Physicochemical and Functional Properties of Skipjack Tuna (Katsuwonus pelamis) Bone Gelatin Extracted at Different Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Preparation of Gelatin from Skipjack Tuna Bones
2.3. Determination of the Yield
2.4. Determination of Moisture Content
2.5. Gel Strength Measurement
2.6. Amino Acid Composition
2.7. Ultraviolet (UV) Full-Wave Scanning
2.8. FTIR Spectroscopy
2.9. Measurement of Antioxidant Properties
2.9.1. DPPH Radical Scavenging Capacity Analysis
2.9.2. Hydroxyl Radical Scavenging Capacity Analysis
2.9.3. ABTS Radical Scavenging Capacity Analysis
2.10. Determination of Emulsification and Foaming Properties
2.10.1. Emulsifying Capacity Evaluation
2.10.2. Foaming Capacity Evaluation
2.11. Rheological Characteristics Measurement
2.11.1. Temperature Scan
2.11.2. Time Scan
2.12. Scanning Electron Microscopy (SEM)
2.13. Data Analysis
3. Experimental Outcomes and Discussion
3.1. Gel Yield, Moisture Content, and Gel Strength
3.2. Amino Acid Determination
3.3. Ultraviolet (UV) Absorption Spectra
3.4. Analysis of FTIR Spectroscopy
3.5. Analysis of Antioxidant Properties
3.5.1. DPPH Radical Scavenging Capacity Test
3.5.2. Hydroxyl Radical Scavenging Capacity Test
3.5.3. ABTS Radical Scavenging Capacity Test
3.6. Foaming and Emulsifying Properties
3.7. Rheological Characterization Analysis
3.7.1. Temperature Scan
3.7.2. Time Scan
3.8. Microstructure of the Gelatin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, X.W.; Zhou, X.L.; Wang, R.; Shu, C.H.; Zhou, Y.F.; Ying, X.G.; Zheng, B. Protective Effect of Tuna Bioactive Peptide on Dextran Sulfate Sodium-Induced Colitis in Mice. Mar. Drugs 2021, 19, 127. [Google Scholar] [CrossRef] [PubMed]
- Pinrattananon, S.; Courtes, F.; Chorhirankul, N.; Payongsri, P.; Pongtharangkul, T.; Janssen, A.E.M.; Niamsiri, N. The Effect of Different pH Conditions on Peptides’ Separation from the Skipjack Dark Meat Hydrolysate Using Ceramic Ultrafiltration. Foods 2023, 12, 3367. [Google Scholar] [CrossRef]
- Xue, J.; Xu, F.; Lu, W.; Yang, L.; Liang, J.; Mao, P.; Chen, L.; Yang, H.; Chen, K.; Wang, Z.; et al. Development and characterization of gelatin peptides and peptide-calcium chelates from tuna processing byproducts of skins and bones. Food Chem. 2025, 466, 142122. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guillén, M.C.; Giménez, B.; López-Caballero, M.E.; Montero, M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011, 25, 1813–1827. [Google Scholar] [CrossRef]
- Kaewruang, P.; Benjakul, S.; Prodpran, T.; Nalinanon, S. Physicochemical and functional properties of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as affected by extraction conditions. Food Biosci. 2013, 2, 1–9. [Google Scholar] [CrossRef]
- Sha, X.-M.; Tu, Z.-C.; Liu, W.; Wang, H.; Shi, Y.; Huang, T.; Man, Z.-Z. Effect of ammonium sulfate fractional precipitation on gel strength and characteristics of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Food Hydrocoll. 2014, 36, 173–180. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N. Isolation of collagen from fish waste material—Skin, bone and fins. Food Chem. 2000, 68, 277–281. [Google Scholar] [CrossRef]
- Yang, X.R.; Zhao, Y.Q.; Qiu, Y.T.; Chi, C.F.; Wang, B. Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in vitro Gastrointestinal Digestion. Mar. Drugs 2019, 17, 78. [Google Scholar] [CrossRef]
- Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P.; Kishimura, H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012, 29, 389–397. [Google Scholar] [CrossRef]
- Tan, C.C.; Karim, A.A.; Uthumporn, U.; Ghazali, F.C. Effect of Extraction Temperature on the Physicochemical Properties of Gelatin from the Skin of Black Tilapia (Oreochromis mossambicus). J. Phys. Sci. 2019, 30, 1–21. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, J.; Gao, J.; Wu, Y.; Chen, H. Antioxidant and anti-inflammatory potential of peptides derived from the in vitro gastrointestinal digestion of germinated and heat-treated foxtail millet (Setaria italica) proteins. J. Agric. Food Chem. 2020, 68, 9415–9426. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food Chem. 2019, 299, 125165.1–125165.10. [Google Scholar] [CrossRef]
- Suzhou Gerusici Bio-Technology Co., Ltd. Hydroxyl Radical Scavenging Capacity Assay Kit (Cat. No. G0125W) [Assay Kit]. 2023. Available online: https://www.geruisi-bio.com (accessed on 1 January 2024).
- Agrawal, H.; Joshi, R.; Gupta, M. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 2016, 204, 365–372. [Google Scholar] [CrossRef]
- Zamorano-Apodaca, J.C.; García-Sifuentes, C.O.; Carvajal-Millán, E.; Vallejo-Galland, B.; Scheuren-Acevedo, S.M.; Lugo-Sánchez, M.E. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed byproducts of different fish species. Food Chem. 2020, 331, 127350. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Shahidi, F.; Han, X.Q.; Synowiecki, J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 1995, 53, 285–293. [Google Scholar] [CrossRef]
- Dileep, A.; Shamasundar, B.; Binsi, P.; Badii, F.; Howell, N. Effect of Ice Storage on the Physicochemical and Dynamic Viscoelastic Properties of Ribbonfish (Trichiurus spp.) Meat. J. Food Sci. 2006, 70, E537–E545. [Google Scholar] [CrossRef]
- Pei, W.; Hua, Z.; Zhenyu, S.; Dan, L.I.; Yanling, X. Isolation and Characterization of Acid-soluble Collagen and Pepsin-soluble Collagen from the Skin of Hybrid Sturgeon. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 950–959. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Hemar, Y.; Kishimura, H. Characteristics and Properties of Gelatin from Seabass (Lates calcarifer) Swim Bladder: Impact of Extraction Temperatures. Waste Biomass Valorization 2016, 9, 315–325. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Yazdnai-Dehnavi, M.; Mirzapour-Kouhdasht, A. The effects of enzymatically aided acid swelling process on gelatin extracted from fish by-products. Food Sci. Nutr. 2020, 8, 5017–5025. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.M.; Hu, Z.Z.; Ye, Y.H.; Xu, H.; Tu, Z.C. Effect of extraction temperature on the gelling properties and identification of porcine gelatin. Food Hydrocoll. 2019, 92, 163–172. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Cao, G.; Li, Z.; Du, M. Effect of Heat Treatment on Gelatin Properties and the Construction of High Internal Phase Emulsions for 3D Printing. Foods 2024, 13, 4009. [Google Scholar] [CrossRef] [PubMed]
- Blidi, O.E.; Omari, N.E.; Balahbib, A.; Ghchime, R.; Barkiyou, M. Extraction Methods, Characterization and Biomedical Applications of Collagen: A Review. Biointerface Res. Appl. Chem. 2021, 11, 27. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, X.; Wu, X.; Lin, S.; Wang, S. Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake. J. Funct. Foods 2019, 65, 103717. [Google Scholar] [CrossRef]
- Makgobole, M.U.; Onwubu, S.C.; Baruwa, A.; Mpofana, N.; Obiechefu, Z.; Naidoo, D.; Khathi, A.; Mkhwanazi, B. Optimization of Collagen Extraction from Fish Scales Using Tris-Glycine Buffer: A Taguchi Methodological Approach. Mar. Drugs 2024, 22, 562. [Google Scholar] [CrossRef]
- Bae, I.; Osatomi, K.; Yoshida, A.; Osako, K.; Yamaguchi, A.; Hara, K. Biochemical properties of acid-soluble collagens extracted from the skins of underutilized fishes. Food Chem. 2008, 108, 49–54. [Google Scholar] [CrossRef]
- Ding, D.; Du, B.; Zhang, C.; Fakhar, Z.; Yaqin, H. Isolation and identification of an antioxidant collagen peptide from skipjack tuna (Katsuwonus pelamis) bone. RSC Adv. 2019, 9, 27032–27041. [Google Scholar] [CrossRef]
- Song, Z.; Liu, H.; Chen, L.; Chen, L.; Zhou, C.; Hong, P.; Deng, C. Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment—ScienceDirect. Food Chem. 2020, 340, 128139. [Google Scholar] [CrossRef]
- Yan, M.; Li, B.; Zhao, X.; Ren, G.; Zhuang, Y.; Hou, H.; Zhang, X.; Chen, L.; Fan, Y. Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma). Food Chem. 2008, 107, 1581–1586. [Google Scholar] [CrossRef]
- Yang, Y.N.; Li, C.Y.; Song, W.; Wang, W.; Qian, G. Purification, optimization and physicochemical properties of collagen from soft-shelled turtle calipash. Int. J. Biol. Macromol. 2016, 89, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Sarbon, N.M.; Badii, F.; Howell, N.K. Preparation and characterization of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocoll. 2013, 30, 143–151. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, L.; Jia, H.; Li, Q.; Jin, W.; Dong, X.; Pan, J. Physiochemical and functional properties of chum salmon (Oncorhynchus keta) skin gelatin extracted at different temperatures. J. Sci. Food Agric. 2017, 97, 5406–5413. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Kishimura, H. Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem. 2014, 152, 276–284. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Sinthusamran, S.; Kishimura, H. Gelatin from clown featherback skin: Extraction conditions. LWT-Food Sci. Technol. 2016, 66, 186–192. [Google Scholar] [CrossRef]
- Pan, J.; Li, Q.; Jia, H.; Xia, L.; Jin, W.G.; Shang, M.J.; Xu, C.; Dong, X.P. Physiochemical and functional properties of tiger puffer (Takifugu rubripes) skin gelatin as affected by extraction conditions. Int. J. Biol. Macromol. 2017, 109, 1045–1053. [Google Scholar] [CrossRef]
- Kanwate, B.W.; Patel, K.; Karkal, S.S.; Rajoriya, D.; Sharan, K.; Kudre, T.G. Production of Antioxidant, Angiotensin-Converting Enzyme Inhibitory and Osteogenic Gelatin Hydrolysate from Labeo rohita Swim Bladder. Mar. Biotechnol. 2024, 26, 404–420. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Shen, Q.; Ou, A.; Liu, S.; Elango, J.; Wang, S.; Henriques, T.; Wu, W.; Robinson, J.; Bao, B. Effects of ion concentrations on the hydroxyl radical scavenging rate and reducing power of fish collagen peptides. J. Food Biochem. 2019, 43, e12789. [Google Scholar] [CrossRef]
- Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes 2023, 11, 185. [Google Scholar] [CrossRef]
- Elavarasan, K.; Kumar, V.N.; Shamasundar, B.A. Antioxidant and Functional Properties of Fish Protein Hydrolysates from Fresh Water Carp (Catla catla) as Influenced by the Nature of Enzyme. J. Food Process. Preserv. 2013, 38, 1207–1214. [Google Scholar] [CrossRef]
- Tanuja, S.; Viji, P.; Zynudheen, A.; Arnao, M.B. Composition, functional properties and antioxidative activity of hydrolysates prepared from the frame meat of Striped catfish (Pangasianodon hypophthalmus). Egypt. J. Biol. 2012, 14, 27–35. [Google Scholar] [CrossRef]
- Feng, X.; Zhu, H.; Yu, Y.; Dai, H.; Ma, L.; Zhang, Y. Effect of microwave extraction temperatures on the gelling, foaming and emulsifying characteristics of Bigeye Tuna (Thunnus obesus) fish skin gelatin. Food Biosci. 2025, 65, 106095. [Google Scholar] [CrossRef]
- Tan, C.C.; Karim, A.A.; Uthumporn, U.; Ghazali, F.C. Effect extraction temperature on the emulsifying properties of gelatin from black tilapia (Oreochromis mossambicus) skin. Food Hydrocoll. 2020, 108, 106024. [Google Scholar] [CrossRef]
- Farooq, S.; Ahmad, M.I.; Zheng, S.; Ali, U.; Li, Y.; Shixiu, C.; Zhang, H. A review on marine collagen: Sources, extraction methods, colloids properties, and food applications. Collagen Leather 2024, 6, 11. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Li, Y.; Pan, J.; Liu, F.; Dai, H.; Fu, Y.; Huang, T.; Farooq, S.; Zhang, H. Collagen and gelatin: Structure, properties, and applications in food industry. Int. J. Biol. Macromol. 2024, 254 Pt 3, 14. [Google Scholar] [CrossRef]
- Anvari, M.; Chung, D. Dynamic rheological and structural characterization of fish gelatin-Gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocoll. 2016, 60, 516–524. [Google Scholar] [CrossRef]
- Aykin-Dincer, E.; Koc, A.; Erbas, M. Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poult. Sci. 2017, 96, 4124–4131. [Google Scholar] [CrossRef]
- Zhu, B.; Xin, C.; Li, J.; Li, B. Ultrasonic Degradation of Konjac Glucomannan and the Effect of Freezing Combined with Alkali Treatment on Their Rheological Profiles. Molecules 2019, 24, 1860. [Google Scholar] [CrossRef]
- Wang, L.; Liang, Q.; Chen, T.; Wang, Z.; Xu, J.; Ma, H. Characterization of collagen from the skin of Amur sturgeon (Acipenser schrenckii). Food Hydrocoll. 2014, 38, 104109. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, R.; Wang, Y.; Yan, B.; Xue, W. Seasonal differences in the properties of gelatins extracted from skin of silver carp (Hypophthalmichthys molitrix). Food Hydrocoll. 2012, 29, 100–105. [Google Scholar] [CrossRef]
Gel Strength (N) | Yield (%) | Moisture Content (%) | |
---|---|---|---|
100 °C | 0.13 ± 0.04 c | 23.2 ± 0.6 a | 12.0 ± 0.3 c |
90 °C | 0.31 ± 0.02 b | 12.4 ± 0.7 b | 13.0 ± 0.4 b |
80 °C | 0.59 ± 0.05 a | 6.5 ± 0.5 c | 15.2 ± 0.2 a |
Number | Amino Acid | Content |
---|---|---|
1 | Asp | 5.56 |
2 | Glu | 9.96 |
3 | Ser | 2.84 |
4 | His | 0.66 |
5 | Gly | 18.51 |
6 | Thr | 2.25 |
7 | Ala | 8.77 |
8 | Arg | 7.27 |
9 | Tyr | 0.53 |
10 | Cys | 0.01 |
11 | Val | 2.31 |
12 | Met | 1.57 |
13 | Phe | 1.83 |
14 | Ile | 1.22 |
15 | Leu | 2.55 |
16 | Lys | 2.57 |
17 | Pro | 13.45 |
18 | Hyp | 7.74 |
19 | Total | 89.60 |
Foaming Capacity (%) | Foaming Stability (%) | Emulsifying Activity (m2/g) | Emulsion Stability (min) | |
---|---|---|---|---|
80 °C | 25 ± 2 c | 101 ± 5 b | 36 ± 2 a | 121 ± 2 a |
90 °C | 53 ± 4 b | 126 ± 5 a | 30 ± 2 b | 115 ± 2 b |
100 °C | 75 ± 5 a | 134 ± 7 a | 28 ± 2 b | 106 ± 3 c |
Gelling Temperature (°C) | Melting Temperature (°C) | |
---|---|---|
80 °C | 12 ± 1 a | 20 ± 1 a |
90 °C | 9 ± 1 b | 18 ± 1 b |
100 °C | 7 ± 1 b | 16 ± 1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Z.; Shi, H.; Wang, J.; Xia, G. Physicochemical and Functional Properties of Skipjack Tuna (Katsuwonus pelamis) Bone Gelatin Extracted at Different Temperatures. Foods 2025, 14, 2256. https://doi.org/10.3390/foods14132256
Rao Z, Shi H, Wang J, Xia G. Physicochemical and Functional Properties of Skipjack Tuna (Katsuwonus pelamis) Bone Gelatin Extracted at Different Temperatures. Foods. 2025; 14(13):2256. https://doi.org/10.3390/foods14132256
Chicago/Turabian StyleRao, Zhixin, Haohao Shi, Jiamei Wang, and Guanghua Xia. 2025. "Physicochemical and Functional Properties of Skipjack Tuna (Katsuwonus pelamis) Bone Gelatin Extracted at Different Temperatures" Foods 14, no. 13: 2256. https://doi.org/10.3390/foods14132256
APA StyleRao, Z., Shi, H., Wang, J., & Xia, G. (2025). Physicochemical and Functional Properties of Skipjack Tuna (Katsuwonus pelamis) Bone Gelatin Extracted at Different Temperatures. Foods, 14(13), 2256. https://doi.org/10.3390/foods14132256