Novel Blueberry Leaf Polysaccharide–Xanthan Gum Composite Gels for Curcumin Encapsulation: Enhanced Stability and Controlled Release
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of BLP-XG Composite Gel Loaded with Curcumin
2.3. Determining the Properties of the BLP-XG Composite Gel
2.4. Encapsulation of Curcumin by BLP-XG Composite Gel
2.5. Simulated Gastrointestinal Release
2.6. UV-Light Protection of Curcumin
2.7. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and Potential Analysis
3.2. FT-IR Analysis
3.3. Scanning Electron Microscopy Analysis of BLP and Composite Gel
3.4. Physical and Chemical Properties of the BLP-XG Composite Gel
3.5. Rheological Analysis
3.6. Morphology of the Composite Gel
3.7. Analysis of Curcumin Encapsulation Efficiency
3.8. Study of Simulated Gastrointestinal Controlled Release
3.9. Ultraviolet Irradiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saffarionpour, S.; Diosady, L.L. Delivery of curcumin through colloidal systems and its applications in functional foods. Curr. Opin. Food Sci. 2022, 43, 155–162. [Google Scholar] [CrossRef]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. [Google Scholar] [CrossRef]
- Sagar, M.V.; Maryam, V.; Hossaini, A.S.; Hesam, D.; Ali, Z.; Ali, D.; Samareh, F.H.; Reza, M. Next-generation hydrogels as biomaterials for biomedical applications: Exploring the role of curcumin. ACS Omega 2023, 8, 8960–8976. [Google Scholar] [CrossRef] [PubMed]
- Kristýna, O.; Barbora, L.; Lubomír, L.; Shweta, G.; Tomáš, V.; Li, P. Physico-chemical study of curcumin and its application in O/W/O multiple emulsion. Foods 2023, 12, 1394. [Google Scholar] [CrossRef]
- Guo, H.; Feng, Y.; Deng, Y.; Yan, T.; Liang, Z.; Zhou, Y.; Zhang, W.; Xu, E.; Liu, D.; Wang, W. Continuous flow modulates zein nanoprecipitation solvent environment to obtain colloidal particles with high curcumin loading. Food Hydrocoll. 2023, 134, 108089. [Google Scholar] [CrossRef]
- Du, M.; Lu, W.; Zhang, Y.; Analucia, M.; Fang, Y. Natural polymer-sourced interpenetrating network hydrogels: Fabrication, properties, mechanism and food applications. Trends Food Sci. Technol. 2021, 116, 342–356. [Google Scholar] [CrossRef]
- Salehi, M.; Rashidinejad, A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int. J. Biol. Macromol. 2025, 290, 138855. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Goda, E.S.; Abdallah, H.M.; Abdel-Aziz, M.M.; Gamal, H. Green engineering of TMC-CMS nanoparticles decorated graphene sheets for targeting M. tuberculosis. Carbohydr. Polym. 2023, 303, 120443. [Google Scholar] [CrossRef]
- Rakshit, P.; Giri, T.K.; Mukherjee, K. Research progresses on carboxymethyl xanthan gum: Review of synthesis, physicochemical properties, rheological characterization and applications in drug delivery. Int. J. Biol. Macromol. 2024, 266, 131122. [Google Scholar] [CrossRef]
- Abu Elella, M.H.; Goda, E.S.; Gab-Allah, M.A.; Hong, S.E.; Pandit, B.; Lee, S.; Gamal, H.; Rehman, A.U.; Yoon, K.R. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. J. Environ. Chem. Eng. 2021, 9, 104702. [Google Scholar] [CrossRef]
- Bejenariu, A.; Popa, M.; Dulong, V.; Picton, L.; Le Cerf, D. Trisodium trimetaphosphate crosslinked xanthan networks: Synthesis, swelling, loading and releasing behaviour. Polym. Bull. 2009, 62, 525–538. [Google Scholar] [CrossRef]
- Hou, Y.; Zhao, J.; Yin, J.; Nie, S. Structural properties of Bletilla striata polysaccharide and the synergistic gelation of polysaccharide and xanthan gum. Food Hydrocoll. 2023, 142, 108843. [Google Scholar] [CrossRef]
- Amici, E.; Clark, A.H.; Normand, V.; Johnson, N.B. Interpenetrating network formation in agarose–sodium gellan gel composites. Carbohydr. Polym. 2001, 46, 383–391. [Google Scholar] [CrossRef]
- Guo, Q.; Cui, S.; Wang, Q.; Douglas Goff, H.; Smith, A. Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocoll. 2009, 23, 1542–1547. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, D.; Zhang, Y.; Chen, S.; Yang, X.; Zhu, R.; Wang, C. A novel polysaccharide from blueberry leaves: Extraction, structural characterization, hypolipidemic and hypoglycaemic potentials. Food Chem. 2024, 460, 140493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Ge, Y.; Hu, Y.; Zhu, R.; Yang, X.; Chen, S.; Peng, H.; Wang, C. Blueberry leaf polysaccharide/gelatin composite gel: Preparation, characterization, and formation mechanism. Int. J. Biol. Macromol. 2025, 304, 141020. [Google Scholar] [CrossRef]
- Gupta, S.; Ghoshal, G. Plant protein hydrogel as a delivery system of curcumin: Characterization and in vitro release Kinetics. Food Bioprod. Process. 2024, 143, 66–79. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, W.; He, Q. The gelation properties of tara gum blended with κ-carrageenan or xanthan. Food Hydrocoll. 2018, 77, 764–771. [Google Scholar] [CrossRef]
- Chen, J.; Huang, H.; Chen, Y.; Xie, J.; Song, Y.; Chang, X.; Liu, S.; Wang, Z.; Hu, X.; Yu, Q. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT 2020, 131, 109818. [Google Scholar] [CrossRef]
- Hui, H.; Gao, W. Physicochemical features and antioxidant activity of polysaccharides from Herba Patriniae by gradient ethanol precipitation. Arab. J. Chem. 2022, 15, 103770. [Google Scholar] [CrossRef]
- Zhang, R.; Tao, Y.; Xu, W.; Xiao, S.; Du, S.; Zhou, Y.; Hasan, A. Rheological and controlled release properties of hydrogels based on mushroom hyperbranched polysaccharide and xanthan gum. Int. J. Biol. Macromol. 2018, 120, 2399–2409. [Google Scholar] [CrossRef]
- Qiao, D.; Huang, Y.; Zhao, G.; Zhang, Y.; Hou, X.; Zhang, B.; Jiang, F. Small and large oscillatory shear behaviors of gelatin/starch system regulated by amylose/amylopectin ratio. Food Hydrocoll. 2023, 142, 108780. [Google Scholar] [CrossRef]
- Su, Z.; Han, C.; Liu, E.; Zhang, F.; Liu, B.; Meng, X. Formation, characterization and application of arginine-modified chitosan/γ-poly glutamic acid nanoparticles as carrier for curcumin. Int. J. Biol. Macromol. 2021, 168, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liu, J.; Zhou, Y.; Huang, X.; Liu, F.; Pan, S.; Hu, H. Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. IInnov. Food Sci. Emerg. Technol. 2016, 34, 205–213. [Google Scholar] [CrossRef]
- Qu, R.; Wang, Y.; Li, D.; Wang, L. Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr. Polym. 2021, 274, 118660. [Google Scholar] [CrossRef]
- Jin, W.; Song, R.; Xu, W.; Wang, Y.; Li, J.; Shah, B.R.; Li, Y.; Li, B. Analysis of deacetylated konjac glucomannan and xanthan gum phase separation by film forming. Food Hydrocoll. 2015, 48, 320–326. [Google Scholar] [CrossRef]
- Chen, H.; Shan, Z.; Woo, M.; Chen, X. Preparation and characteristic of gelatine/oxidized corn starch and gelatin/corn starch blend microspheres. Int. J. Biol. Macromol. 2017, 94, 326–334. [Google Scholar] [CrossRef]
- Shi, J.; Cui, Y.; Zhou, G.; Li, N.; Sun, X.; Wang, X.; Xu, N. Covalent interaction of soy protein isolate and chlorogenic acid: Effect on protein structure and functional properties. LWT 2022, 170, 114081. [Google Scholar] [CrossRef]
- Zhang, G.; Bi, X.; Wang, R.; Yin, Z.; Zheng, Y.; Peng, X.; Jia, N.; Liu, D. Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil–water interface. Food Chem. 2024, 442, 138478. [Google Scholar] [CrossRef]
- Le, X.; Turgeon, S.L. Textural and waterbinding behaviors of β-lactoglobulin-xanthan gum electrostatic hydrogels in relation to their microstructure. Food Hydrocoll. 2015, 49, 216–223. [Google Scholar] [CrossRef]
- Salleh, M.S.N.; Ali, R.R.; Shameli, K.; Hamzah, M.Y.; Kasmani, R.M.; Nasef, M.M. Interaction insight of pullulan-mediated gamma-irradiated silver nanoparticle synthesis and its antibacterial activity. Polymers 2021, 13, 3578. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Kunzek, H.; Dongowski, G. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocoll. 2007, 21, 1101–1112. [Google Scholar] [CrossRef]
- Xie, W.; Du, Y.; Yuan, S.; Pang, J. Dihydromyricetin incorporated active films based on konjac glucomannan and gellan gum. Int. J. Biol. Macromol. 2021, 180, 385–391. [Google Scholar] [CrossRef]
- Fitzsimons, S.M.; Tobin, J.T.; Morris, E.R. Synergistic binding of konjac glucomannan to xanthan on mixing at room temperature. Food Hydrocoll. 2007, 22, 36–46. [Google Scholar] [CrossRef]
- Reinoso, D.; Martín-Alfonso, M.J.; Luckham, P.F.; Martínez-Boza, F.J. Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydr. Polym. 2018, 203, 103–109. [Google Scholar] [CrossRef]
- Li, Z.; Deng, H.; Jiang, J.; He, Z.; Li, D.; Ye, X.; Chen, Y.; Hu, Y.; Huang, C. Effect of hydrothermal treatment on the rheological properties of xanthan gum. Int. J. Biol. Macromol. 2024, 270, 132229. [Google Scholar] [CrossRef]
- Wang, H.; Ke, L.; Ding, Y.; Rao, P.; Xu, T.; Huan, H.; Zhou, J.; Ding, W.; Shang, X. Effect of calcium ions on rheological properties and structure of Lycium barbarum L. polysaccharide and its gelation mechanism. Food Hydrocoll. 2022, 122, 107079. [Google Scholar] [CrossRef]
- Sun, C.; Xu, C.; Mao, L.; Wang, D.; Yang, J.; Gao, Y. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem. 2017, 228, 656–667. [Google Scholar] [CrossRef]
BLP Concentration | Dn (nm) | Dv (nm) | PDI |
---|---|---|---|
0% | 964.7 ± 11.2 | 1398.7 ± 18.5 | 0.451 ± 0.004 |
0.5% | 395.8 ± 6.0 | 437.6 ± 5.9 | 0.107 ± 0.002 |
1.0% | 259.7 ± 3.4 | 275.6 ± 3.9 | 0.059 ± 0.001 |
1.5% | 552.3 ± 5.4 | 601.5 ± 6.8 | 0.089 ± 0.001 |
2.0% | 578.6 ± 6.8 | 622.4 ± 7.2 | 0.075 ± 0.001 |
2.5% | 429.8 ± 5.8 | 464.5 ± 6.5 | 0.081 ± 0.001 |
Wavenumbers (cm−1) | Transmittance (%) | |||||
---|---|---|---|---|---|---|
0% BLP | 0.5% BLP | 1.0% BLP | 1.5% BLP | 2.0% BLP | 2.5% BLP | |
3344 | 85.31 | 85.98 | 83.46 | 89.25 | 90.62 | 86.71 |
2909 | 92.87 | 92.70 | 92.19 | 94.56 | 94.92 | 93.11 |
1726 | 92.51 | 92.33 | 91.09 | 93.78 | 93.78 | 91.84 |
1605 | 82.24 | 82.85 | 79.77 | 86.31 | 86.31 | 81.87 |
1405 | 85.82 | 85.72 | 83.22 | 88.16 | 88.08 | 84.42 |
1371 | 86.29 | 85.93 | 83.52 | 88.35 | 88.27 | 84.66 |
1028 | 57.65 | 58.67 | 52.66 | 69.90 | 65.65 | 57.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, X.; Zhang, Y.; Li, X.; Ge, Y.; Lan, W.; Yang, L. Novel Blueberry Leaf Polysaccharide–Xanthan Gum Composite Gels for Curcumin Encapsulation: Enhanced Stability and Controlled Release. Foods 2025, 14, 2825. https://doi.org/10.3390/foods14162825
Wang C, Liu X, Zhang Y, Li X, Ge Y, Lan W, Yang L. Novel Blueberry Leaf Polysaccharide–Xanthan Gum Composite Gels for Curcumin Encapsulation: Enhanced Stability and Controlled Release. Foods. 2025; 14(16):2825. https://doi.org/10.3390/foods14162825
Chicago/Turabian StyleWang, Chuyan, Xiaoying Liu, Yan Zhang, Xiaomin Li, Yuanfei Ge, Wei Lan, and Liuqing Yang. 2025. "Novel Blueberry Leaf Polysaccharide–Xanthan Gum Composite Gels for Curcumin Encapsulation: Enhanced Stability and Controlled Release" Foods 14, no. 16: 2825. https://doi.org/10.3390/foods14162825
APA StyleWang, C., Liu, X., Zhang, Y., Li, X., Ge, Y., Lan, W., & Yang, L. (2025). Novel Blueberry Leaf Polysaccharide–Xanthan Gum Composite Gels for Curcumin Encapsulation: Enhanced Stability and Controlled Release. Foods, 14(16), 2825. https://doi.org/10.3390/foods14162825