Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments and Equipment
2.3. Experimental Methods
2.3.1. Preparation of Standard Solutions
2.3.2. Preparation and Structural Characterization of Magnetic NPs Fe3O4@SiO2-PSA
- Preparation of Magnetic NPs Fe3O4@SiO2-PSA
- Structural Characterization of Fe3O4@SiO2-PSA
2.3.3. Sample Processing and Analysis
- Pre-Treatment of Samples
- Chromatography–Mass Spectrometry Conditions
2.3.4. Methodological Evaluation
- Sample Matrix Effect Evaluation
- Linearity Range, Method Sensitivity, and Accuracy
2.3.5. Data Processing
3. Results and Discussion
3.1. Structural Characterization of Fe3O4@SiO2-PSA Magnetic NPs
3.1.1. Material Morphology
3.1.2. VSM
3.1.3. XRD
3.1.4. FTIR
3.1.5. BET Analysis
3.2. Optimization of Dispersive Magnetic Solid-Phase Extraction Conditions
3.2.1. Optimization of Extraction Solvent Type
3.2.2. Optimization of Volume of Extraction Solvent
3.2.3. Optimization of MgSO4 Amount
3.2.4. Optimization of Fe3O4@SiO2-PSA Amount
3.2.5. Optimization of C18 Amount
3.2.6. Optimization of Adsorption Shaking Time
3.3. Methodological Evaluation
3.3.1. Matrix Effects
3.3.2. Linear Range of Method, LOD, and LOQ
3.3.3. Method Accuracy and Precision
3.4. Actual Sample Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Kou, L.; Qin, Y.; Chen, J.; Bai, D.; Zhao, L.; Lin, H.; Jiang, G. A bibliometric analysis of the recent advances in diazepam from 2012 to 2021. Front. Pharmacol. 2022, 13, 1042594. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, Y.; Zhuang, K.; Yuan, Y.; Wang, Y.; Yang, X. Urine metabolomics after diazepam in rats by gas chromatography-mass spectrometry. Lat. Am. J. Pharm. 2018, 37, 1798–1801. [Google Scholar]
- Zheng, H.; Wang, X.; Zhang, A.; Zhang, H.; Peng, J.; Huang, K. Pollution characteristics and ecological risk assessment of diazepam in aquaculture. J. Hydroecol. 2025, 46, 61–68. [Google Scholar] [CrossRef]
- Su, H.; Wang, S.; Mao, Y.; Yang, Z.; Qiu, D.; Huang, Z. Detection of Diazepam Residues in Aquatic Products by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. China Food Saf. Mag. 2024, 64–68. [Google Scholar] [CrossRef]
- Chou, Y.; Feng, W.; Luo, Y.; Qi, L.; Lin, P.; Fang, Y. Research on Rapid Quantitative Detection of Diazepam in Aquatic Products Based on UPLC-MS/MS. China Food Saf. Mag. 2024, 82–84. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Yang, F. Species-Specific Bioaccumulation and Risk Prioritization of Psychoactive Substances in Cultured Fish. Chemosphere 2023, 325, 138440. [Google Scholar] [CrossRef]
- Hu, W.; Xia, L.; Hu, Y.; Li, G. Fe3O4-Carboxyl Modified AuNPs-chitosan@AgNPs as a Robust Surface-Enhanced Raman Scattering Substrate for Rapid Analysis of Tryptamine and Ofloxacin in Aquatic Products. Talanta 2024, 266, 125057. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Huang, L.; Zhang, Z.; Li, G. Magnetic Ti3C2Tx/Fe3O4/Ag substrate for rapid quantification of trace sulfonamides in aquatic products by surface enhanced raman spectroscopy. Chin. Chem. Lett. 2022, 33, 3853–3858. [Google Scholar] [CrossRef]
- Vlad, C.S.; Dumitrascu, V.; Vlad, D.C.; Cimporescu, A.; Popescu, R.; Dehelean, L.; Marincu, I.; Citu, I.M.; Poenaru, D.V. Fast and simple method for simultaneous detection and quantification of diazepam and desmethyldiazepam in plasma samples in psychiatric patients by GC-MS-FID. Rev. Chim. 2017, 68, 530–533. [Google Scholar] [CrossRef]
- Ottaviano, V.; Tavone, A.M.; Scipione, C.; Potenza, S.; Petroni, G.; Marella, G.L. Drug Detection in Decomposed Cadavers Confirms Testimonial Evidence in a Case of Serial Homicides. Forensic Sci. Int. 2021, 325, 110893. [Google Scholar] [CrossRef]
- Cliville-Cabre, P.; Rosendo, L.M.; Borrull, F.; Aguilar, C.; Calull, M. A comparative study of SPE- and DLLME-based methods for the determination of opioids and benzodiazepines in urine samples using LC-MS/MS. Microchem. J. 2025, 208, 112354. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, S.; Zhang, X.; Yan, Z. Determination of Diazepam in Aquatic Products by Dispersive Solid Phase Extraction-Ultra Performance Liquid ChromatographyTandem Mass Spectrometry. J. Agric. Sci. 2021, 49, 198–201. [Google Scholar]
- Tejedor, A.M.G.; Yague, J.C.B.; Gonzalez, G.P.; Martinez, R.M.G.; Hernando, P.F. Selective extraction of diazepam and its metabolites from urine samples by a molecularly imprinted solid-phase extraction (MISPE) method. Polymers 2024, 16, 635. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.; Zayeri, Z.; Maleki, B. Glutathione-Stabilized Fe3O4 Nanoparticles as the Sorbent for Magnetic Solid-Phase Extraction of Diazepam and Sertraline from Urine Samples through Quantitation via High-Performance Liquid Chromatography. J. Sep. Sci. 2021, 44, 1195–1202. [Google Scholar] [CrossRef]
- Abad, M.O.K.; Masrournia, M.; Javid, A. Synthesis of novel MOF-on-MOF composite as a magnetic sorbent to dispersive micro solid phase extraction of benzodiazepine drugs prior to determination with HPLC-UV. Microchem. J. 2024, 197, 109797. [Google Scholar] [CrossRef]
- Plotka-Wasylka, J.; Szczepanska, N.; de la Guardia, M.; Namiesnik, J. Modern trends in solid phase extraction: New sorbent media. TrAC Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Guo, C.; Yu, X.; Han, F.; Jia, X.; Lei, Y.; Liu, H.; Wu, Q.; Lin, T.; Yi, X.; Song, W. Determination of 19 Organophosphorus Pesticide Residues in Green Tea by Magnetic Solid Phase Extraction Combined with Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. Sci. Technol. Food. Ind. 2024, 45, 253–261. [Google Scholar] [CrossRef]
- Sun, M.; Bai, X.; Fu, X.; Yu, X.; Ye, Z.; Zhang, M.; Qiu, Y. Modification of Fe3O4 Magnetic Nanoparticles for Antibiotic Detection. Sci. Rep. 2025, 15, 4751. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Y.; Chen, Z.; Qian, W.; Pan, J. Determination of Solvent Blue 4 in Textiles by HPLC with Magnetic Solid Phase Extraction. China Port. Sci. Technol. 2024, 6, 54–59. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Zhang, Y.; Deng, Z.; Zhao, W.; Du, H.; Ma, X.; Yin, D.; Xie, F.; Chen, Y.; et al. In Situ Preparation of Core-Shell Magnetic Porous Aromatic Framework Nanoparticles for Mixed-Mode Solid-Phase Extraction of Trace Multitarget Analytes. J. Chromatogr. A 2018, 1556, 1–9. [Google Scholar] [CrossRef]
- Ansari, S. Application of Magnetic Molecularly Imprinted Polymer as a Versatile and Highly Selective Tool in Food and Environmental Analysis: Recent Developments and Trends. TrAC Trends Anal. Chem. 2017, 90, 89–106. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, L.; Chen, J.; Jiang, T.; Ye, H.; Ji, H.; Tsang, S.; Zhao, Z.; Yi, T.; Chen, H. Recent Progress in Nanomaterial-Based Assay for the Detection of Phytotoxins in Foods. Food Chem. 2019, 277, 162–178. [Google Scholar] [CrossRef]
- Gabris, M.A.; Jume, B.H.; Rezaali, M.; Shahabuddin, S.; Nodeh, H.R.; Saidur, R. Novel Magnetic Graphene Oxide Functionalized Cyanopropyl Nanocomposite as an Adsorbent for the Removal of Pb(II) Ions from Aqueous Media: Equilibrium and Kinetic Studies. Environ. Sci. Pollut. Res. 2018, 25, 27122–27132. [Google Scholar] [CrossRef]
- Ansari, S.; Karimi, M. Recent Configurations and Progressive Uses of Magnetic Molecularly Imprinted Polymers for Drug Analysis. Talanta 2017, 167, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.; Whittard, D.; Green, E.; Brooks, I.; Hanna, R. Empirical Research on Green Jobs: A Review and Reflection with Practitioners. Sustain. Futures 2025, 9, 100527. [Google Scholar] [CrossRef]
- Plastiras, O.-E.; Deliyanni, E.; Samanidou, V. Synthesis and application of the magnetic nanocomposite GO-chm for the extraction of benzodiazepines from surface water samples prior to HPLC-PDA analysis. Appl. Sci. 2021, 11, 7828. [Google Scholar] [CrossRef]
- Ashrafi, H.; Hassanpour, S.; Saadati, A.; Hasanzadeh, M.; Ansarin, K.; Ozkan, S.A.; Shadjou, N.; Jouyban, A. Sensitive detection and determination of benzodiazepines using silver nanoparticles-N-GQDs ink modified electrode: A new platform for modern pharmaceutical analysis. Microchem. J. 2019, 145, 1050–1057. [Google Scholar] [CrossRef]
- Sang, L.; Chen, X.; Wang, Y.; Chen, Q.; Zhou, Q.; Li, S.; Ye, M. Rapid Determination of Diazepam Residue in Aquatic Products by Immunomagnetic Beads-Colloidal Gold Immunochromatography Assay. Sci. Technol. Food Ind. 2020, 41, 255–260+284. [Google Scholar] [CrossRef]
- Olivieri, B.; Marić, M.; Bridge, C. Determining the Effects of Adulterants on Drug Detection via Enzyme-linked Immunosorbent Assay and Adulterant Tests Strips. Drug Test. Anal. 2018, 10, 1383–1393. [Google Scholar] [CrossRef]
- Abdolrasouli, M.H.; Roostaie, A.; Abedi, H.; Mohammadiazar, S. Determination of lorazepam and diazepam using modified nanocrystalline cellulose for ultrasonic-assisted dispersive solid phase microextraction (UA-DSPME) and gas chromatography-mass spectrometry (GC-MS). Anal. Lett. 2024, 57, 2085–2102. [Google Scholar] [CrossRef]
- Galera, M.C.; dos Santos, N.C.B.F.; Antunes, M.V.; Peteffi, G.P.; da Costa, J.L.; Lanaro, R.; Linden, R. Automated Three-Step Solid-Phase Extraction of Toxicologically Relevant Psychotropic Compounds and Metabolites from Plasma Followed by LC-MS/ MS Analysis. Microchem. J. 2024, 207, 111835. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- Alka, U.K.; Patel, U.K.; Agarwal, A. Sustainable Design and Revolutionary Synthesis of Highly Recyclable Sulfonic Acid-Based Magnetic Nanoparticles as a Solid Acid for Synthesis of 2-Substituted Benzimidazole and Bis Indole Methane Derivatives. Appl. Organomet. Chem. 2025, 39, e7861. [Google Scholar] [CrossRef]
- Shen, K.; Zou, X.; Wang, J. Simultaneous Determination of the Four Key Fluoroquinolones and Two Antipsychotics in Fish and Shrimp by LC-MS/MS. Food Addit. Contam. A 2022, 39, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Wen, Y.; Yang, K.; Zhao, X.; Yang, X.; He, J. Development and Validation of the UPLC-MS Method for Simultaneous Determination of Six New Psychoactive Substances. RSC Adv. 2022, 12, 26704–26711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, G.-X.; Kong, C.; Zhai, W.-L.; Feng, H.-F.; Shen, X.-S.; Yu, H.-J. Determination of Tranquilizer and Their Metabolites Residues in Aquatic Products by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Chin. J. Anal. Chem. 2021, 49, 460–467. [Google Scholar] [CrossRef]
- Chu, H.; Wang, X.; Qi, P.; Wang, Y.; Wu, Z.; Wan, Z. Determination of Diazepam and Its Metabolites in Freshwater Aquaculture Environment by Liquid Chromatography-Tandem Mass Spectrometry. J. Instrum. Anal. 2024, 43, 474–480+488. [Google Scholar]
- Jaber, J.A.; Holt, D.; Johnston, A. Method Development for the Detection of Basic/Weak Basic Drugs in Hair by LCMSMS: Comparison between Methanolic and Alkaline Extraction on Real Samples. Biomed. Pharmacother. 2012, 3, 263–274. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Cao, S.; Jiang, Z.; Wu, H.; Yan, M.; Zhang, X.; Jiang, S.; Xue, F. Simultaneous determination of residues of dipyrone metabolites in goat tissues by hydrophilic interaction liquid chromatography tandem mass spectrometry. Food Chem. 2016, 196, 83–89. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, H.; Yu, Y.; Su, J.; Chen, L.; Zheng, M.; Liu, L.; Wu, X.; Chen, D.; Meng, X. Simultaneous determination of four pesticides residues in rice by modified QuEChERS coupled with GC-MS/MS. J. Food Compos. Anal. 2024, 133, 106396. [Google Scholar] [CrossRef]
- Qi, P.; Wang, Z.; Yang, G.; Shang, C.; Xu, H.; Wang, X.; Zhang, H.; Wang, Q.; Wang, X. Removal of Acidic Interferences in Multi-Pesticides Residue Analysis of Fruits Using Modified Magnetic Nanoparticles Prior to Determination via Ultra-HPLC-MS/MS. Microchim. Acta 2015, 182, 2521–2528. [Google Scholar] [CrossRef]
- Li, J.; Zhou, R.; Yang, G.; Fodjo, E.K.; Feng, T.; Sun, H.; Huang, D.; Kong, C.; Liu, H. Novel filter-press single-step cleanup approach facilitated rapid screening and accurate quantification of 112 veterinary drugs in aquatic products. Food Chem. X 2023, 19, 100846. [Google Scholar] [CrossRef] [PubMed]
- Mitrowska, K.; Kijewska, L.; Giannetti, L.; Neri, B. A Simple and Sensitive Method for the Determination of Methylene Blue and Its Analogues in Fish Muscle Using UPLC-MS/MS. Food Addit. Contam. A-Chem. Anal. Control Expo. Risk Assess. 2023, 40, 641–654. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Xie, J.; Chen, X.-J. Applications of Non-Invasive and Novel Methods of Low-Field Nuclear Magnetic Resonance and Magnetic Resonance Imaging in Aquatic Products. Front. Nutr. 2021, 8, 651804. [Google Scholar] [CrossRef]
- Zhuang, M.; Yao, W.; Han, L.; Bi, Y.; Qiao, C.; Lv, X.; Cao, M.; Xie, H. Multivariate Response Surface Methodology Assisted Modified QuEChERS Method for the Rapid Determination of 39 Pesticides and Metabolites in Medlar. Ecotoxicol. Environ. Saf. 2023, 261, 115102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, C.; Zhang, Y.; Zhang, D.; Li, Y.; Gu, J.; Wang, E.; Sun, D. High-Throughput and Trace Analysis of Diazepam in Plasma Using DART-MS/MS and Its Pharmacokinetic Application. Anal. Biochem. 2021, 635, 114435. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fang, H.; Li, J.; Shi, S.; Pu, Y.; He, Y.; Liu, Z.; Cheng, L.; Liu, H.; Lin, T. Determination and risk assessment of diazepam residues in aquatic products from China. Int. J. Environ. Anal. Chem. 2025, 1–18. [Google Scholar] [CrossRef]
- Sebihi, S.; Monperrus, M.; Coste, P.; Huchet, E.; Lingrand, M.; Glise, S.; Bouchard, C.; Ortiz-Zarragoitia, M.; Bolliet, V. An Optimized Whole-Body Corticosteroid Hormones Quantification Method by LC-MS/MS for Assessing Stress Levels in European Glass Eels (Anguilla Anguilla). J. Steroid Biochem. Mol. Biol. 2025, 245, 106627. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Lin, J.; Bao, R. A Modified QuEChERS-Based UPLC-MS/MS Method for Rapid Determination of Multiple Antibiotics and Sedative Residues in Freshwater Fish. Food Chem. X 2024, 22, 101268. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, J.; Zhang, N.; Wu, P.; Wang, D.; Wang, Y. Determination of diazepam and its three metabolites in fish by pass-through solid phase extraction purification combined with ultra-performance liquid chromatography-tandem mass spectrometry. J. Hyg. Res. 2025, 54, 129–135. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Liu, H.; Wu, L. A Comparative Study of Primary Secondary Amino (PSA) and Multi-Walled Carbon Nanotubes (MWCNTs) as QuEChERS Absorbents for the Rapid Determination of Diazepam and Its Major Metabolites in Fish Samples by High-Performance Liquid Chromatography-Electrospray Ionisation-Tandem Mass Spectrometry. J. Sci. Food Agric. 2016, 96, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Lučić, M.; Potkonjak, N.; Sredović Ignjatović, I.; Lević, S.; Dajić-Stevanović, Z.; Kolašinac, S.; Belović, M.; Torbica, A.; Zlatanović, I.; Pavlović, V.; et al. Influence of Ultrasonic and Chemical Pretreatments on Quality Attributes of Dried Pepper (Capsicum Annuum). Foods 2023, 12, 2468. [Google Scholar] [CrossRef] [PubMed]
- Lukić, J.; Radulović, J.; Lučić, M.; Đurkić, T.; Onjia, A. Chemometric optimization of solid-phase extraction followed by liquid chromatography-tandem mass spectrometry and probabilistic risk assessment of ultraviolet filters in an urban recreational lake. Front. Environ. Sci. 2022, 10, 916916. [Google Scholar] [CrossRef]
Time (min) | Flow (mL/min) | A (%) | B (%) |
---|---|---|---|
1 | 0.3 | 90.0 | 10.0 |
3 | 0.3 | 90.0 | 10.0 |
3.5 | 0.3 | 85.0 | 15.0 |
6 | 0.3 | 32.0 | 68.0 |
6.2 | 0.3 | 5.0 | 95.0 |
7.8 | 0.3 | 5.0 | 95.0 |
8 | 0.3 | 90.0 | 10.0 |
10 | 0.3 | 90.0 | 10.0 |
Sample Type | Addition Level (μg/kg) | Recovery (%) | RSD (%, n = 6) |
---|---|---|---|
Carassius auratus | 0.5 | 94.0 | 10.6 |
1.5 | 89.8 | 5.17 | |
6.0 | 99.8 | 1.24 | |
15.0 | 108 | 11.6 | |
Litopenaeus vannamei | 0.5 | 76.9 | 4.19 |
1.5 | 97.9 | 2.77 | |
6.0 | 99.9 | 6.64 | |
15.0 | 109 | 6.80 | |
Portunus trituberculatus | 0.5 | 74.9 | 4.96 |
1.5 | 89.7 | 3.49 | |
6.0 | 108 | 2.93 | |
15.0 | 109 | 3.58 | |
Mytilus edulis | 0.5 | 107 | 6.03 |
1.5 | 93.1 | 5.02 | |
6.0 | 100 | 9.93 | |
15.0 | 105 | 2.71 |
Method of Detection | Matrix | Purification | Quantification | Recoveries (%) | Precision (% RSD) | LOD (μg/kg) | LOQ (μg/kg) | Literature |
---|---|---|---|---|---|---|---|---|
UPLC-MS/MS | Carps, Grass carp, Hypophthalmichthys nobilis, Tilapia, Crucian Carp, Turbot, Shrimp, Hypophthalmichthys molitrix, Catfish and Mussel | Self-assembled SPE | Internal standard curve | 81.6–113 | 0.9–7.5 | 0.03–0.08 | 0.10–0.24 | [47] |
LC-MS/MS | Fish and shrimp | C18 SPE | Matrix-matched calibration curves | 77.94–104.27 | 1.43 | 0.01 | 0.03 | [34] |
LC-MS/MS | Anguilla anguilla | HLB Oasis SPE and Captiva EMR-lipid SPE | Internal calibration | 82 | 1–4 | 0.22 | 0.75 | [48] |
UPLC-MS/MS | Freshwater fish | QuEChERS | Internal standard curve | 96.1–97.6 | 2.5–4 | 0.53 | 1.76 | [49] |
UPLC-MS/MS | Fish | C18/PSA SPE | Internal standard curve | 109.2–120 | 4.5–8.1 | 0.2 | / | [50] |
HPLC-ESI-MS/MS | Carp | QuEChERS (PSA, MWCNTs) | Matrix-match calibration curves external calibration curve | 96–108.8 | <10 | 0.5 | 2.5 | [51] |
UPLC-MS/MS | Carassius auratus Solenoceracrassicornis Portunus trituberculatus Mytilus edulis | MDSPE | External calibration curve | 74.9–109 | 1.24–11.6 | 0.20 | 0.5 | Present method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Mei, G.; Huang, D.; Zhang, X.; He, P.; Chen, S. Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products. Foods 2025, 14, 2421. https://doi.org/10.3390/foods14142421
Yang M, Mei G, Huang D, Zhang X, He P, Chen S. Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products. Foods. 2025; 14(14):2421. https://doi.org/10.3390/foods14142421
Chicago/Turabian StyleYang, Mengqiong, Guangming Mei, Daoxiang Huang, Xiaojun Zhang, Pengfei He, and Si Chen. 2025. "Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products" Foods 14, no. 14: 2421. https://doi.org/10.3390/foods14142421
APA StyleYang, M., Mei, G., Huang, D., Zhang, X., He, P., & Chen, S. (2025). Matrix Interference Removal Using Fe3O4@SiO2-PSA-Based Magnetic Dispersive Solid-Phase Extraction for UPLC-MS/MS Analysis of Diazepam in Aquatic Products. Foods, 14(14), 2421. https://doi.org/10.3390/foods14142421