 ± 0.13 Ba | |
6 | Control | 6.27 ± 0.24 Cb | 7.07 ± 0.52 Ba | 5.53 ± 0.18 Bb | 7.13 ± 0.48 Cb | 6.73 ± 0.24 Bb | 6.80 ± 0.35 Cab | 6.33 ± 0.18 Bb |
LJT | 6.87 ± 0.33 Cab | 7.47 ± 0.29 Ca | 6.80 ± 0.35 Ba | 7.87 ± 0.07 Ba | 7.80 ± 0.20 Ba | 7.60 ± 0.31 Ba | 7.27 ± 0.18 Ca | |
4-HR | 7.20 ± 0.42 Ca | 7.53 ± 0.29 Ca | 6.93 ± 0.29 Ba | 7.60 ± 0.12 Bab | 7.07 ± 0.27 Cab | 6.47 ± 0.24 Cb | 6.80 ± 0.46 Cab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, O.; Chen, H.; Jia, X.; Liu, Y.; Sun, Q.; Wang, Z.; Liu, S. Inhibitory Effect of Honeysuckle (Lonicera japonica Thunb.) Extract on the Melanosis and Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) During Cold Storage. Foods 2025, 14, 2928. https://doi.org/10.3390/foods14172928
Zheng O, Chen H, Jia X, Liu Y, Sun Q, Wang Z, Liu S. Inhibitory Effect of Honeysuckle (Lonicera japonica Thunb.) Extract on the Melanosis and Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) During Cold Storage. Foods. 2025; 14(17):2928. https://doi.org/10.3390/foods14172928
Chicago/Turabian StyleZheng, Ouyang, Huijie Chen, Xiaoye Jia, Yamei Liu, Qinxiu Sun, Zefu Wang, and Shucheng Liu. 2025. "Inhibitory Effect of Honeysuckle (Lonicera japonica Thunb.) Extract on the Melanosis and Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) During Cold Storage" Foods 14, no. 17: 2928. https://doi.org/10.3390/foods14172928
APA StyleZheng, O., Chen, H., Jia, X., Liu, Y., Sun, Q., Wang, Z., & Liu, S. (2025). Inhibitory Effect of Honeysuckle (Lonicera japonica Thunb.) Extract on the Melanosis and Quality Deterioration of Pacific White Shrimp (Litopenaeus vannamei) During Cold Storage. Foods, 14(17), 2928. https://doi.org/10.3390/foods14172928