Interaction Between Bovine Serum Albumin and Trans-Resveratrol: Multispectroscopic Approaches and Molecular Dynamics Simulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. UV Absorption
2.4. Fluorescence Spectroscopy
2.5. CD Spectroscopy
2.6. Binding Site Determination
2.7. Molecular Dynamics
2.8. Statistical Analysis
3. Results and Discussion
3.1. UV Absorption Spectroscopy
3.2. Fluorescence Emission
3.3. Fluorescence Quenching Mechanism
3.4. BSA Conformation Analysis
3.4.1. Synchronous Fluorescence Spectroscopy
3.4.2. Three-Dimensional Fluorescence Spectroscopy
3.5. CD Spectroscopy
3.6. Binding Site of BSA
3.7. Molecular Dynamic Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sales, J.M.; Resurreccion, A.V. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr. 2014, 54, 734–770. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, E.; Somoza, V. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 2005, 49, 472–481. [Google Scholar] [CrossRef] [PubMed]
- King, R.E.; Bomser, J.A.; Min, D.B. Bioactivity of Resveratrol. Compr. Rev. Food Sci. Food Saf. 2006, 5, 65–70. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xu, J.; Song, X.; Jia, R.; Yin, Z.; Cheng, A.; Jia, R.; Zou, Y.; Li, L.; Yin, L.; et al. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antivir. Res. 2016, 130, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H.B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxidative Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef] [PubMed]
- Moshawih, S.; Basria Mydin, R.; Kalakotla, S.; Jarrar, Q.B. Potential application of resveratrol in nanocarriers against cancer: Overview and future trends. J. Drug Deliv. Sci. Technol. 2019, 53, 101187. [Google Scholar] [CrossRef]
- Miguel, C.A.; Noya-Riobó, M.V.; Mazzone, G.L.; Villar, M.J.; Coronel, M.F. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem. Int. 2021, 150, 105188. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Lúcio, M.; Martins, S.; Lima, J.L.; Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 2013, 8, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Wang, J.; Guo, R.; Feng, X.; Ge, Y.; Liu, H.; Agyei, D.; Wang, Q. Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties. J. Funct. Foods 2021, 87, 104717. [Google Scholar] [CrossRef]
- Dai, T.; Li, R.; Liu, C.; Liu, W.; Li, T.; Chen, J.; Kharat, M.; McClements, D.J. Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study. Food Hydrocoll. 2019, 97, 105234. [Google Scholar] [CrossRef]
- Wu, B.; Li, Y.; Li, Y.; Li, H.; Li, L.; Xia, Q. Encapsulation of resveratrol-loaded Pickering emulsions in alginate/pectin hydrogel beads: Improved stability and modification of digestive behavior in the gastrointestinal tract. Int. J. Biol. Macromol. 2022, 222, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Tian, M.; Deng, L.; Jiang, H.; Han, J.; Zhen, C.; Huang, L.; Liu, W. Structural degradation and uptake of resveratrol-encapsulated liposomes using an in vitro digestion combined with Caco-2 cell absorption model. Food Chem. 2023, 403, 133943. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Fatima, S.; Ahmed, S.; Tabish, M. Biophysical and molecular modelling analysis of the binding of β-resorcylic acid with bovine serum albumin. Food Hydrocoll. 2023, 135, 108175. [Google Scholar] [CrossRef]
- Qi, X.; Xu, D.; Zhu, J.; Wang, S.; Peng, J.; Gao, W.; Cao, Y. Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques. Food Hydrocoll. 2021, 113, 106513. [Google Scholar] [CrossRef]
- Ameen, F.; Siddiqui, S.; Jahan, I.; Nayeem, S.M.; Rehman, S.; Tabish, M. A detailed insight into the interaction of memantine with bovine serum albumin: A spectroscopic and computational approach. J. Mol. Liq. 2020, 303, 112671. [Google Scholar] [CrossRef]
- Qashqoosh, M.T.A.; Alahdal, F.A.M.; Manea, Y.K.; Zakariya, S.M.; Naqvi, S. Synthesis, characterization and spectroscopic studies of surfactant loaded antiulcer drug into Chitosan nanoparticles for interaction with bovine serum albumin. Chem. Phys. 2019, 527, 110462. [Google Scholar] [CrossRef]
- Cheng, H.; Fang, Z.; Wusigale; Bakry, A.M.; Chen, Y.; Liang, L. Complexation of trans- and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin. Food Hydrocoll. 2018, 81, 242–252. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ameen, F.; Kausar, T.; Nayeem, S.M.; Ur Rehman, S.; Tabish, M. Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119296. [Google Scholar] [CrossRef] [PubMed]
- Kou, S.B.; Lin, Z.Y.; Wang, B.L.; Shi, J.H.; Liu, Y.X. Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. J. Mol. Struct. 2021, 1224, 129024. [Google Scholar] [CrossRef]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 1976, 12, 1052–1061. [Google Scholar] [PubMed]
- Kandagal, P.B.; Seetharamappa, J.; Ashoka, S.; Shaikh, S.M.T.; Manjunatha, D.H. Study of the interaction between doxepin hydrochloride and bovine serum albumin by spectroscopic techniques. Int. J. Biol. Macromol. 2006, 39, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Tajmir-Riahi, H.A.; Subirade, M. Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromolecules 2008, 9, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Azimi, O.; Emami, Z.; Salari, H.; Chamani, J. Probing the Interaction of Human Serum Albumin with Norfloxacin in the Presence of High-Frequency Electromagnetic Fields: Fluorescence Spectroscopy and Circular Dichroism Investigations. Molecules 2011, 16, 9792–9818. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 2005, 1751, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, P.; Kanakis, C.D.; Tarantilis, P.; Pollissiou, M.G.; Tajmir-Riahi, H.A. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B 2010, 114, 3348–3354. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Sun, H.; Liu, X.; Xu, Y.; Wang, J.; Xu, H.; Zhao, Z.; Wu, Z.; Zheng, M.; Zhou, Y.; et al. Exploration of the effect of ultrasound treatment on starch-theanine-EGCG complexes based on multi-scale structure and prediction of the interaction by density functional theory calculations. Food Chem. X 2025, 28, 102571. [Google Scholar] [CrossRef] [PubMed]
T (K) | KSV (×104 M−1) | Kq (×1012 M−1 s−1) | R2 (Correlation Coefficient) |
---|---|---|---|
298 | 5.01 (±0.09) | 5.01 (±0.09) | 0.994 |
308 | 4.57 (±0.07) | 4.57 (±0.07) | 0.992 |
318 | 3.99 (±0.03) | 3.99 (±0.03) | 0.998 |
Complex | van der Waals Energy | Coul Energy | Polar Solvation Energy | SASA Energy | ΔG |
---|---|---|---|---|---|
BSA–Res | −133.52 | −21.64 | −82.07 | −20.69 | −19.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Guo, M.; Xie, C.; Xue, Y.; Zhang, J.; Zhang, D.; Duan, Z. Interaction Between Bovine Serum Albumin and Trans-Resveratrol: Multispectroscopic Approaches and Molecular Dynamics Simulation. Foods 2025, 14, 2536. https://doi.org/10.3390/foods14142536
Li X, Guo M, Xie C, Xue Y, Zhang J, Zhang D, Duan Z. Interaction Between Bovine Serum Albumin and Trans-Resveratrol: Multispectroscopic Approaches and Molecular Dynamics Simulation. Foods. 2025; 14(14):2536. https://doi.org/10.3390/foods14142536
Chicago/Turabian StyleLi, Xiujuan, Mimi Guo, Chenxia Xie, Yalin Xue, Junhui Zhang, Dong Zhang, and Zhangqun Duan. 2025. "Interaction Between Bovine Serum Albumin and Trans-Resveratrol: Multispectroscopic Approaches and Molecular Dynamics Simulation" Foods 14, no. 14: 2536. https://doi.org/10.3390/foods14142536
APA StyleLi, X., Guo, M., Xie, C., Xue, Y., Zhang, J., Zhang, D., & Duan, Z. (2025). Interaction Between Bovine Serum Albumin and Trans-Resveratrol: Multispectroscopic Approaches and Molecular Dynamics Simulation. Foods, 14(14), 2536. https://doi.org/10.3390/foods14142536