Numerical Study for Efficient Cooling of Perishable Food Products During Storage: The Case of Tomatoes
Abstract
1. Introduction
- Literature review on the impact of packaging configurations on product cooling performance
- Computational Fluid Dynamics
- Our contribution
2. Methodology
2.1. Geometry Description
2.2. Governing Equations
2.2.1. Airflow Model
- (A)
- Conservation of mass (continuity equation [30])
- (B)
- Conservation of momentum (Navier-Stockes equation [30])
2.2.2. Energy Conservation
2.3. Boundary Conditions
2.4. Numerical Procedure
2.5. Performance Metrics
3. Results and Discussion
3.1. Airflow Pattern
3.2. Temperature Distribution
3.2.1. Effect of Vent Configuration on the Cooling Performance
3.2.2. Influence of the Top Boundary Condition
4. Discussion on Thermal Heterogeneity Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, C.J.; Han, J.W.; Yang, X.T.; Qian, J.P.; Fan, B.L. A review of computational fluid dynamics for forced-air cooling process. Appl. Energy 2016, 168, 314–331. [Google Scholar] [CrossRef]
- Blumenthal, K.; Evans, J.; Kitinoja, L.; McCarney, S.; Sasidharan, K.; Verschoor, J.; Vrba, J.; Cortella, G.; Tait, J. Walk-In Cold Rooms, a Practitioner’S Technical Guide: Design and Operation of Walk-In Cold Rooms for Precooling and Storage of Fresh Produce in Hot Climates, in Off-Grid and Unreliable Grid Situations; Efficiency for Access: Washington, DC, USA, 2023. [Google Scholar]
- Tokala, V.Y.; Mohammed, M. Cold Chain Management for the Fresh Produce Industry in the Developing World; Taylor & Francis Group: Abingdon, UK, 2021. [Google Scholar]
- Han, J.W.; Ren, Q.S.; Li, J.C.; Zhu, W.Y.; Yang, X.T. Numerical analysis of coupled heat and mass transfer processes in packaged tomatoes throughout the cold chain. Case Stud. Therm. Eng. 2023, 42, 102687. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.; Li, J.; Zhang, Z. Numerical Analysis of Air Supply Alternatives for Forced-Air Precooling of Agricultural Produce. Sustainability 2024, 16, 3119. [Google Scholar] [CrossRef]
- Dehghannya, J.; Ngadi, M.; Vigneault, C. Mathematical modeling of airflow and heat transfer during forced convection cooling of produce considering various package vent areas. Food Control 2011, 22, 1393–1399. [Google Scholar] [CrossRef]
- Dehghannya, J.; Ngadi, M.; Vigneault, C. Simultaneous aerodynamic and thermal analysis during cooling of stacked spheres inside ventilated packages. Chem. Eng. Technol. 2008, 31, 1651–1659. [Google Scholar] [CrossRef]
- Han, J.W.; Qian, J.P.; Zhao, C.J.; Yang, X.T.; Fan, B.L. Mathematical modelling of cooling efficiency of ventilated packaging: Integral performance evaluation. Int. J. Heat Mass Transf. 2017, 111, 386–397. [Google Scholar] [CrossRef]
- Agyeman, E.K.K.; Duret, S.; Flick, D.; Laguerre, O.; Moureh, J. Computational modelling of airflow and heat transfer during cooling of stacked tomatoes: Optimal crate design. Energies 2023, 16, 2048. [Google Scholar] [CrossRef]
- Ilangovan, A.; Curto, J.; Gaspar, P.D.; Silva, P.D.; Alves, N. CFD Modelling of the thermal performance of fruit packaging boxes—influence of vent-holes design. Energies 2021, 14, 7990. [Google Scholar] [CrossRef]
- Nasser eddine, A.; Duret, S.; Flick, D.; Laguerre, O.; Sdiri, I.; Moureh, J. Heat transfer within a multi-package: Assessing the impact of package design on the cooling of strawberries. J. Food Eng. 2024, 382, 112190. [Google Scholar] [CrossRef]
- Coorey, R.; Ng, D.S.H.; Jayamanne, V.S.; Buys, E.M.; Munyard, S.; Mousley, C.J.; Njage, P.M.; Dykes, G.A. The impact of cooling rate on the safety of food products as affected by food containers. Compr. Rev. Food Sci. Food Saf. 2018, 17, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Nasser Eddine, A.; Duret, S.; Moureh, J. Interactions between Package design, airflow, heat and mass transfer, and logistics in cold chain facilities for horticultural products. Energies 2022, 15, 8659. [Google Scholar] [CrossRef]
- Wu, W.; Häller, P.; Cronjé, P.; Defraeye, T. Full-scale experiments in forced-air precoolers for citrus fruit: Impact of packaging design and fruit size on cooling rate and heterogeneity. Biosyst. Eng. 2018, 169, 115–125. [Google Scholar] [CrossRef]
- Ferrua, M.; Singh, R. Modeling the forced-air cooling process of fresh strawberry packages, Part I: Numerical model. Int. J. Refrig. 2009, 32, 335–348. [Google Scholar] [CrossRef]
- Delele, M.A.; Ngcobo, M.; Getahun, S.; Chen, L.; Mellmann, J.; Opara, U.L. Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part I: Model development and validation. Postharvest Biol. Technol. 2013, 86, 536–545. [Google Scholar] [CrossRef]
- Delele, M.A.; Ngcobo, M.; Getahun, S.; Chen, L.; Mellmann, J.; Opara, U.L. Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part II: Effect of package design. Postharvest Biol. Technol. 2013, 86, 546–555. [Google Scholar] [CrossRef]
- Pham, A.T.; Moureh, J.; Flick, D. Experimental characterization of heat transfer within a pallet of product generating heat. J. Food Eng. 2019, 247, 115–125. [Google Scholar] [CrossRef]
- Duret, S.; Hoang, H.M.; Flick, D.; Laguerre, O. Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products. Int. J. Refrig. 2014, 46, 17–25. [Google Scholar] [CrossRef]
- Wu, W.; Cronjé, P.; Verboven, P.; Defraeye, T. Unveiling how ventilated packaging design and cold chain scenarios affect the cooling kinetics and fruit quality for each single citrus fruit in an entire pallet. Food Packag. Shelf Life 2019, 21, 100369. [Google Scholar] [CrossRef]
- Wu, W.; Defraeye, T. Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains. Appl. Therm. Eng. 2018, 133, 407–417. [Google Scholar] [CrossRef]
- Wu, W.; Cronjé, P.; Nicolai, B.; Verboven, P.; Opara, U.L.; Defraeye, T. Virtual cold chain method to model the postharvest temperature history and quality evolution of fresh fruit–A case study for citrus fruit packed in a single carton. Comput. Electron. Agric. 2018, 144, 199–208. [Google Scholar] [CrossRef]
- Hoffmann, T.G.; Linke, M.; Praeger, U.; Sonawane, A.D.; Büchele, F.; Neuwald, D.A.; Jedermann, R.; Sturm, B.; Mahajan, P.V. Heat transfer in large bins during the apples cool-down process. Int. J. Refrig. 2025, 170, 60–69. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R.; Subudhi, S. Numerical modeling of forced-air pre-cooling of fruits and vegetables: A review. Int. J. Refrig. 2023, 145, 217–232. [Google Scholar] [CrossRef]
- Alexander, L.D.; Jakhar, S.; Dasgupta, M.S. Optimizing cold storage for uniform airflow and temperature distribution in apple preservation using CFD simulation. Sci. Rep. 2024, 14, 25402. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.D.; Jakhar, S.; Dasgupta, M.S. Influence of pallet height on energy consumption and cooling effectiveness in an apple cold storage. Sci. Rep. 2025, 15, 11534. [Google Scholar] [CrossRef] [PubMed]
- Aguenihanai, D.; Flick, D.; Duret, S.; Moureh, J. A hybrid numerical approach for characterising airflow and temperature distribution in a ventilated pallet of heat-generating products: Application to cheese. J. Food Eng. 2025, 387, 112323. [Google Scholar] [CrossRef]
- Śmierciew, K.; Kołodziejczyk, M.; Gagan, J.; Butrymowicz, D.J. Numerical simulations of fin and tube air cooler and heat and mass transfer in cold storage. Prog. Comput. Fluid Dyn. Int. J. 2018, 18, 325–332. [Google Scholar] [CrossRef]
- Alvarez, G.; Flick, D. Modelling turbulent flow and heat transfer using macro-porous media approach used to predict cooling kinetics of stack of food products. J. Food Eng. 2007, 80, 391–401. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M.; Street, M.L. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Dehghannya, J.; Ngadi, M.; Vigneault, C. Mathematical modeling procedures for airflow, heat and mass transfer during forced convection cooling of produce: A review. Food Eng. Rev. 2010, 2, 227–243. [Google Scholar] [CrossRef]
- Dehghannya, J.; Ngadi, M.; Vigneault, C. Transport phenomena modelling during produce cooling for optimal package design: Thermal sensitivity analysis. Biosyst. Eng. 2012, 111, 315–324. [Google Scholar] [CrossRef]
- Aguenihanai, D.; Flick, D.; Duret, S.; Dahmana, E.; Moureh, J. Impact of Mixed Convection on the Cooling Kinetics of Heat-Generating Products Within a Ventilated Pallet: Application to Cheese. Food Bioprocess Technol. 2025, 18, 3665–3684. [Google Scholar] [CrossRef]
- Laguerre, O.; Denis, A.; Bouledjeraf, N.; Duret, S.; Bertheau, E.D.; Moureh, J.; Aubert, C.; Flick, D. Heat transfer and aroma modeling of fresh fruit and vegetable in cold chain: Case study on tomatoes. Int. J. Refrig. 2022, 133, 133–144. [Google Scholar] [CrossRef]
- Greenshields, C.J.; Weller, H.G. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Limited: Reading, UK, 2022. [Google Scholar]
- COMSOL. Simulate Real-World Designs, Devices, and Processes with Multiphysics Software from COMSOL. 2025. Available online: https://www.comsol.com/ (accessed on 1 July 2025).
- Aguenihanai, D. Étude des Écoulements d’air et des Transferts de Chaleur en Régime Instationnaire au Sein d’une Palette de Produits qui Dégagent de la Chaleur tout au Long de la chaîne du Froid: Application au cas des Fromages. Ph.D. Thesis, Université Paris-Saclay, Paris, France, 2025. [Google Scholar]
Vent Configuration | Inlet Position | Outlet Position |
---|---|---|
One inlet–one outlet | 1 | 3’ |
One inlet–one outlet | 2 | 2’ |
Two inlets–two outlets | 1, 3 | 1’, 3’ |
Properties | Value |
---|---|
Specific heat, (J.kg−1.K−1) | 4100 |
Thermal conductivity, (W.m−1.K−1) | 0.519 |
Density, (kg.m−3) | 1013 |
Mesh Densities | Total No. of Elements | MEQ | AEQ | Element Area Ratio | Mesh Area |
---|---|---|---|---|---|
Fine | 6834 | 0.221 | 0.7865 | 9.571 × | 0.0864 (m2) |
Finer | 8589 | 0.1072 | 0.7982 | 1.108 × | 0.0864 (m2) |
Extremely fine | 110,662 | 0.2975 | 0.8702 | 1.161 × | 0.0864 (m2) |
Open top | Time constants | HCT | SECT | ||||
Pckg. Conf. | conf. 1 | conf. 2 | conf. 3 | conf. 1 | conf. 2 | conf. 3 | |
Times (min) | 231 | 210 | 146 | 874 | 744 | 519 | |
Insulated top | Time constants | HCT | SECT | ||||
Pckg. Conf. | conf. 1 | conf. 2 | conf. 3 | conf. 1 | conf. 2 | conf. 3 | |
Times (min) | 280 | 286 | 138 | 862 | 864 | 405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demafo, A.; Geletu, A.; Li, P. Numerical Study for Efficient Cooling of Perishable Food Products During Storage: The Case of Tomatoes. Foods 2025, 14, 2508. https://doi.org/10.3390/foods14142508
Demafo A, Geletu A, Li P. Numerical Study for Efficient Cooling of Perishable Food Products During Storage: The Case of Tomatoes. Foods. 2025; 14(14):2508. https://doi.org/10.3390/foods14142508
Chicago/Turabian StyleDemafo, Audrey, Abebe Geletu, and Pu Li. 2025. "Numerical Study for Efficient Cooling of Perishable Food Products During Storage: The Case of Tomatoes" Foods 14, no. 14: 2508. https://doi.org/10.3390/foods14142508
APA StyleDemafo, A., Geletu, A., & Li, P. (2025). Numerical Study for Efficient Cooling of Perishable Food Products During Storage: The Case of Tomatoes. Foods, 14(14), 2508. https://doi.org/10.3390/foods14142508