Xylose-Oligosaccharide Alleviating Type 2 Diabetes in Mice via Reducing Blood Glucose, Oxidative Stress, Inflammation and Regulating Intestinal Microbiota
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Mice and Intervention Protocol
2.3. Biochemical Analysis
2.4. Histopathological Examination
2.5. Fecal Microbiota Analysis by Metagenome
2.6. Statistical Analysis
3. Results
3.1. Effects of Xylose-Oligosaccharide on FBG
3.2. Effect of Xylose-Oligosaccharide on OGTTs and ITTs
3.3. Effect of Xylose-Oligosaccharide on Serum Lipid
3.4. Effect of Xylose-Oligosaccharide on Inflammatory Factors and Antioxidant Parameters
3.5. Effect of Xylose-Oligosaccharide on Histopathology of the Epididymal White Adipose Tissue, Liver Tissue, and Pancreas Tissue
3.6. Effect of Xylose-Oligosaccharide on Gut Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
STZ | streptozotocin |
CON | control group |
DM | diabetic model group |
PC | positive control group |
LXY | low dose of xylose-oligosaccharide intragastric administration |
HXY | high dose of xylose-oligosaccharide intragastric administration |
OGTT | oral glucose tolerance test |
ITT | insulin tolerance test |
FBG | fasting blood glucose |
TG | triglycerides |
LDL-C | low-density lipoprotein cholesterol |
HDL-C | high-density lipoprotein cholesterol |
TCHO | total cholesterol |
IL-1β | interleukin-1β |
IL-6 | interleukin-6 |
IL-10 | interleukin-10 |
TNF-α | tumor necrosis factor-α |
ELISA | enzyme-linked immunosorbent assay |
SOD | superoxide dismutase |
GSH | glutathione |
GSH-PX | glutathione peroxidase |
MDA | malondialdehyde |
References
- Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shaw, J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol. 2013, 2, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; De Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev. 2021, 23, e13349. [Google Scholar] [CrossRef] [PubMed]
- Anita, N.Z.; Zebarth, J.; Chan, B.; Wu, C.-Y.; Syed, T.; Shahrul, D.; Nguyen, M.M.; Pakosh, M.; Herrmann, N.; Lanctôt, K.L.; et al. Inflammatory markers in type 2 diabetes with vs. without cognitive impairment; a systematic review and meta-analysis. Brain Behav. Immun. 2021, 100, 55–69. [Google Scholar] [CrossRef]
- Akácsos-Szász, O.-Z.; Pál, S.; Nyulas, K.-I.; Nemes-Nagy, E.; Fárr, A.-M.; Dénes, L.; Szilveszter, M.; Bán, E.-G.; Tilinca, M.C.; Simon-Szabó, Z. Pathways of Coagulopathy and Inflammatory Response in SARS-CoV-2 Infection among Type 2 Diabetic Patients. Int. J. Mol. Sci. 2023, 24, 4319. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Type 2 Diabetes Mellitus, Oxidative Stress and Inflammation: Examining the Links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 45–63. [Google Scholar]
- Kowluru, R.A. Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy. Cells 2023, 12, 300. [Google Scholar] [CrossRef]
- Blériot, C.; Dalmas, É.; Ginhoux, F.; Venteclef, N. Inflammatory and immune etiology of type 2 diabetes. Trends Immunol. 2023, 44, 101–109. [Google Scholar] [CrossRef]
- Hamjane, N.; Mechita, M.B.; Nourouti, N.G.; Barakat, A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc. Res. 2023, 151, 104601. [Google Scholar] [CrossRef]
- Singh, V.; Park, Y.-J.; Lee, G.; Unno, T.; Shin, J.-H. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit. Rev. Food Sci. Nutr. 2022, 63, 9961–9976. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, B.; Ren, L.; Du, H.; Fei, C.; Qian, C.; Li, B.; Zhang, R.; Liu, H.; Li, Z.; et al. High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients. Front. Cell. Infect. Microbiol. 2023, 13, 1069954. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; McArdle, P.; Taplin, J.; Unwin, D.; Unwin, J.; Deakin, T.; Wheatley, S.; Murdoch, C.; Malhotra, A.; Mellor, D. Dietary strategies for remission of type 2 diabetes: A narrative review. J. Hum. Nutr. Diet. 2021, 35, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Matafome, P. Nutritional Modulation of Dietary Sugars as a Strategy to Improve Insulin Resistance and Energy Balance in Diabetes. Diabetology 2023, 4, 184–185. [Google Scholar] [CrossRef]
- Lin, F.; Yang, D.; Huang, Y.; Zhao, Y.; Ye, J.; Xiao, M. The potential of Neoagaro-Oligosaccharides as a treatment of type II diabetes in mice. Mar. Drugs 2019, 17, 541. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Li, J.; Liu, W.; Warda, M.; Cui, B.; El-Aty, A.M.A. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: Metabolomic bioinformatic analysis. Food Funct. 2022, 13, 5416–5429. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Xu, X.; Jiang, H.; Cai, C.; Yu, G. Odd-Numbered Agaro-Oligosaccharides Alleviate Type 2 Diabetes Mellitus and Related Colonic Microbiota Dysbiosis in Mice. Carbohydr. Polym. 2020, 240, 116261. [Google Scholar] [CrossRef]
- Mizote, A.; Yamada, M.; Yoshizane, C.; Arai, N.; Maruta, K.; Arai, S.; Endo, S.; Ogawa, R.; Mitsuzumi, H.; Ariyasu, T.; et al. Daily Intake of Trehalose Is Effective in the Prevention of Lifestyle-Related Diseases in Individuals with Risk Factors for Metabolic Syndrome. J. Nutr. Sci. Vitaminol. 2016, 62, 380–387. [Google Scholar] [CrossRef]
- Iatcu, O.C.; Hamamah, S.; Covasa, M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024, 16, 3447. [Google Scholar] [CrossRef]
- Okburan, G.; Kızıler, S. Human Milk Oligosaccharides as Prebiotics. Pediatr. Neonatol. 2023, 64, 231–238. [Google Scholar] [CrossRef]
- Lin, Y.; Teng, P.-Y.; Olukosi, O.A. The effects of xylo-oligosaccharides on regulating growth performance, nutrient utilization, gene expression of tight junctions, nutrient transporters, and cecal short chain fatty acids profile in Eimeria-challenged broiler chickens. Poult. Sci. 2022, 101, 102125. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, Y.; Kang, L.; Liu, Y.; Ye, H.; Wang, R.; Zhao, J.; Zhang, G.; Li, X.; Wang, J.; et al. Dietary D-xylose promotes intestinal health by inducing phage production in Escherichia coli. NPJ Biofilms Microbiomes 2023, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.; Zhang, J.; Li, Y.; He, Q.; Li, H.; Guo, X.; Guo, J.; Zhang, H. Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. Eur. J. Nutr. 2013, 53, 221–232. [Google Scholar] [CrossRef]
- Zhang, C.; Abdo, A.A.A.; Kaddour, B.; Wu, Q.; Xin, L.; Li, X.; Fan, G.; Teng, C. Xylan-oligosaccharides ameliorate high fat diet induced obesity and glucose intolerance and modulate plasma lipid profile and gut microbiota in mice. J. Funct. Foods 2019, 64, 103622. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.-H.; Wei, Q.-Y.; Du, X.-J.; Qu, Y.-S. Investigating desorption during ethanol elution to improve the quality and antioxidant activity of xylo-oligosaccharides from corn stalk. Bioresour. Technol. 2017, 249, 342–347. [Google Scholar] [CrossRef]
- Li, H.; Fang, Q.; Nie, Q.; Hu, J.; Yang, C.; Huang, T.; Li, H.; Nie, S. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration. J. Agric. Food Chem. 2020, 68, 10015–10028. [Google Scholar] [CrossRef]
- Nussrat, S.W.; Ad’hiah, A.H. Interleukin-40 is a promising biomarker associated with type 2 diabetes mellitus risk. Immunol. Lett. 2023, 254, 1–5. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, H.; Zhu, C.; Deng, J.; Fan, D. Hypoglycemic Effect of Ginsenoside Rg5 Mediated Partly by Modulating Gut Microbiota Dysbiosis in Diabetic db/db Mice. J. Agric. Food Chem. 2020, 68, 5107–5117. [Google Scholar] [CrossRef]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Stephens, J.W.; Harris, D.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, Y.; Pi, Y.; Gerrits, W.J.J.; De Vries, S.; Shang, L.; Tao, S.; Zhang, S.; Han, D.; Zhu, Z.; et al. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome 2021, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Ye, K.; Li, M.; Ying, J.; Wang, H.; Han, J.; Shi, L.; Xiao, J.; Shen, Y.; Feng, X.; et al. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. Microbiome 2021, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, S.; Qi, G.; Fu, Y.; Wang, W.; Zhang, H.; Wang, J. Dietary Supplemental Xylooligosaccharide Modulates Nutrient Digestibility, Intestinal Morphology, and Gut Microbiota in Laying Hens. Anim. Nutr. 2021, 7, 152–162. [Google Scholar] [CrossRef]
- González-Bosch, C.; Boorman, E.; Zunszain, P.A.; Mann, G.E. Short-Chain Fatty Acids as Modulators of Redox Signaling in Health and Disease. Redox Biol. 2021, 47, 102165. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, T.; Wang, Y.; Mi, J.; Liu, J.; Fan, X.; Niu, R.; Sun, Z. Intestinal Microbiota Regulates Colonic Inflammation in Fluorosis Mice by TLR/NF-κB Pathway through Short-Chain Fatty Acids. Food Chem. Toxicol. 2023, 178, 113866. [Google Scholar] [CrossRef]
- Bahar-Tokman, H.; Demirci, M.; Keskin, F.E.; Cagatay, P.; Taner, Z.; Ozturk-Bakar, Y.; Ozyazar, M.; Kiraz, N.; Kocazeybek, B.S. Firmicutes/Bacteroidetes ratio in the gut microbiota and IL-1Β, IL-6, IL-8, TLR2, TLR4, TLR5 gene expressions in type 2 diabetes. Clin. Lab. 2022, 68, 1903–1910. [Google Scholar] [CrossRef]
- Bai, Z.; Huang, X.; Wu, G.; Ye, H.; Huang, W.; Nie, Q.; Chen, H.; Yin, J.; Chen, Y.; Nie, S. Polysaccharides from red kidney bean alleviating hyperglycemia and hyperlipidemia in type 2 diabetic rats via gut microbiota and lipid metabolic modulation. Food Chem. 2022, 404, 134598. [Google Scholar] [CrossRef]
- Mobini, R.; Tremaroli, V.; Ståhlman, M.; Karlsson, F.; Levin, M.; Ljungberg, M.; Sohlin, M.; Forslund, H.B.; Perkins, R.; Bäckhed, F.; et al. Metabolic effects of Lactobacillus reuteriDSM 17938 in people with type 2 diabetes: A randomized controlled trial. Diabetes Obes. Metab. 2016, 19, 579–589. [Google Scholar] [CrossRef]
- Duboc, H.; Taché, Y.; Hofmann, A.F. The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis. 2014, 46, 302–312. [Google Scholar] [CrossRef]
- Bron, P.A.; Kleerebezem, M.; Brummer, R.-J.; Cani, P.D.; Mercenier, A.; MacDonald, T.T.; Garcia-Ródenas, C.L.; Wells, J.M. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 2017, 117, 93–107. [Google Scholar] [CrossRef]
- Olanipekun, T.O.; Salemi, J.L.; De Grubb, M.C.M.; Gonzalez, S.J.; Zoorob, R.J. Clostridium difficile infection in patients hospitalized with type 2 diabetes mellitus and its impact on morbidity, mortality, and the costs of inpatient care. Diabetes Res. Clin. Pract. 2016, 116, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Montero, R.M.; Herath, A.; Qureshi, A.; Esfandiari, E.; Pusey, C.D.; Frankel, A.H.; Tam, F.W.K. Defining Phenotypes in Diabetic Nephropathy: A novel approach using a cross-sectional analysis of a single centre cohort. Sci. Rep. 2018, 8, 53. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xia, X.; Cai, Z.; Pang, X.; Sun, J.; Lu, Y. Xylose-Oligosaccharide Alleviating Type 2 Diabetes in Mice via Reducing Blood Glucose, Oxidative Stress, Inflammation and Regulating Intestinal Microbiota. Foods 2025, 14, 2093. https://doi.org/10.3390/foods14122093
Li X, Xia X, Cai Z, Pang X, Sun J, Lu Y. Xylose-Oligosaccharide Alleviating Type 2 Diabetes in Mice via Reducing Blood Glucose, Oxidative Stress, Inflammation and Regulating Intestinal Microbiota. Foods. 2025; 14(12):2093. https://doi.org/10.3390/foods14122093
Chicago/Turabian StyleLi, Xiangfei, Xiaofeng Xia, Zifan Cai, Xinyi Pang, Jing Sun, and Yingjian Lu. 2025. "Xylose-Oligosaccharide Alleviating Type 2 Diabetes in Mice via Reducing Blood Glucose, Oxidative Stress, Inflammation and Regulating Intestinal Microbiota" Foods 14, no. 12: 2093. https://doi.org/10.3390/foods14122093
APA StyleLi, X., Xia, X., Cai, Z., Pang, X., Sun, J., & Lu, Y. (2025). Xylose-Oligosaccharide Alleviating Type 2 Diabetes in Mice via Reducing Blood Glucose, Oxidative Stress, Inflammation and Regulating Intestinal Microbiota. Foods, 14(12), 2093. https://doi.org/10.3390/foods14122093