Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Inoculum and Substrate
2.2. Fermentation Conditions
2.3. Volatile Compounds Quantification by Gas Chromatography/Mass Spectrometry (GC/MS)
2.3.1. Chemical Standards and Reagents
2.3.2. Headspace Solid-Phase Microextraction
2.3.3. Chromatographic Conditions
2.4. Intensity of the Odor Perception of the Different VOCs
2.5. Statistical Analyses
2.5.1. Response Surface Methodology
2.5.2. Principal Component Analysis
2.5.3. Cluster Analysis
2.5.4. Comparison of Microbiological and Chemical Variables During Refrigerated Storage
3. Results and Discussion
3.1. Evolution of VOC Profiles During Successive Kefir Grain Passages
3.2. Effect of Shaking Rate and Inoculum Percentage on the Production of VOCs in the Kiwi-Based Drinks During Successive Kefir Grain Passages
3.3. Relationships Among the Microbiological, Chemical, and Volatile Odorant Compositions of Beverages from the Three Kefir Grain Passages
3.4. Microbiological and Chemical Analysis of Beverages Bev7-48 h and Bev3-72 h During 7, 14, 21, and 28 Days of Refrigerated Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mantzourani, I.; Nikolaou, A.; Kourkoutas, Y.; Alexopoulos, A.; Dasenaki, M.; Mastrotheodoraki, A.; Proestos, C.; Thomaidis, N.; Plessas, S. Chemical Profile Characterization of Fruit and Vegetable Juices after Fermentation with Probiotic Strains. Foods 2024, 13, 1136. [Google Scholar] [CrossRef]
- Alonso, E.; Torrado, A.; Pastrana, L.; Orriols, I.; Pérez-Guerra, N. Production and Characterization of Distilled Alcoholic Beverages Obtained by Solid-State Fermentation of Black Mulberry (Morus nigra L.) and Black Currant (Ribes nigrum L.). J. Agric. Food Chem. 2010, 58, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Alonso, E.; Torrado, A.; Pastrana, L.; Orriols, I.; Pérez-Guerra, N. Solid-State Fermentation of Red Raspberry (Rubus ideaus L.) and Arbutus Berry (Arbutus unedo L.) and Characterization of their Distillates. Food Res. Int. 2011, 44, 1419–1426. [Google Scholar] [CrossRef]
- Alonso, E.; Orriols, I.; Pastrana, L.; Pérez-Guerra, N. Production and Characterization of a Novel Distilled Alcoholic Beverage Produced from Blueberry (Vaccinium corymbosum L.). Fruits 2016, 71, 215–220. [Google Scholar] [CrossRef]
- Reddy, L.V.A.; Reddy, O.V.S. Effect of Fermentation Conditions on Yeast Growth and Volatile Composition of Wine Produced from Mango (Mangifera indica L.) Fruit Juice. Food Bioprod. Proc. 2011, 89, 487–491. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Chen, W.; Chen, H. Improving the Quality of Matured Coconut (Cocos nucifera Linn.) Water by Low Alcoholic Fermentation with Saccharomyces cerevisiae: Antioxidant and Volatile Profiles. J. Food Sci. Technol. 2018, 55, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M.A.; Erten, H.; Moschetti, G.; Settanni, L. Development of New Non-dairy Beverages from Mediterranean Fruit Juices Fermented with Water Kefir Microorganisms. Food Microbiol. 2016, 54, 40–51. [Google Scholar] [CrossRef]
- Corona, O.; Randazzo, W.; Miceli, A.; Guarcello, R.; Francesca, N.; Erten, H.; Moschetti, G.; Settanni, L. Characterization of Kefir-like Beverages Produced from Vegetable Juices. LWT-Food Sci. Technol. 2016, 66, 572–581. [Google Scholar] [CrossRef]
- Tzavaras, D.; Papadelli, M.; Ntaikou, I. From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. Fermentation 2022, 8, 135. [Google Scholar] [CrossRef]
- Bazán, D.L.; del Río, P.G.; Domínguez, J.M.; Cortés-Diéguez, S.; Mejuto, J.C.; Pérez-Guerra, N. The Chemical, Microbiological and Volatile Composition of Kefir–like Beverages Produced from Red Table Grape Juice in Repeated 24–h Fed–Batch Subcultures. Foods 2022, 11, 3117. [Google Scholar] [CrossRef] [PubMed]
- Bazán, D.L.; Del-Río, P.G.; Pérez-Guerra, N. Microbiological and Chemical Profiles of Kiwi Kefir-like Beverages Produced Using Different Agitation Speeds and Kefir Grain Weights. Foods 2025, 14, 1681. [Google Scholar] [CrossRef] [PubMed]
- Dikmetas, D.N.; Acar, E.G.; Ceylan, F.D.; Ilkadım, F.; Özer, H.; Karbancioglu-Guler, F. Functional Fermented Fruit Juice Production and Characterization by Using Water Kefir Grains. J. Food Sci. Technol. 2025. [Google Scholar] [CrossRef]
- Afonso, M.J.; Ramalhosa, E.; del Río, P.G.; Martins, F.; Baptista, P.; Pereira, E.L.; Guerra, N.P. Production of Nondairy Fermented Products with Chestnut Puree as Substrate and Milk Kefir Grains or Two Lactic Acid Bacteria. Food Sci. 2025, 90, e17474. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gu, F.; Ruan, H.; Chen, Q.; He, J.; He, G. Culture Conditions Optimization of Tibetan Kefir Grains by Response Surface Methodology. Proc. Eng. 2012, 37, 132–136. [Google Scholar] [CrossRef]
- Pop, C.; Apostu, S.; Salanţă, L.; Rotar, A.M.; Sindic, M.; Mabon, N.; Socaciu, C. Influence of Different Growth Conditions on the Kefir Grains Production, used in the Kefiran Synthesis. Bull. UASVM Food Sci. Technol. 2014, 71, 147–153. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sabokbar, N.; Moosavi-Nasab, M.; Khodaiyan, F. Preparation and Characterization of an Apple Juice and Whey Based Novel Beverage Fermented Using Kefir Grains. Food Sci. Biotechnol. 2015, 24, 2095–2104. [Google Scholar] [CrossRef]
- Apar, D.K.; Demirhan, E.; Özel, B.; Özbek, B. Kefir Grain Biomass Production: Influence of Different Culturing Conditions and Examination of Growth Kinetic Models. J. Food Proc. Eng. 2017, 40, e12332. [Google Scholar] [CrossRef]
- M’hir, S.; Mejri, K.R.; Ziadi, M.; Aloui, H.; Hamdi, M.; Ayed, L. Development of a Novel Whey Date Beverage Fermented with Kefir Grains Using Response Surface Methodology. J. Chem. 2019, 2019, 18058. [Google Scholar] [CrossRef]
- Aghlara, A.; Mustafa, S.; Manap, Y.A.; Mohamad, R. Characterization of Headspace Volatile Flavor Compounds Formed During Kefir Production: Application of Solid Phase Microextraction. Int. J. Food Prop. 2009, 12, 808–818. [Google Scholar] [CrossRef]
- Pérez-González, M.; Gallardo-Chacón, J.J.; Valencia-Flores, D.; Ferragut, V. Optimization of a Headspace SPME GC–MS Methodology for the Analysis of Processed Almond Beverages. Food Anal. Methods 2015, 8, 612–623. [Google Scholar] [CrossRef]
- Manousi, N.; Zachariadis, G.A. Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules 2019, 24, 3091. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Dong, N.; Zhang, Y.; Yang, B.; Wang, B.; Dai, Y.; Lin, X.; Dong, L.; Zhang, S. Metabolic Profiling of Wort Fermented with Water Kefir Grains and its Effect on Wort Quality. Food Biosc. 2024, 59, 104181. [Google Scholar] [CrossRef]
- Günther, C.S.; Matich, A.J.; Marsh, K.B.; Nicolau, L. Development of a Quantitative Method for Headspace Analysis of Methyl-sulfanyl-Volatiles from Kiwifruit Tissue. Food Res. Int. 2011, 44, 1331–1338. [Google Scholar] [CrossRef]
- Wan, X.M.; Stevenson, R.J.; Chen, X.D.; Melton, L.D. Application of Headspace Solid-phase Microextraction to Volatile Flavour Profile Development during Storage and Ripening of Kiwifruit. Food Res. Int. 1999, 32, 175–183. [Google Scholar] [CrossRef]
- Bazán, D.L.; Del-Río, P.G.; Cortés Diéguez, S.; Domínguez, J.M.; Pérez Guerra, N. Main Composition and Visual Appearance of Milk Kefir Beverages Obtained from Four Consecutive 24- and 48-h Batch Subcultures. Processes 2024, 12, 1419. [Google Scholar] [CrossRef]
- Pereira, R.; Resende, D.; Alencar, A.C.; de Abreu, L.R.; Ferreira, W. Survival of Kluyveromyces lactis and Torulaspora delbrueckii to Simulated Gastrointestinal Conditions and their Use as Single and Mixed Inoculum for Cheese Production. Food Res. Int. 2019, 125, 108620. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Xiao, Z. Evaluation of the Synergism Among Volatile Compounds in Oolong Tea Infusion by Odour Threshold with Sensory Analysis and E-nose. Food Chem. 2017, 221, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- de March, C.A.; Ryu, S.E.; Sicard, G.; Moon, C.; Golebiowski, J. Structure–odour Relationships Reviewed in the Postgenomic Era. Flavour Fragr. J. 2015, 30, 342–361. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Chen, W.; Zhong, Q.; Zhang, G.; Chen, W. Beneficial Effects of Tomato Juice Fermented by Lactobacillus plantarum and Lactobacillus casei: Antioxidation, Antimicrobial Effect, and Volatile Profiles. Molecules 2018, 23, 2366. [Google Scholar] [CrossRef] [PubMed]
- Arcari, G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot Red Wine and its Contribution to the Aroma: Optimization and Validation of Analytical Method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Quijano, C.E. Study of the Volatile Compounds from Plum (Prunus domestica L. cv. Horvin) and Estimation of their Contribution to the Fruit Aroma. Ciênc. Tecnol. Aliment. 2012, 32, 76–83. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Xu, F.; Wu, X.; Hu, W.; Chang, Y.; Zhang, L.; Chen, J.; Liu, C. GC-MS, GC-O and OAV Analyses of Key Aroma Compounds in Jiaozi Steamed Bread. Grain Oil Sci. Technol. 2020, 3, 9–17. [Google Scholar] [CrossRef]
- van Gemert, L.J. Odour Thresholds. Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Welke, J.E.; Nicolli, K.P.; Hernandes, K.C.; Biasoto, A.C.T.; Zini, C.A. Adaptation of an Olfactometric System in a GC-FID in Combination with GCxGC/MS to evaluate Odor-active Compounds of Wine. Food Chem. 2022, 370, 131004. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Osako, K.; Ohshima, T. Identification and Characterisation of Headspace Volatiles of Fish Miso, a Japanese Fish Meat Based Fermented Paste, with Special Emphasis on Effect of Fish Species and Meat Washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Durán-Guerrero, E.; Castro, R.; García-Moreno, M.d.V.; Rodríguez-Dodero, M.d.C.; Schwarz, M.; Guillén-Sánchez, D. Aroma of Sherry Products: A Review. Foods 2021, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A. Fenaroli’s Handbook of Flavour Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group LLC: Boca Raton, FL, USA, 2010. [Google Scholar]
- Schnabel, K.O.; Belitz, H.D.; von Ranson, C. Investigations on the Structure-activity Relationships of Odorous Substances. Part 1. Detection Thresholds and Odour Qualities of Aliphatic and Alicyclic Compounds Containing Oxygen Functions. Z. Lebensm. Unters. Forsch. 1988, 187, 215–223. [Google Scholar] [CrossRef]
- Li, B.; Gao, X.; Li, N.; Mei, J. Fermentation Process of Mulberry Juice-whey Based Tibetan Kefir Beverage Production. Czech J. Food Sci. 2018, 36, 494–501. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on Odour Thresholds of Key Food Aroma Compounds and Development of an Aroma Language based on Odour Qualities of defined Aqueous Odorant Solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz, C. Quantitative Analysis of Headspace Volatile Compounds using Comprehensive Two-dimensional Gas Chromatography and their Contribution to the Aroma of Chardonnay Wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Su, G.; Zhao, H.; Cai, Y.; Cui, C.; Sun-Waterhouse, D.; Zhao, M. Characterisation of Aroma Profiles of Commercial Soy Sauce by Odour Activity Value and Omission Test. Food Chem. 2015, 167, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Tandon, K.S.; Baldwin, E.A.; Shewfelt, R.L. Aroma Perception of Individual Volatile Compounds in Fresh Tomatoes (Lycopersicon esculentum, Mill.) as Affected by the Medium of Evaluation. Postharvest Biol. Technol. 2000, 20, 261–268. [Google Scholar] [CrossRef]
- Nicolotti, L.; Mall, V.; Schieberle, P. Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (SEBES)—An Approach To Use Artificial Intelligence in Determining Food Odor Codes. J. Agric. Food Chem. 2019, 67, 4011–4022. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.M.; Rodrigues, F.; Coutinho, P.; Delgadillo, I.; Coimbra, M.A. Volatile Composition of Baga Red Wine: Assessment of the Identification of the Would-be Impact Odourants. Anal. Chim. Acta 2004, 513, 257–262. [Google Scholar] [CrossRef]
- Dertli, E.; Çon, A.H. Microbial Diversity of Traditional Kefir Grains and their Role on Kefir Aroma. LWT-Food Sci. Technol. 2017, 85, 151–157. [Google Scholar] [CrossRef]
- Bingham, E.; Cohrssen, B.; Powell, C.H. Patty’s Toxicology, 5th ed.; John Wiley & Sons. Inc.: New York, NY, USA, 2001; Volume 6, p. 318. [Google Scholar]
- Dan, T.; Chen, H.; Li, T.; Tian, J.; Ren, W.; Zhang, H.; Sun, T. Influence of Lactobacillus plantarum P-8 on Fermented Milk Flavor and Storage Stability. Front. Microbiol. 2019, 9, 3133. [Google Scholar] [CrossRef] [PubMed]
- Reale, A.; Di Renzo, T.; Boscaino, F.; Nazzaro, F.; Fratianni, F.; Aponte, M. Lactic Acid Bacteria Biota and Aroma Profile of Italian Traditional Sourdoughs from the Irpinian Area in Italy. Front. Microbiol. 2019, 10, 1621. [Google Scholar] [CrossRef] [PubMed]
- Siebert, T.E.; Smyth, H.E.; Capone, D.L.; Neuwöhner, C.; Pardon, K.H.; Skouroumounis, G.K.; Herderich, M.J.; Sefton, M.A.; Pollnitz, A.P. Stable Isotope Dilution Analysis of Wine Fermentation Products by HS-SPME-GC-MS. Anal. Bioanal. Chem. 2005, 381, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, Y.; Liu, D.; Zhang, J.; Qi, Y.; Xu, J.; Wei, X.; Fan, M. Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines. Eur. Food Res. Technol. 2020, 246, 875–890. [Google Scholar] [CrossRef]
- Komes, D.; Ulrich, D.; Lovric, T. Characterization of Odor-Active Compounds in Croatian Rhine Riesling Wine, Subregion Zagorje. Eur. Food Res. Technol. 2006, 222, 1–7. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Characterization of Aroma Compounds of Chinese “Wuliangye” and “Jiannanchun” Liquors by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Holland, R.; Crow, V.L. Esters and their Biosynthesis in Fermented Dairy Products: A Review. Int. Dairy J. 2004, 14, 923–945. [Google Scholar] [CrossRef]
- Liang, J.; Yoo, M.J.Y.; Seale, B.; Grazioli, G. Nutritional and Volatile Characterisation of Milk Inoculated with Thermo-Tolerant Lactobacillus bulgaricus through Adaptive Laboratory Evolution. Foods 2021, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Mesa, J. Contribution of Volatile Compounds to Mango (Mangifera indica L.) Aroma. Flavour Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Zheng, Y.; Oellig, C.; Zhang, Y.; Liu, Y.; Chen, Y.; Zhang, Y. Characterization of the Key Odorants in Goji Wines in Three Levels of Sweetness by Applications of Sensomics Approach. Food Chem. 2024, 461, 140803. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, L.; Pan, Q.; Duan, C.; Wang, J. Effects of Basal Defoliation on Wine Aromas: A Meta-Analysis. Molecules 2018, 23, 779. [Google Scholar] [CrossRef] [PubMed]
- Schoenauer, S.; Schieberle, P. Characterization of the Key Aroma Compounds in the Crust of Soft Pretzels by Application of the Sensomics Concept. J. Agric. Food Chem. 2019, 67, 7110–7119. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstalt für Lebensmittelchemie and Institut für Lebensmittelchemie der Technischen Universität München: München, Germany, 1998; pp. 7–53. [Google Scholar]
- Lee, Y.K.; Lim, C.Y.; Teng, W.L.; Ouwehand, A.C.; Tuomola, E.M.; Salminen, S. Quantitative Approach in the Study of Adhesion of Lactic Acid Bacteria to Intestinal Cells and Their Competition with Enterobacteria. Appl. Environ. Microbiol. 2000, 66, 3692–3697. [Google Scholar] [CrossRef] [PubMed]
- Buran, I.; Akal, C.; Ozturkoglu-Budak, S.; Yetisemiyen, A. Rheological, Sensorial and Volatile Profiles of Synbiotic Kefirs produced from Cow and Goat Milk Containing Varied Probiotics in Combination with Fructooligosaccharide. LWT-Food Sci. Technol. 2021, 148, 111591. [Google Scholar] [CrossRef]
- Irigoyen, A.; Arana, I.; Castiella, M.; Torre, P.; Ibañez, F.C. Microbiological, Physicochemical, and Sensory Characteristics of Kefir during Storage. Food Chem. 2005, 90, 613–620. [Google Scholar] [CrossRef]
No. | Compound | Odor Descriptor | ODT |
---|---|---|---|
Organic acids | |||
2 | Octanoic acid | Sweat, cheese [27] | 0.50 [28] |
Alcohols | |||
3 | 1-Dodecanol | Raw carrot [29] | 0.016 [30] |
6 | 1-Hexadecanol | Floral, waxy [31] | 0.75 [32] |
7 | 1-Hexanol | Resin, flower, green [31,33] | 0.0056 [34] |
8 | 1-Octanol | Soap, fruity [29,35] | 0.1258 [36] |
9 | 1-Pentanol | Pungent, fermented, bready, yeasty, fusel, oil, winey, solvent [37] | 0.12 [38] |
10 | 1-Undecanol | Fruity [35] | 0.70 [39] |
15 | 2-Heptanol | Mushroom-like [36], green [40] | 0.06523 [34] |
16 | 2-Hexanol | Fatty, fruity [36] | 1.5082 [36] |
17 | 2-Methyl-1-propanol | Malt [41] | 0.55 [34] |
18 | 2-Nonanol | Green, fruity [29,42] | 0.07 [39] |
19 | 2-Phenylethanol | Honey [36], floral, rose-like [43] | 0.5642 [34] |
20 | 2-Undecanol | Fruity [42] | 0.041 [42] |
21 | 3-Methyl-1-pentanol | Wine, green [36] | 0.0075 [34] |
26 | Furfuryl alcohol | Sugar burnt [44] | 4.50 [34] |
Aldehydes | |||
27 | (E)-2-Hexenal | Floral, grass, green apple-like, bitter almond-like [41,45] | 0.11 [34] |
28 | (E)-2-Nonenal | Fatty, green [41] | 0.000295 [34] |
32 | 2-Methylbutanal | Nutty [36] | 0.001 [34] |
33 | 4-Hydroxy-3-methoxybenzaldehyde | Sweet [41], creamy vanilla-like [46] | 0.053 [41] |
34 | 5-Hydroxymethylfurfural | Sweet, caramel [47] | 1.00 [34] |
35 | Benzaldehyde | Bitter almond [29,36] | 0.75089 [36] |
36 | Furfural | Wood, almond [36] | 14.10 [28] |
Ketones | |||
37 | 2,6-Dimethyl-4-heptanone | Fruity, sweet [48] | 0.11 [49] |
38 | 2-Heptanone | Banana, fruity, floral and musty, fresh cream flavor [29] | 0.005 [50] |
39 | 4-Methyl-2-hexanone | Fruity [51] | 0.002455 [34] |
Esters | |||
43 | 2-Methylbutyl acetate | Banana, fruity [52] | 0.16 [52] |
44 | 2-Phenylethyl acetate | Flowery [53], fruity, cooked apple, marmalade [54] | 0.24959 [34] |
52 | Ethyl 3-phenylpropanoate | Fruity, floral [55] | 0.014 [46] |
53 | Ethyl butanoate | Fruity, apple-like, banana-like, sweet, fragrant [36,56] | 0.0009 [36] |
54 | Ethyl decanoate | Fruity [56] | 0.2 [28] |
55 | Ethyl dodecanoate | Fruity, floral [56] | 5.9 [34] |
56 | Ethyl hexadecanoate | Fruity, creamy, waxy [57] | 2.00 [58] |
57 | Ethyl hexanoate | Fruity, pineapple-like [59] | 0.014 [28] |
58 | Ethyl octanoate | Sweet [35], fruity, floral [43] | 0.005 [43] |
59 | Hexyl acetate | Banana [29], green apple, sweet [60] | 0.67 [52] |
60 | Methyl benzoate | Fruity, sweet [53] | 0.00052 [53] |
64 | Pentyl acetate | Fruity [56] | 0.043 [56] |
Furans | |||
65 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | Caramel-like [61] | 0.01 [62] |
No. | Compound | UKJ | Bev1-24 h | Bev2-24 h | Bev3-24 h | Bev4-24 h | Bev5-24 h | Bev6-24 h | Bev7-24 h | Bev8-24 h | Bev9-24 h |
---|---|---|---|---|---|---|---|---|---|---|---|
Organic acids | |||||||||||
1 | Octanoic acid | – | 0.66 | – | – | – | – | – | – | – | – |
Alcohols | |||||||||||
2 | 1-Dodecanol | – | – | – | 18.75 | 35.63 | – | – | – | – | – |
3 | 1-Hexadecanol | – | 0.56 | – | – | 0.48 | – | – | 0.17 | 0.17 | 1.04 |
4 | 1-Hexanol | 33.93 | – | – | – | – | 28.57 | – | 23.21 | – | – |
5 | 1-Octanol | – | – | – | – | – | – | – | – | – | 1.51 |
6 | 1-Pentanol | – | 10.42 | 5.17 | 19.00 | 1.08 | 4.08 | 17.83 | 19.67 | 1.50 | 5.92 |
7 | 1-Undecanol | – | 0.50 | 0.07 | 0.27 | 0.31 | – | 0.71 | 0.44 | 0.89 | 0.20 |
8 | 2-Heptanol | – | – | – | – | – | – | – | – | – | – |
9 | 2-Hexanol | – | – | – | – | – | – | – | – | – | – |
10 | 2-Methyl-1-propanol | – | – | – | – | – | – | 2.07 | 0.33 | – | – |
11 | 2-Nonanol | – | – | – | – | 1.86 | – | – | – | – | – |
12 | 2-Phenylethanol | 0.28 | 0.85 | 1.49 | 0.28 | 0.04 | 0.25 | 0.73 | 0.62 | 0.21 | 2.02 |
13 | 2-Undecanol | – | – | – | – | 1.22 | – | 6.59 | – | 5.85 | 12.68 |
14 | 3-Methyl-1-pentanol | – | – | – | 22.67 | – | – | – | – | – | – |
15 | Furfuryl alcohol | 0.22 | 0.03 | 0.02 | – | 0.03 | 0.17 | – | 0.03 | 0.15 | – |
Aldehydes | |||||||||||
16 | (E)-2-Hexenal | – | – | – | – | – | – | – | – | – | – |
17 | (E)-2-Nonenal | – | – | – | – | 203.39 | – | 1694.92 | 237.29 | – | 745.76 |
18 | 2-Methylbutanal | – | – | – | – | – | – | – | – | 40.00 | – |
19 | 4-Hydroxy-3-methoxybenzaldehyde | – | 4.72 | 4.15 | 8.49 | 4.15 | – | 14.53 | 5.28 | 3.02 | 6.60 |
20 | 5-Hydroxymethylfurfural | – | – | – | – | – | – | – | – | 0.46 | – |
21 | Benzaldehyde | – | 0.33 | 0.25 | 0.67 | 0.37 | – | 1.08 | 0.53 | 0.20 | 0.83 |
22 | Furfural | – | – | – | – | – | – | – | – | 0.01 | – |
Ketones | |||||||||||
23 | 2,6-Dimethyl-4-heptanone | 32.82 | 9.64 | 5.64 | 11.09 | 7.82 | 9.27 | 16.27 | 8.55 | 8.82 | 17.18 |
24 | 2-Heptanone | – | – | – | 50.00 | 20.00 | – | – | – | – | – |
25 | 4-Methyl-2-hexanone | – | – | – | – | – | – | – | – | 69.25 | – |
Esters | |||||||||||
26 | 2-Methylbutyl acetate | – | – | – | – | – | – | – | – | – | – |
27 | 2-Phenylethyl acetate | – | 0.36 | – | – | – | – | – | 0.32 | – | – |
28 | Ethyl 3-phenylpropanoate | – | – | – | – | – | – | – | – | – | – |
29 | Ethyl butanoate | 788.89 | – | – | – | – | – | – | – | – | – |
30 | Ethyl decanoate | – | – | – | – | 0.10 | – | – | 0.50 | – | – |
31 | Ethyl dodecanoate | – | 0.01 | – | – | – | – | – | – | – | 0.04 |
32 | Ethyl hexadecanoate | – | – | – | – | – | – | – | – | – | – |
33 | Ethyl hexanoate | 42.86 | 25.71 | – | 23.57 | 9.29 | 47.14 | – | – | – | – |
34 | Ethyl octanoate | – | 64.00 | 38.00 | 54.00 | 176.00 | – | 120.00 | – | – | – |
35 | Hexyl acetate | – | – | – | – | – | – | – | – | – | – |
36 | Methyl benzoate | – | 269.23 | – | 692.31 | 307.69 | – | – | 423.08 | – | – |
37 | Pentyl acetate | – | – | – | – | – | – | – | 2.56 | – | – |
Furans | |||||||||||
38 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | – | 14.00 | 20.00 | 203.00 | 27.00 | – | 51.00 | 22.00 | 10.00 | 110.00 |
Number of VOCs with OAVs ≥ 1.0 | 4 | 7 | 6 | 10 | 12 | 4 | 9 | 8 | 7 | 9 |
No. | Compound | Bev1-48 h | Bev2-48 h | Bev3-48 h | Bev4-48 h | Bev5-48 h | Bev6-48 h | Bev7-48 h | Bev8-48 h | Bev9-48 h |
---|---|---|---|---|---|---|---|---|---|---|
Organic acids | ||||||||||
1 | Octanoic acid | – | – | – | – | – | – | – | – | – |
Alcohols | ||||||||||
2 | 1-Dodecanol | 6.25 | – | 38.75 | 19.38 | – | – | – | – | 6.25 |
3 | 1-Hexadecanol | 0.57 | – | 0.45 | 0.35 | – | – | – | 0.41 | 0.68 |
4 | 1-Hexanol | – | 5.36 | – | 26.79 | – | – | – | – | – |
5 | 1-Octanol | – | – | – | – | – | – | – | – | – |
6 | 1-Pentanol | 26.25 | 11.92 | 16.58 | 2.92 | 12.00 | 31.75 | 25.75 | 13.58 | 38.00 |
7 | 1-Undecanol | 0.27 | 0.14 | 0.19 | – | – | 1.74 | 0.13 | 0.34 | 0.40 |
8 | 2-Heptanol | – | – | – | – | – | – | – | – | 2.61 |
9 | 2-Hexanol | – | – | – | – | – | – | – | – | – |
10 | 2-Methyl-1-propanol | 0.58 | 0.36 | 0.53 | – | – | 1.91 | 0.24 | 0.56 | 0.49 |
11 | 2-Nonanol | – | – | – | – | – | – | – | – | – |
12 | 2-Phenylethanol | 1.35 | 1.08 | 0.76 | 0.11 | 1.38 | 2.23 | 0.92 | 1.06 | 1.91 |
13 | 2-Undecanol | 1.95 | – | – | 6.59 | – | 6.83 | 1.71 | 2.44 | 4.63 |
14 | 3-Methyl-1-pentanol | – | – | – | – | – | – | – | – | – |
15 | Furfuryl alcohol | 0.04 | – | – | 0.03 | – | 0.04 | 0.03 | – | – |
Aldehydes | ||||||||||
16 | (E)-2-Hexenal | – | – | – | – | – | – | – | – | 1.00 |
17 | (E)-2-Nonenal | – | – | 1254.24 | 271.19 | – | 1457.63 | – | 338.98 | 372.88 |
18 | 2-Methylbutanal | – | – | – | – | 60.00 | – | – | – | – |
19 | 4-Hydroxy-3-methoxybenzaldehyde | 2.45 | 3.77 | 11.51 | 5.47 | – | 6.23 | 3.96 | 4.72 | 5.28 |
20 | 5-Hydroxymethylfurfural | – | – | – | – | – | – | – | – | – |
21 | Benzaldehyde | 0.17 | 0.21 | 0.77 | 0.39 | – | 0.71 | 0.29 | 0.31 | 0.41 |
22 | Furfural | – | – | – | – | – | – | – | – | – |
Ketones | ||||||||||
23 | 2,6-Dimethyl-4-heptanone | 5.82 | 4.18 | 3.73 | 9.55 | 12.00 | 10.73 | 4.27 | 6.09 | 7.55 |
24 | 2-Heptanone | – | – | – | 42.00 | – | – | – | – | – |
25 | 4-Methyl-2-hexanone | – | – | – | – | – | – | – | – | – |
Esters | ||||||||||
26 | 2-Methylbutyl acetate | 1.38 | – | 0.94 | – | – | – | – | – | – |
27 | 2-Phenylethyl acetate | 0.12 | – | – | – | 0.68 | 1.20 | 0.20 | – | – |
28 | Ethyl 3-phenylpropanoate | – | – | – | – | – | – | – | – | – |
29 | Ethyl butanoate | – | – | – | – | – | – | – | – | – |
30 | Ethyl decanoate | – | – | 1.35 | – | – | 6.10 | 1.15 | – | 0.90 |
31 | Ethyl dodecanoate | – | – | 0.02 | – | – | 0.10 | 0.02 | – | 0.03 |
32 | Ethyl hexadecanoate | – | – | – | – | – | – | – | – | – |
33 | Ethyl hexanoate | 73.57 | – | 29.29 | 9.29 | – | 42.14 | 8.57 | – | – |
34 | Ethyl octanoate | 24.00 | 22.00 | 56.00 | 98.00 | – | 86.00 | 92.00 | – | 52.00 |
35 | Hexyl acetate | – | – | – | – | – | – | – | – | – |
36 | Methyl benzoate | 365.38 | 134.62 | 288.46 | – | – | – | – | 211.54 | – |
37 | Pentyl acetate | 1.40 | – | – | – | – | 8.37 | – | – | – |
Furans | ||||||||||
38 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | 10.00 | 16.00 | 58.00 | 27.00 | – | 49.00 | 31.00 | 21.00 | 28.00 |
Number of VOCs with OAVs ≥ 1.0 | 12 | 8 | 10 | 11 | 4 | 14 | 8 | 8 | 10 |
No. | Compound | Bev1-72 h | Bev2-72 h | Bev3-72 h | Bev4-72 h | Bev5-72 h | Bev6-72 h | Bev7-72 h | Bev8-72 h | Bev9-72 h |
---|---|---|---|---|---|---|---|---|---|---|
Organic acids | ||||||||||
1 | Octanoic acid | – | – | – | – | – | – | 0.38 | – | – |
Alcohols | ||||||||||
2 | 1-Dodecanol | – | 9.38 | 20.00 | 29.38 | – | – | – | – | 8.75 |
3 | 1-Hexadecanol | – | 0.76 | 1.63 | 1.08 | – | – | – | 0.44 | 0.53 |
4 | 1-Hexanol | – | – | – | 66.07 | – | – | – | – | 46.43 |
5 | 1-Octanol | – | – | – | – | – | – | – | – | 3.42 |
6 | 1-Pentanol | 63.00 | 40.58 | 25.58 | 16.67 | 39.25 | 62.67 | 41.25 | 21.75 | 47.75 |
7 | 1-Undecanol | – | 0.37 | 0.39 | 0.70 | – | 1.09 | 0.30 | 0.79 | 0.39 |
8 | 2-Heptanol | – | – | – | – | – | – | – | – | 1.99 |
9 | 2-Hexanol | – | – | – | – | – | – | – | – | – |
10 | 2-Methyl-1-propanol | 1.20 | 1.11 | 0.89 | 0.65 | 2.15 | 1.69 | 0.51 | 0.84 | 1.36 |
11 | 2-Nonanol | – | – | – | – | – | – | – | – | – |
12 | 2-Phenylethanol | 2.80 | 2.98 | 1.58 | 1.21 | 2.43 | 4.20 | 3.35 | 1.38 | 2.23 |
13 | 2-Undecanol | – | – | 3.17 | 8.05 | – | 11.46 | 2.93 | 16.10 | 6.59 |
14 | 3-Methyl-1-pentanol | – | – | – | – | – | – | 13.33 | – | – |
15 | Furfuryl alcohol | 0.10 | 0.03 | 0.04 | 0.06 | – | 0.05 | 0.06 | 0.22 | – |
Aldehydes | ||||||||||
16 | (E)-2-Hexenal | – | – | – | 1.73 | – | – | – | – | 1.45 |
17 | (E)-2-Nonenal | – | – | 338.98 | 406.78 | – | 542.37 | 610.17 | 847.46 | 440.68 |
18 | 2-Methylbutanal | – | – | – | – | – | – | – | 320.00 | – |
19 | 4-Hydroxy-3-methoxybenzaldehyde | 10.38 | 4.34 | 5.85 | 7.36 | – | 4.91 | 6.60 | – | 7.55 |
20 | 5-Hydroxymethylfurfural | – | – | – | – | – | – | – | 0.78 | – |
21 | Benzaldehyde | 0.81 | 0.32 | 0.41 | 0.49 | – | 0.56 | 0.71 | – | 0.57 |
22 | Furfural | 0.01 | – | – | – | – | – | – | 0.07 | – |
Ketones | ||||||||||
23 | 2,6-Dimethyl-4-heptanone | 7.73 | 7.91 | 9.36 | 12.36 | 11.64 | 12.09 | 6.73 | 2.55 | 12.82 |
24 | 2-Heptanone | – | – | – | – | – | – | – | – | – |
25 | 4-Methyl-2-hexanone | – | – | – | – | – | – | – | – | – |
Esters | ||||||||||
26 | 2-Methylbutyl acetate | 2.81 | – | – | – | – | – | 3.56 | – | – |
27 | 2-Phenylethyl acetate | 0.96 | 0.52 | 0.68 | – | 0.56 | 0.76 | 0.76 | – | – |
28 | Ethyl 3-phenylpropanoate | 10.71 | – | – | – | – | – | – | – | – |
29 | Ethyl butanoate | – | – | – | – | – | – | – | – | 211.11 |
30 | Ethyl decanoate | – | – | 4.10 | 3.45 | – | 2.75 | 2.45 | – | 2.65 |
31 | Ethyl dodecanoate | – | – | 0.06 | 0.06 | – | 0.06 | 0.05 | – | 0.03 |
32 | Ethyl hexadecanoate | – | – | 0.19 | 0.15 | – | – | – | – | – |
33 | Ethyl hexanoate | 74.29 | 125.00 | 32.86 | 16.43 | – | – | 10.00 | – | – |
34 | Ethyl octanoate | 84.00 | 20.00 | 84.00 | 106.00 | – | 86.00 | 56.00 | – | 140.00 |
35 | Hexyl acetate | – | – | 0.19 | – | – | – | – | – | – |
36 | Methyl benzoate | 461.54 | – | 557.69 | – | – | – | 269.23 | – | 384.62 |
37 | Pentyl acetate | – | 1.16 | 11.40 | – | 7.44 | 10.00 | – | – | – |
Furans | ||||||||||
38 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | 24.00 | 21.00 | 38.00 | 37.00 | – | 29.00 | 30.00 | 31.00 | 40.00 |
Number of VOCs with OAVs ≥ 1.0 | 11 | 10 | 14 | 14 | 5 | 12 | 13 | 7 | 17 |
Bev7-48 h | |||||
---|---|---|---|---|---|
Variable | t = 0 | t = 7 Days | t = 14 Days | t = 21 Days | t = 28 Days |
pH | 3.42 ± 0.01 A | 3.43 ± 0.01 A | 3.42 ± 0.02 A | 3.43 ± 0.02 A | 3.42 ± 0.01 A |
LAB (log CFU/mL) | 6.36 ± 0.14 A | 6.41 ± 0.06 B,A | 6.39 ± 0.08 C,A,B | 6.29 ± 0.06 D,A,C | 6.32 ± 0.03 A,B,D |
AAB (log CFU/mL) | 5.04 ± 0.01 A | 5.02 ± 0.01 B,A | 4.98 ± 0.03 C | 4.88 ± 0.05 D | 4.85 ± 0.06 E |
Yeasts (log CFU/mL) | 6.30 ± 0.09 A | 6.50 ± 0.06 B | 6.68 ± 0.02 C | 6.71 ± 0.01 D,C | 6.71 ± 0.06 C,D |
CA (g/L) | 9.73 ± 0.04 A | 8.94 ± 0.08 B | 8.51 ± 0.53 C,B | 7.49 ± 0.08 D | 6.46 ± 0.29 E |
QA (g/L) | 7.18 ± 0.22 A | 7.00 ± 0.09 B | 6.44 ± 0.32 C | 6.30 ± 0.05 D,C | 5.86 ± 0.04 E |
LA (g/L) | 0.64 ± 0.03 A | 0.70 ± 0.02 B | 0.73 ± 0.01 C | 0.75 ± 0.05 D,B,C | 0.77 ± 0.06 B,C,D |
AA (g/L) | 0.40 ± 0.09 A | 0.52 ± 0.02 B | 0.56 ± 0.01 C | 0.64 ± 0.04 D | 0.71 ± 0.01 E |
EtOH (g/L) | 1.26 ± 0.01 A | 1.39 ± 0.01 B | 1.49 ± 0.02 C | 1.68 ± 0.01 D | 1.71 ± 0.01 E |
GOH (g/L) | 1.16 ± 0.14 A | 1.24 ± 0.06 B | 1.35 ± 0.08 C | 1.40 ± 0.06 D | 1.47 ± 0.03 E |
TS (g/L) | 53.46 ± 0.01 A | 51.63 ± 0.01 B | 48.30 ± 0.03 C | 46.60 ± 0.05 D | 45.83 ± 0.06 E |
Bev3-72 h | |||||
pH | 3.15 ± 0.01 A | 3.15 ± 0.01 B,A | 3.14 ± 0.01 C,B | 3.13 ± 0.02 D,A,B,C | 3.13 ± 0.01 C,D |
LAB (log CFU/mL) | 7.31 ± 0.04 A | 7.23 ± 0.10 B,A | 7.30 ± 0.08 C,A,B | 7.30 ± 0.02 A,B,C | 7.14 ± 0.07 B |
AAB (log CFU/mL) | 4.39 ± 0.02 A | 4.08 ± 0.05 B | 3.95 ± 0.08 C | 3.91 ± 0.06 D | 3.91 ± 0.09 D |
Yeasts (log CFU/mL) | 7.03 ± 0.03 A | 7.09 ± 0.03 B | 7.15 ± 0.05 C,B | 7.15 ± 0.02 D,C | 7.21 ± 0.02 E |
CA (g/L) | 11.42 ± 0.36 A | 10.88 ± 0.06 B | 10.18 ± 0.25 C | 9.09 ± 0.11 D | 8.88 ± 0.08 E |
QA (g/L) | 8.29 ± 0.21 A | 8.08 ± 0.11 B | 7.93 ± 0.11 B | 7.48 ± 0.12 C | 6.70 ± 0.48 D |
LA (g/L) | 0.46 ± 0.05 A | 0.50 ± 0.02 B,A | 0.53 ± 0.01 C | 0.53 ± 0.02 D,B,C | 0.55 ± 0.02 C,D |
AA (g/L) | 0.44 ± 0.03 A | 0.47 ± 0.01 B | 0.56 ± 0.02 C | 0.63 ± 0.03 D | 0.70 ± 0.06 E |
EtOH (g/L) | 1.82 ± 0.00 A | 1.87 ± 0.00 B | 1.97 ± 0.01 C | 2.01 ± 0.02 D | 2.03 ± 0.01 E |
GOH (g/L) | 1.43 ± 0.01 A | 1.51 ± 0.04 B | 1.56 ± 0.06 C | 1.61 ± 0.02 D | 1.63 ± 0.03 E |
TS (g/L) | 56.40 ± 0.23 A | 54.47 ± 0.23 B | 52.60 ± 0.42 C | 50.80 ± 1.04 D | 46.03 ± 0.20 E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazán, D.L.; Diéguez, S.C.; Domínguez, J.M.; Pérez-Guerra, N. Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages. Foods 2025, 14, 2502. https://doi.org/10.3390/foods14142502
Bazán DL, Diéguez SC, Domínguez JM, Pérez-Guerra N. Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages. Foods. 2025; 14(14):2502. https://doi.org/10.3390/foods14142502
Chicago/Turabian StyleBazán, Delicia L., Sandra Cortés Diéguez, José Manuel Domínguez, and Nelson Pérez-Guerra. 2025. "Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages" Foods 14, no. 14: 2502. https://doi.org/10.3390/foods14142502
APA StyleBazán, D. L., Diéguez, S. C., Domínguez, J. M., & Pérez-Guerra, N. (2025). Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages. Foods, 14(14), 2502. https://doi.org/10.3390/foods14142502