Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Material and Chemicals
2.2. Obtaining the Infusions
2.3. In Vitro Digestion
2.4. Identification and Quantification of Individual Phenolic Compound by LIQUID Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS)
2.5. Bioaccessibility
2.6. Total Phenolic Content (TPC) and Total Antioxidant Capacity (TAC)
2.7. In Vitro Inhibition of α-Amylase
2.8. In Vitro Inhibition of β-Glucosidase
2.9. Preparation of Dry Baked Biscuits with Added Leaf Extract
2.10. In Vivo Evaluation of Glycemic Markers
2.11. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Composition of Infusions of C. xanthocarpa Before and After In Vitro Digestion
3.2. Bioaccessibility Index of Phenolic Compounds of the Infusions
3.3. TPC and TAC of the Infusions
3.4. Inhibition of Starch-Digesting Enzymes by Infusions
3.5. In Vivo Evaluation of Biomarkers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raphaelli, C.O.; Pereira, E.S.; Camargo, T.M.; Ribeiro, J.A.; Pereira, M.C.; Vinholes, J.; Dalmazo, G.O.; Vizzotto, M.; Nora, L. Biological activity and chemical composition of fruits, seeds and leaves of guabirobeira (Campomanesia xanthocarpa O. Berg—Myrtaceae): A review. Food Biosci. 2021, 40, 100899. [Google Scholar] [CrossRef]
- Arcari, S.G.; Arena, K.; Kolling, J.; Rocha, P.; Dugo, P.; Mondello, L.; Cacciola, F. Polyphenolic compounds with biological activity in guabiroba fruits (Campomanesia xanthocarpa Berg.) by comprehensive two-dimensional liquid chromatography. Electrophoresis 2020, 41, 1784–1792. [Google Scholar] [CrossRef]
- Sant’Anna, L.S.; Merlugo, L.; Ehle, C.S.; Limberger, J.; Fernandes, M.B.; Santos, M.C.; Mendez, A.S.L.; Paula, F.R.; Moreira, C.M. Chemical composition and hypotensive effect of Campomanesia xanthocarpa. Evid. Based Complement. Altern. Med. 2017, 2017, 1591762. [Google Scholar] [CrossRef]
- Duarte, L.S.; Pereira, M.T.M.; Pascoal, V.D.B.; Pascoal, A.C.R.F. Campomanesia genus: A literature review of nonvolatile secondary metabolites, phytochemistry, popular use, biological activities, and toxicology. Eclética Química 2020, 45, 12–22. [Google Scholar] [CrossRef]
- Catelan, T.B.S.; Gaiola, L.; Duarte, B.F.; Cardoso, C.A.L. Evaluation of the in vitro photoprotective potential of ethanolic extracts of four species of the genus Campomanesia. J. Photochem. Photobiol. B Biol. 2019, 197, 111500. [Google Scholar] [CrossRef]
- De Sousa, J.A.; Prado, L.S.; Alderete, B.L.; Boaretto, F.B.M.; Allgayer, M.C.; Miguel, F.M.; De Sousa, J.T.; Marroni, N.P.; Lemes, M.L.B.; Corrêa, D.S.; et al. Toxicological aspects of Campomanesia xanthocarpa Berg. associated with its phytochemical profile. J. Toxicol. Environ. Health A 2019, 82, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.d.S.; Vinholes, J.R.; Camargo, T.M.; Nora, F.R.; Crizel, R.L.; Chaves, F.; Nora, L.; Vizzotto, M. Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and α-glucosidase. Food Biosci. 2020, 37, 100665. [Google Scholar] [CrossRef]
- Zhang, H.; Hassan, Y.I.; Liu, R.; Mats, L.; Yang, C.; Liu, C.; Tsao, R. Molecular mechanisms underlying the absorption of aglycone and glycosidic flavonoids in a Caco-2 BBe1 cell model. ACS Omega 2020, 5, 10782–10793. [Google Scholar] [CrossRef]
- De Araújo, F.F.; Farias, D.P.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 288, 127535. [Google Scholar] [CrossRef]
- Sarkar, D.; Christopher, A.; Shetty, K. Phenolic bioactives from plant-based foods for glycemic control. Front. Endocrinol. 2022, 12, 727503. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ding, L.; Cao, L.; Zhang, Z.; Li, X.; Li, Z.; Xia, Q.; Yin, K.; Song, S.; Wang, Z.; et al. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Front. Pharmacol. 2025, 16, 1534634. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Gawlik-Dziki, U.; Świeca, M. Influence of phenolic–food matrix interactions on in vitro bioaccessibility of selected phenolic compounds and nutrient digestibility in fortified white bean paste. Antioxidants 2021, 10, 1825. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Pham, L.B.; Adhikari, B. Complexation and conjugation between phenolic compounds and proteins: Mechanisms, characterisation and applications as novel encapsulants. Sustain. Food Technol. 2024, 2, 1206–1227. [Google Scholar] [CrossRef]
- Shahidi, F.; Dissanayaka, C.S. Phenolic–protein interactions: Insights from in silico analyses—A review. Food Prod. Process. Nutr. 2023, 5, 2. [Google Scholar] [CrossRef]
- Rawel, H.M.; Czajka, D.; Rohn, S.; Kroll, J. Interactions of different phenolic acids and flavonoids with soy proteins. Int. J. Biol. Macromol. 2002, 30, 137–150. [Google Scholar] [CrossRef]
- Zhou, S.-D.; Lin, Y.-F.; Xu, X.; Meng, L.; Dong, M.-S. Effect of non-covalent and covalent complexation of (–)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics. Food Chem. 2020, 309, 125718. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Nowak, A.; Bączek, N.; Baranowska-Bosiacka, I.; Drózdz, M.; Żółkiewicz, A.; Socha, M. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Dacoreggio, M.V.; Moroni, L.S.; Kempka, A.P. Antioxidant, antimicrobial and allelopathic activities and surface disinfection of the extract of Psidium cattleianum Sabine leaves. Biocatal. Agric. Biotechnol. 2019, 21, 101295. [Google Scholar] [CrossRef]
- da Silva, V.R.F.; da Silva, G.B.; Manica, D.; Deolindo, C.T.P.; Bagatini, M.D.; Kempka, A.P. Phytotherapeutic potential of Campomanesia xanthocarpa (Mart.) O. Berg: Antitumor effects in vitro and in silico, with emphasis on SK-MEL-28 melanoma cells—A study on leaf and fruit infusions. Silico Pharmacol. 2024, 12, 105. [Google Scholar] [CrossRef]
- Jagadeesan, G.; Muniyandi, K.; Manoharan, A.L.; Nataraj, G.; Thangaraj, P. Understanding the bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics of Allmania nodiflora (L.) R.Br. ex Wight polyphenols during in vitro simulated digestion. Food Chem. 2022, 372, 131294. [Google Scholar] [CrossRef] [PubMed]
- Kautzmann, C.; Castanha, E.; Dammann, C.A.J.; de Jesus, B.A.P.; da Silva, G.F.; Magalhães, M.L.B.; Deolindo, C.T.P.; Kempka, A.P. Roasted yerba mate (Ilex paraguariensis) infusions in bovine milk model before and after in vitro digestion: Bioaccessibility of phenolic compounds, antioxidant activity, protein–polyphenol interactions and bioactive peptides. Food Res. Int. 2024, 183, 114206. [Google Scholar] [CrossRef] [PubMed]
- Dacoreggio, M.V.; Santetti, G.S.; Inácio, H.P.; Haas, I.C.S.; Wanderley, B.R.S.M.; Hoff, R.B.; Freire, C.B.F.; Kempka, A.P.; Amboni, R.D.M.C. Exploring the effects of gastrointestinal digestion on phenolic profile and antioxidant activity: A new perspective on the biological potential of Eugenia pyriformis Cambess leaf infusion. Meas. Food 2024, 14, 100167. [Google Scholar] [CrossRef]
- Bonoli, M.; Bendini, A.; Cerretani, L.; Lercker, G.; Toschi, T.G. Qualitative and semiquantitative analysis of phenolic compounds in extra-virgin olive oil as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem. 2004, 52, 7026–7032. [Google Scholar] [CrossRef]
- Arepally, D.; Reddy, R.S.; Goswami, K.; Datta, A.K. Biscuit baking: A review. LWT 2020, 131, 109726. [Google Scholar] [CrossRef]
- Ricca, M.L.M. Development of veterinary biscuits containing Ginkgo biloba extract. Braz. J. Health Rev. 2020, 3, 5715–5733. [Google Scholar] [CrossRef]
- Sumny, E.H.; Cunico, L.; Céceres, B.G.O.; da Silva, A.S.; Kempka, A.P. Comparative analysis of non-fermented and Saccharomyces boulardii-fermented whey: Peptidomic profiling, in silico bioactive peptide analysis, and in vivo evaluation of serum proteins and immune response. Int. Dairy J. 2025, 166, 106222. [Google Scholar] [CrossRef]
- Bandara, N.; Chalamaiah, M. Bioactives from agricultural processing by-products. In Encyclopedia of Food Chemistry; Elsevier: London, UK, 2019; pp. 472–480. [Google Scholar] [CrossRef]
- Spínola, V.; Llorent-Martínez, E.J.; Castilho, P.C. Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive simulated in vitro gastrointestinal digestion? Food Chem. 2018, 259, 105–112. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Rha, C.-S.; Seong, H.; Jung, Y.S.; Jang, D.; Keak, J.-G.; Kim, D.-O.; Han, N.S. Stability and fermentability of green tea flavonols in in vitro simulated gastrointestinal digestion and human fecal fermentation. Int. J. Mol. Sci. 2019, 20, 5890. [Google Scholar] [CrossRef]
- Stanisic, D.; Liu, L.H.B.; dos Santos, R.V.; Costa, A.F.; Durán, N.; Tasic, L. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals. Molecules 2020, 25, 4534. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Le, T.; Wang, W.-W.; Yin, J.-F.; Jiang, H.-Y. The effects of structure and oxidative polymerization on antioxidant activity of catechins and polymers. Foods 2023, 12, 4207. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-Q.; Gao, Y.; Granato, D. Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chem. 2021, 339, 128060. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts. Food Chem. 2020, 329, 127157. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastrointestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Dantas, A.M.; Mafaldo, I.M.; de Oliveira, P.M.L.; dos Lima, M.S.; Magnani, M.; Borges, G.S.C. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem. 2019, 274, 202–214. [Google Scholar] [CrossRef]
- Asadi, S.; Nojavan, S.; Behpour, M.; Mahdavi, P. Electromembrane extraction based on agarose gel for the extraction of phenolic acids from fruit juices. J. Chromatogr. B 2020, 1159, 122401. [Google Scholar] [CrossRef]
- Yu, J.; You, B.; Yang, S.; Xian, W.; Deng, Y.; Huang, W.; Yang, R. Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus salicina Lindl.). Food Res. Int. 2021, 143, 110300. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Hu, Z.; Yin, Z.; Zhou, Y.; Liu, T.; Zhou, Z.; Chang, D. Profiling and distribution of metabolites of procyanidin B2 in mice by UPLC-DAD-ESI-IT-TOF-MSn technique. Front. Pharmacol. 2017, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.B.; Camp, J.V.; Vissenaekens, H.; Raes, K.; Smagghe, G.; Grootaert, C. Review on the use of cell cultures to study metabolism, transport, and accumulation of flavonoids: From mono-cultures to co-culture systems. Compr. Rev. Food Sci. Food Saf. 2015, 14, 741–754. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef]
- Vaz, V.M.; Jitta, S.R.; Verma, R.; Kumar, L. Hesperetin-loaded proposomal gel for topical antioxidant activity. J. Drug Deliv. Sci. Technol. 2021, 66, 102873. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F. Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008, 108, 879–884. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 47. [Google Scholar] [CrossRef]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (Rubus idaeus): A general review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.X.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J. Funct. Foods 2017, 32, 248–255. [Google Scholar] [CrossRef]
- Celep, E.; Akyüz, S.; İnanç, Y.; Yesilada, E. Stability of phenolic content of some herbal infusions and their antioxidant activity following in vitro digestion. Turk. J. Biochem. 2017, 42, 375–380. [Google Scholar] [CrossRef]
- Kashyap, P.; Riar, C.S.; Jindal, N. Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT 2022, 153, 112570. [Google Scholar] [CrossRef]
- Farias, D.P.; de Araújo, F.F.; Neri-Numa, I.A.; Dias-Audibert, F.L.; Delafiori, J.; Catharino, R.R.; Pastore, G.M. Effect of in vitro digestion on the bioaccessibility and bioactivity of phenolic compounds in fractions of Eugenia pyriformis fruit. Food Res. Int. 2021, 150, 110767. [Google Scholar] [CrossRef] [PubMed]
- Pavan, V.; Sancho, R.A.S.; Pastore, G.M. The effect of in vitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophyllus and Annona marcgravii). LWT—Food Sci. Technol. 2014, 59, 1247–1251. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, J.; Wei, Z.; Shahidi, F. Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow colored pea hulls. Food Chem. 2021, 337, 127606. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, L.; Liu, Y.; Zhang, Q.; Li, Y.; Wu, Z. Release of phenolic compounds from Rubus idaeus L. dried fruits and seeds during simulated in vitro digestion and their bio-activities. J. Funct. Foods 2018, 46, 57–65. [Google Scholar] [CrossRef]
- Sun, Y.-Q.; Tao, X.; Men, X.-M.; Xu, Z.-W.; Wang, T. In vitro and in vivo antioxidant activities of three major polyphenolic compounds in pomegranate peel: Ellagic acid, punicalin and punicalagin. J. Integr. Agric. 2017, 16, 1808–1818. [Google Scholar] [CrossRef]
- Williamson, G. Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 2013, 57, 48–57. [Google Scholar] [CrossRef]
- Huang, Y.; Richardson, S.J.; Brennan, C.S.; Kasapis, S. Mechanistic insights into α-amylase inhibition, binding affinity and structural changes upon interaction with gallic acid. Food Hydrocoll. 2024, 148, 109467. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, W.; Sun, W.; Chen, S.; Liu, D.; Kong, X.; Tian, J.; Ye, X. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid. J. Funct. Foods 2020, 64, 103587. [Google Scholar] [CrossRef]
- Etgeton, S.A.P.; Ávila, S.; Silva, A.C.R.; de Lima, J.J.; Rodrigues, A.D.D.P.S.; Beux, M.R.; Kruger, C.C.H. Nutritional composition, simulated digestion and biological activities of Campomanesia xanthocarpa fruit. Plant Foods Hum. Nutr. 2024, 79, 59–65. [Google Scholar] [CrossRef]
- Mushtaq, A.; Naila, S.; Nadia, M.; Rahmat, A.K. Phytochemical analysis and inhibitory effects of Calligonum polygonoides on pancreatic α-amylase and β-glucosidase enzymes. J. Tradit. Chin. Med. 2022, 42, 426–431. [Google Scholar] [CrossRef]
- Habtemariam, S. α-Glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Nat. Prod. Commun. 2011, 6, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K.; Hernández, F. Comparison of bioactive compounds and health-promoting properties of fruits and leaves of apple, pear and quince. Sci. Rep. 2021, 11, 20253. [Google Scholar] [CrossRef] [PubMed]
- Spínola, V.; Pinto, J.; Llorent-Martínez, E.J.; Castilho, P.C. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Res. Int. 2019, 122, 283–294. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Wang, J.; Tang, J.; Lee, Y.; Ng, K. Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. Food Sci. Technol. 2013, 53, 492–498. [Google Scholar] [CrossRef]
- Mittman, N.; Desiraju, B.; Fazil, I.; Kapupara, H.; Chattopadhyay, J.; Jani, C.M.; Avram, M.M. Serum fructosamine versus glycosylated hemoglobin as an index of glycemic control, hospitalization, and infection in diabetic hemodialysis patients. Kidney Int. 2010, 78 (Suppl. 117), S41–S45. [Google Scholar] [CrossRef]
- Andrade, L.J.O.; Bittencourt, A.M.V.; Brito, L.F.M.; Oliveira, L.M.; Oliveira, G.C.M. Estimated average blood glucose level based on fructosamine level. Arch. Endocrinol. Metab. 2023, 67, 262–265. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef]
- Naz, R.; Saqib, F.; Awadallah, S.; Wahid, M.; Latif, M.F.; Iqbal, I.; Mubarak, M.S. Food polyphenols and type II diabetes mellitus: Pharmacology and mechanisms. Molecules 2023, 28, 3996. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef] [PubMed]
- Ávila, F.; Cruz, N.; Alarcón-Espósito, J.; Nina, N.; Paillan, H.; Márquez, K.; Fuentealba, D.; Burgos-Edwards, A.; Theoduloz, C.; Vejar-Vivar, C.; et al. Inhibition of advanced glycation end products and protein oxidation by leaf extracts and phenolics from Chilean bean landraces. J. Funct. Foods 2022, 98, 105270. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A. Influence of food matrix on the bioaccessibility of fruit polyphenolic compounds. J. Agric. Food Chem. 2020, 68, 1315–1325. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Prevention of protein glycation by natural compounds. Molecules 2015, 20, 3309–3334. [Google Scholar] [CrossRef]
- Muñiz, A.; Garcia, E.; Gonzalez, D.; Zuñiga, L. Antioxidant activity and in vitro antiglycation of the fruit of Spondias purpurea. Evid. Based Complement. Altern. Med. 2018, 2018, 5613704. [Google Scholar] [CrossRef]
- Atta, A.; Shahid, M.; Kanwal, Z.; Jafri, S.A.; Riaz, M.; Xiao, H.; Abbas, M.; Egbuna, C.; Simal-Gandara, J. Inhibition of oxidative stress and advanced glycation end-product formation in a purified BSA/glucose glycation system by polyphenol extracts of selected nuts from Pakistan. Food Sci. Nutr. 2023, 11, 3414–3421. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Li, X.; Chen, H.; Li, J.; Zhao, W.; Liu, S. Research progress on hypoglycemic effects and molecular mechanisms of flavonoids. Antioxidants 2023, 14, 378. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, T.; Ma, L.; Chen, W.; Yu, H.; Abdul, Q.; Hou, J.; Tian, B. Comparison of interaction between three similar chalconoids and α-lactalbumin: Impact on structure and functionality of α-lactalbumin. Food Res. Int. 2020, 131, 109006. [Google Scholar] [CrossRef]
- Wagar, K.; Engholm-Keller, K.; Joehnke, M.S.; Chatterton, D.E.W.; Poojary, M.M.; Lund, M.N. Covalent bonding of 4-methylcatechol to β-lactoglobulin results in the release of cysteine-4-methylcatechol adducts after in vitro digestion. Food Chem. 2022, 397, 133775. [Google Scholar] [CrossRef]
- Cederholm, J.; Wibell, L. Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res. Clin. Pract. 1990, 10, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Dion, F.; Dumayne, C.; Henley, N.; Beauchemin, S.; Arias, E.B.; Leblond, F.A.; Lesage, S.; Lefrançois, S.; Cartee, G.D.; Pichette, V. Mechanism of insulin resistance in a rat model of kidney disease and the risk of developing type 2 diabetes. PLoS ONE 2017, 12, e0176650. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Gautier, J.F.; Chon, S. Assessment of insulin secretion and insulin resistance in humans. Diabetes Metab. J. 2021, 45, 641–654. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Control (%) | Treatment (%) | Visual Aspect |
---|---|---|---|
C. xanthocarpa leaf extract * | – | 0.40 | |
Industrialized sesame biscuit ** | 29.89 | 29.49 | |
Quinoa | 12.64 | 12.64 | |
Potassium sorbate | 0.16 | 0.16 | |
Bacon flavoring | 0.42 | 0.42 | |
Unflavored, colorless gelatin | 4.21 | 4.21 | |
Distilled water | 52.68 | 52.68 |
Sample | TPC (mg de EGA. g−1) | TAC (μM) | |||
---|---|---|---|---|---|
Infusion | Gastric Digestion | Intestinal Digestion | Infusion | Intestinal Digestion | |
L5 | 204.20 ±8.47 aA | 129.90 ± 44.77 aB | 87.26 ± 25.47 aB | 3028.33 ± 223.6 aA | 1470.00 ± 51.64 aB |
L10 | 94.85 ± 9.81 cA | 92.51 ± 15.59 bA | 123.10 ± 45.08 aA | 2491.67 ± 85.66 bA | 1025.00 ± 162.7 bB |
L15 | 154.20 ± 15.65 bA | 150.50 ± 5.97 aA | 81.72 ± 37.78 aB | 2931.67 ± 83.14 aA | 1405.00 ±15.83 aB |
F5 | 129.90 ± 49.00 bA | 54.83 ± 11.90 cB | 50.11 ± 2.97 cB | 1288.33 ± 75.05 cA | 500.00 ± 27.86 cB |
F10 | 92.52 ± 32.05 cA | 69.34 ± 4.70 cA | 82.78 ± 14.94 aA | 1316.67 ± 113.9 cA | 466.67 ± 27.95 cB |
F15 | 107.80 ± 5.21 cA | 91.59 ± 36.64 bA | 69.52 ± 3.21 bB | 1321.67 ± 62.30 cA | 513.33 ± 62.35 cB |
Variables | Control | Treatment | SEM | p: Treatment | p: Treatment × Day |
---|---|---|---|---|---|
Amylase (U/L) | 0.84 | 0.92 | |||
Day 1 | 1883 | 1796 | 71.3 | ||
Day 11 | 1939 | 1935 | 70.8 | ||
Day 18 | 1863 | 1754 | 74.1 | ||
Day 25 | 1769 | 1704 | 66.2 | ||
Day 32 | 1854 | 1897 | 70.1 | ||
Mean | 1856 | 1822 | 70.6 | ||
Glucose (mg/dL) | 0.19 | 0.22 | |||
Day 1 | 104 | 103 | 2.89 | ||
Day 11 | 100 | 112 | 3.12 | ||
Day 18 | 106 | 108 | 3.12 | ||
Day 25 | 103 | 111 | 3.09 | ||
Day 32 | 102 | 107 | 2.97 | ||
Mean | 102.75 | 109.5 | 3.01 | ||
Fructosamine (µmol/L) | 0.39 | 0.05 | |||
Day 1 | 136 | 133 | 3.14 | ||
Day 11 | 132 b | 150 a | 3.09 | ||
Day 18 | 131 | 142 | 2.98 | ||
Day 25 | 137 | 149 | 3.12 | ||
Day 32 | 146 | 147 | 3.08 | ||
Mean | 136 | 147 | 3.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremea, C.M.C.; Silva, V.R.F.d.; Cunico, L.; Boff, V.G.; Deolindo, C.T.P.; da Silva, A.S.; Kempka, A.P. Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects. Foods 2025, 14, 2469. https://doi.org/10.3390/foods14142469
Tremea CMC, Silva VRFd, Cunico L, Boff VG, Deolindo CTP, da Silva AS, Kempka AP. Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects. Foods. 2025; 14(14):2469. https://doi.org/10.3390/foods14142469
Chicago/Turabian StyleTremea, Cristiane Maria Chitolina, Vanessa Ruana Ferreira da Silva, Larissa Cunico, Vinícius Gottardo Boff, Carolina Turnes Pasini Deolindo, Aleksandro Shafer da Silva, and Aniela Pinto Kempka. 2025. "Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects" Foods 14, no. 14: 2469. https://doi.org/10.3390/foods14142469
APA StyleTremea, C. M. C., Silva, V. R. F. d., Cunico, L., Boff, V. G., Deolindo, C. T. P., da Silva, A. S., & Kempka, A. P. (2025). Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects. Foods, 14(14), 2469. https://doi.org/10.3390/foods14142469