Innovative Approaches to Extracting Phenolics from Echinacea purpurea: Maximizing Yield and Efficacy
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals
2.3. Extraction of Different Plant Organs from Purple Cornflower
2.4. Determination of Phenolic Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Comparison of Phenolic Contents Among Different Purple Coneflower Plant Part
3.2. Comparison of the Phenolic Contents Among Different Extraction Solvents
3.3. Comparison of the Phenolic Contents Among Different Extraction Time
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pouille, C.L.; Jegou, D.; Dugardin, C.; Cudennec, B.; Ravallec, R.; Hance, P.; Rambaud, C.; Hilbert, J.L.; Lucau-Danila, A. Chicory root flour—A functional food with potential multiple health benefits evaluated in a mice model. J. Funct. Foods 2020, 74, 104174. [Google Scholar] [CrossRef]
- Lekar, A.V.; Borisenko, S.N.; Filonova, O.V.; Vetrova, E.V.; Maksimenko, E.V.; Borisenko, N.I.; Minkin, V.I. Extraction of caftaric and cichoric acids from Echinacea purpurea L. in subcritical water. Russ. J. Phys. Chem. B 2013, 7, 968–975. [Google Scholar] [CrossRef]
- Shrivastav, G.; Jyoti, T.P.; Chandel, S.; Singh, R. Eco-Friendly Extraction: Innovations, Principles, and Comparison with Traditional Methods. Sep. Purif. Rev. 2025, 54, 241–257. [Google Scholar] [CrossRef]
- Azwanida, N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromat. Plants 2015, 4, 1000196. [Google Scholar]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Upadhya, V.; Pai, S.; Hegde, H. Effect of method and time of extraction on total phenolic content in comparison with antioxidant activities in different parts of Achyranthes aspera. J. King Saud Univ.-Sci. 2015, 27, 204–208. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Naviglio, D.; Trifuoggi, M.; Varchetta, F.; Nebbioso, V.; Perrone, A.; Avolio, L.; De Martino, E.; Montesano, D.; Gallo, M. Efficiency of Recovery of the Bioactive Principles of Plants by Comparison between Solid-Liquid Extraction in Mixture and Single-Vegetable Matrices via Maceration and RSLDE. Plants 2023, 12, 2900. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.T. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef]
- Bodoira, R.; Maestri, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J. Agric. Food Chem. 2020, 68, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Jayakody, J.T.M.; Kim, J.I.; Jeong, J.W.; Choi, K.M.; Kim, T.S.; Seo, C.; Azimi, I.; Hyun, J.M.; Ryu, B.M. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024, 13, 3151. [Google Scholar] [CrossRef] [PubMed]
- Lezoul, N.E.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Martí-Quijal, F.J.; Cilla, A.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F.; Barba, F.J. Influence of Temperature, Solvent and pH on the Selective Extraction of Phenolic Compounds from Tiger Nuts by-Products: Triple-TOF-LC-MS-MS Characterization. Molecules 2019, 24, 797. [Google Scholar] [CrossRef]
- Lajoie, L.; Fabiano-Tixier, A.S.; Chemat, F. Water as Green Solvent: Methods of Solubilisation and Extraction of Natural Products-Past, Present and Future Solutions. Pharmaceuticals 2022, 15, 1507. [Google Scholar] [CrossRef]
- Rajakaruna, A.; Manful, C.F.; Abu-Reidah, I.M.; Critch, A.L.; Vidal, N.P.; Pham, T.H.; Cheema, M.; Thomas, R. Application of solvent pH under pressurized conditions using accelerated solvent extraction and green solvents to extract phytonutrients from wild berries. Food Biosci. 2022, 47, 101471. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.H.; Li, J.; Huang, H.L.; Xia, Q.L.; Ye, X.Q.; Liu, D.H. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024, 13, 482. [Google Scholar] [CrossRef]
- Gross, C.; Seifert, R. Critical analysis of Echinacea preparations marketed in Germany. Naunyn-Schmiedebergs Arch. Pharmacol. 2025, 398, 5743–5756. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Vu, T.M.H.; Doan, P.M.K.; Nguyen, T.T.D.; Bui, T.T.T.; Ha, T.H.L.; Hoang, T.K.Q.; Taufani, I.P.; Ha, H.A. Efficacy and safety of Echinacea purpurea in treating upper respiratory infections and complications of otitis media in children: Systematic review and meta-analysis. Clin. Nutr. Espen 2025, 67, 702–713. [Google Scholar] [CrossRef]
- Gupta, M.; Sharma, D.; Sharma, A.; Kumari, V.; Goshain, O. A review on purple cone flower (Echinacea purpurea L. Moench). J. Pharm. Res. 2012, 5, 4076–4081. [Google Scholar]
- Symonowicz, M.; Sykula-Zajac, A.; Lodyga-Chruscinska, E.; Rumora, I.; Straukas, M. Evaluation of polyphenols and anthocyanins contents in black chockeberry—Photinia melanocarpa (michx.) fruits extract. Acta Pol. Pharm. 2012, 69, 381–387. [Google Scholar] [PubMed]
- Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal. 2004, 35, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Barrett, B. Medicinal properties of Echinacea: A critical review. Phytomedicine 2003, 10, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Ramaiah, S. Pharmacological importance of Echinacea purpurea. Int. J. Pharma Bio Sci. 2011, 2, 304–314. [Google Scholar]
- Mikulic-Petkovsek, M.; Koron, D.; Rusjan, D. The impact of food processing on the phenolic content in products made from juneberry Amelanchier lamarckii fruits. J. Food Sci. 2020, 85, 386–393. [Google Scholar] [CrossRef]
- Wu, C.H.; Murthy, H.N.; Hahn, E.J.; Lee, H.L.; Paek, K.Y. Efficient extraction of caffeic acid derivatives from adventitious roots of Echinacea purpurea. Czech J. Food Sci. 2008, 26, 254–258. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, F.; Zhang, L.L.; Niu, Y.J.; Liu, Z.G.; Liu, X.B. Comparison of chicoric acid, and its metabolites caffeic acid and caftaric acid: In vitro protection of biological macromolecules and inflammatory responses in BV2 microglial cells. Food Sci. Hum. Wellness 2017, 6, 155–166. [Google Scholar] [CrossRef]
- Burlou-Nagy, C.; Banica, F.; Jurca, T.; Vicas, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties—A Review. Plants 2022, 11, 1244. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, Q.C.; Park, Y. Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway. J. Funct. Foods 2019, 59, 8–15. [Google Scholar] [CrossRef]
- Birsa, M.L.; Sarbu, L.G. Health Benefits of Key Constituents in Cichorium intybus L. Nutrients 2023, 15, 1322. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymone, K.; Viskelis, J.; Janulis, V. Optimisation of the extraction of flavonoids from apples using response surface methodology. Ital. J. Food Sci. 2018, 30, 89–101. [Google Scholar]
- Torres-Contreras, A.M.; Garcia-Baeza, A.; Vidal-Limon, H.R.; Balderas-Renteria, I.; Ramirez-Cabrera, M.A.; Ramirez-Estrada, K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants 2022, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Kundu, S.; Mohapatra, S.S.; Sinha, S.; Khoshru, B.; Keswani, C.; Mitra, D. An Insight into the Role of Phenolics in Abiotic Stress Tolerance in Plants: Current Perspective for Sustainable Environment. J. Pure Appl. Microbiol. 2024, 18, 64–79. [Google Scholar] [CrossRef]
- Nataraj, N.; Hussain, M.; Ibrahim, M.; Hausmann, A.E.; Rao, S.N.V.; Kaur, S.; Khazir, J.; Mir, B.A.; Olsson, S.B. Effect of Altitude on Volatile Organic and Phenolic Compounds of Artemisia brevifolia Wall ex Dc. from the Western Himalayas. Front. Ecol. Evol. 2022, 10, 864728. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Wightman, E.L. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain Function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef]
- Feucht, W.; Schmid, M.; Treutter, D. Flavanols and Flavonols in the Nuclei of Conifer Genotypes with Different Growth. Forests 2014, 5, 2122–2135. [Google Scholar] [CrossRef]
- Dent, M.; Dragovic-Uzelac, V.; Penic, M.; Brncic, M.; Bosiljkov, T.; Levaj, B. The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Butsat, S.; Siriamornpun, S. Effect of solvent types and extraction times on phenolic and flavonoid contents and antioxidant activity in leaf extracts of Amomum chinense C. Int. Food Res. J. 2016, 23, 180–187. [Google Scholar]
- Irakli, M.N.; Samanidou, V.F.; Biliaderis, C.G.; Papadoyannis, I.N. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chem. 2012, 134, 1624–1632. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Reis, S.F.; Rai, D.K.; Abu-Ghannam, N. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chem. 2012, 135, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Samoticha, J.; Eler, K.; Stampar, F.; Veberic, R. Traditional Elderflower Beverages: A Rich Source of Phenolic Compounds with High Antioxidant Activity. J. Agric. Food Chem. 2015, 63, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Batubara, I.; Suparto, I.H.; Wulandari, N.S. The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava). In Proceedings of the 3rd International Seminar on Sciences—Sciences on Precision and Sustainable Agriculture (ISS), Bogor, Indonesia, 4 November 2016. [Google Scholar]
- Zidorn, C.; Schubert, B.; Stuppner, H. Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem. Syst. Ecol. 2005, 33, 855–872. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Mourtzinos, I.; Makris, D. Optimisation of organic solvent-free polyphenol extraction from Hypericum triquetrifolium Turra using Box–Behnken experimental design and kinetics. Int. J. Ind. Chem. 2015, 6, 85–92. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Pérez-Correa, J.R. Glycerol as Alternative Co-Solvent for Water Extraction of Polyphenols from Carmenere Pomace: Hot Pressurized Liquid Extraction and Computational Chemistry Calculations. Biomolecules 2020, 10, 474. [Google Scholar] [CrossRef]
- Ruenroengklin, N.; Zhong, J.; Duan, X.W.; Yang, B.; Li, J.R.; Jiang, Y.M. Effects of various temperatures and pH values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins. Int. J. Mol. Sci. 2008, 9, 1333–1341. [Google Scholar] [CrossRef]
- Eddine, L.; Djamila, B.; Redha, O. Solvent pH extraction effect on phytochemical composition and antioxidant properties of Algerian Matricaria Pubescens. J. Pharm. Res. 2016, 10, 106–112. [Google Scholar]
- Nüsslein, B.; Kurzmann, M.; Bauer, R.; Kreis, W. Enzymatic degradation of cichoric acid in Echinacea purpurea preparations. J. Nat. Prod. 2000, 63, 1615–1618. [Google Scholar] [CrossRef]
- Kreis, W.; Sussner, U.; Nüsslein, B. Reinigung und Charakterisierung einer Polyphenoloxidase aus der Arzneidroge Echinaceae purpurea herba (Sonnenhutkraut). J. Appl. Bot. 2000, 74, 106–112. [Google Scholar]
- Altunkaya, A.; Gökmen, V.; Skibsted, L.H. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chem. 2016, 190, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; Trarnelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Bergeron, C.; Gafner, S.; Batcha, L.L.; Angerhofer, C.K. Stabilization of caffeic acid derivatives in Echinacea purpurea L. glycerin extract. J. Agric. Food Chem. 2002, 50, 3967–3970. [Google Scholar] [CrossRef] [PubMed]
Echinaeca pupurea Part | Fragmentation | |||
---|---|---|---|---|
Phenolic Component | Roots | Flowers | Leaves | MS MSn |
ANTHOCYANINS * | ||||
Cyanidin-3-glucoside | X | 449→287 | ||
Cyanidin-3-malonylhexoside | X | 535→449→287 | ||
FLAVONOLS | ||||
Kaempferol hexoside | X | 447→285→257,229 | ||
Kaempferol-3-glucoside | X | 447→285→257,229 | ||
Kaempferol-rhamnosyl-hexoside | X | X | X | 593→447→285 |
Kaempferol-acetyl-hexoside | X | 489→285 | ||
Quercetin-3-galactoside | X | 463→301 | ||
Quercetin-3-glucoside | X | 463→301 | ||
Quercetin-3-rutinoside | X | X | 609→301 | |
Quercetin-pentoside | X | X | 433→301 | |
Quercetin-malonyl-hexoside | X | 549→505,463→301 | ||
Quercetin-hexoside | X | 463→301 | ||
Quercetin-3-rhamnoside | X | X | 447→301 | |
FLAVANONES | ||||
Naringenin hexoside | X | X | X | 433→271→151 |
HYDROXYCINNAMIC ACIDS | ||||
Chlorogenic acid | X | X | 353→191,179,135 | |
Caffeic acid hexoside | X | X | 341→179,161→135 | |
Dicaffeoylquinic acid | X | X | 515→353→179,173 | |
p-coumaric acid hexoside | X | X | 325→163,119 | |
p-coumaric acid pentoside | X | X | X | 295→163,119 |
Ferulic acid pentoside | X | X | X | 325→193→149,134 |
trans-Caftaric acid | X | X | X | 311→179,149,135 |
cis-Caftaric acid | X | X | X | 311→179,149,135 |
trans-Chicoric acid | X | X | X | 473→311→293,179,149,131 |
cis-Chicoric acid | X | X | X | 473→311→293,179,149,131 |
Caftaric Acid | Chicoric Acid | Total Hydroxy-Cinnamic Acids | Total Flavonols | Total Flavanones | Total Antho-Cyanins | Total Analyzed Phenolics | |
---|---|---|---|---|---|---|---|
Part | *** | *** | *** | *** | *** | *** | |
Time of maceration | *** | * | NS | NS | * | ** | * |
Solvent | *** | *** | *** | *** | ** | *** | *** |
Time of extraction x Solvent | * | * | * | NS | * | *** | NS |
Part X Solvent | *** | *** | *** | *** | ** | *** | |
Part X Time | NS | NS | NS | NS | *** | NS | |
Part X Time X Solvent | *** | *** | *** | *** | *** | *** |
Time of Maceration | Extraction Solvent | Flowers | S | T x S | Leaves | S | T x S | Roots | S | T x S |
---|---|---|---|---|---|---|---|---|---|---|
3 days | 40% EtOH | 91.01 ± 10.53 | c | E | 1022.43 ± 34.38 | a | A | 1011.32 ± 31.49 | a | A |
5% Acetic acid | 1696.05 ± 91.47 | b | B | 845.93 ± 16.15 | c | C | 493.31 ± 16.73 | b | B | |
Glycerol | 2796.94 ± 93.75 | a | A | 932.79 ± 13.40 | b | B | 266.11 ± 11.41 | c | DE | |
Water | 60.13 ± 5.54 | c | E | 222.59 ± 10.79 | d | F | 18.74 ± 0.83 | d | H | |
6 days | 40% EtOH | 98.72 ± 12.01 | c | E | 483.51 ± 17.66 | b | E | 251.84 ± 4.77 | b | DE |
5% Acetic acid | 2104.50 ± 95.83 | a | B | 809.16 ± 58.80 | a | C | 330.67 ± 3.75 | a | C | |
Glycerol | 1056.74 ± 92.04 | b | E | 412.94 ± 13.48 | b | E | 233.24 ± 9.08 | b | E | |
Water | 169.23 ± 23.13 | c | D | 66.98 ± 2.94 | c | G | 142.20 ± 6.29 | c | F | |
9 days | 40% EtOH | 97.31 ± 4.82 | c | E | 217.16 ± 8.64 | b | F | 83.91 ± 1.83 | c | G |
5% Acetic acid | 1093.74 ± 19.56 | b | D | 624.45 ± 20.61 | a | D | 232.4.39 ± 4.39 | b | E | |
Glycerol | 2624.83 ± 91.38 | a | A | 239.12 ± 9.20 | b | F | 289.19 ± 9.38 | a | D | |
Water | 39.57 ± 2.59 | c | E | 39.87 ± 1.94 | c | G | 39.60 ± 2.15 | d | H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senica, M.; Mlinšek, G.; Rusjan, D.; Mikulic-Petkovsek, M. Innovative Approaches to Extracting Phenolics from Echinacea purpurea: Maximizing Yield and Efficacy. Foods 2025, 14, 2325. https://doi.org/10.3390/foods14132325
Senica M, Mlinšek G, Rusjan D, Mikulic-Petkovsek M. Innovative Approaches to Extracting Phenolics from Echinacea purpurea: Maximizing Yield and Efficacy. Foods. 2025; 14(13):2325. https://doi.org/10.3390/foods14132325
Chicago/Turabian StyleSenica, Mateja, Gregor Mlinšek, Denis Rusjan, and Maja Mikulic-Petkovsek. 2025. "Innovative Approaches to Extracting Phenolics from Echinacea purpurea: Maximizing Yield and Efficacy" Foods 14, no. 13: 2325. https://doi.org/10.3390/foods14132325
APA StyleSenica, M., Mlinšek, G., Rusjan, D., & Mikulic-Petkovsek, M. (2025). Innovative Approaches to Extracting Phenolics from Echinacea purpurea: Maximizing Yield and Efficacy. Foods, 14(13), 2325. https://doi.org/10.3390/foods14132325