Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of Biopolymer-Based Films
2.1.1. Preparation of Biopolymer-Based Films
2.1.2. Mechanical Properties
2.1.3. Color Analysis
2.1.4. Thickness, Opacity, and Transparency
2.1.5. Biodegradability
2.2. Biopolymer-Based Coating: Evaluation of Weight Loss and Color
2.3. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Properties of Films
3.2. Thickness, Opacity, and Transparency of Films
3.3. Film Degradation
3.4. Assessment of Color and Weight Loss in Coated Fresh Squid
3.5. Color
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soro, A.B.; Noore, S.; Hannon, S.; Whyte, P.; Bolton, D.J.; O’Donnell, C.; Tiwari, B.K. Current Sustainable Solutions for Extending the Shelf Life of Meat and Marine Products in the Packaging Process. Food Packag. Shelf Life 2021, 29, 100722. [Google Scholar] [CrossRef]
- Koirala, P.; Sagar, N.A.; Thuanthong, A.; Al-Asmari, F.; Jagtap, S.; Nirmal, N. Revolutionizing Seafood Packaging: Advancements in Biopolymer Smart Nano-Packaging for Extended Shelf-Life and Quality Assurance. Food Res. Int. 2025, 203, 115826. [Google Scholar] [CrossRef]
- Cui, F.; Zheng, S.; Wang, D.; Ren, L.; Meng, Y.; Ma, R.; Wang, S.; Li, X.; Li, T.; Li, J. Development of Machine Learning-Based Shelf-Life Prediction Models for Multiple Marine Fish Species and Construction of a Real-Time Prediction Platform. Food Chem. 2024, 450, 139230. [Google Scholar] [CrossRef]
- Urias, R.; Rivera, G.; Martinez, F.; Castaneda, N.; Perez, R.; Rodriguez, G. Stock Assessment of Jumbo Squid Dosidicus gigas in Northwest Mexico. Lat. Am. J. Aquat. Res. 2018, 46, 330–336. [Google Scholar] [CrossRef]
- Morales-Barrera, J.; Carranco-Jáuregui, M.; Téllez-Isaías, G.; Sandoval-Mejía, A.; González-Alcorta, M.; Carrillo-Domínguez, S. Giant Squid (Dosidicus gigas) Meal in Chicken Diets to Enrich Meat with n-3 Fatty Acids. Animals 2022, 12, 2210. [Google Scholar] [CrossRef] [PubMed]
- Morales-Bojórquez, E.; Pacheco-Bedoya, J.L. Jumbo Squid Dosidicus gigas: A New Fishery in Ecuador. Rev. Fish. Sci. Aquac. 2016, 24, 98–110. [Google Scholar] [CrossRef]
- Rodhouse, P.G.K.; Yamashiro, C.; Arguelles, J. Jumbo Squid in the Eastern Pacific Ocean: A Quarter Century of Challenges and Change. Fish. Res. 2016, 173, 109–112. [Google Scholar] [CrossRef]
- Ibáñez, C.M.; Sepúlveda, R.D.; Ulloa, P.; Keyl, F.; Pardo-Gandarillas, M.C. The Biology and Ecology of the Jumbo Squid Dosidicus gigas (Cephalopoda) in Chilean Waters: A Review. Lat. Am. J. Aquat. Res. 2016, 43, 402–414. [Google Scholar] [CrossRef]
- Nigmatullin, C. A Review of the Biology of the Jumbo Squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish. Res. 2001, 54, 9–19. [Google Scholar] [CrossRef]
- Jin, P.; Zhang, Y.; Du, Y.; Chen, X.; Kindong, R.; Xue, H.; Chai, F.; Yu, W. Eddy Impacts on Abundance and Habitat Distribution of a Large Predatory Squid off Peru. Mar. Environ. Res. 2024, 195, 106368. [Google Scholar] [CrossRef]
- Fang, X.; Yu, W.; Chen, X.; Zhang, Y. Response of Abundance and Distribution of Humboldt Squid (Dosidicus gigas) to Short-Lived Eddies in the Eastern Equatorial Pacific Ocean From April to June 2017. Front. Mar. Sci. 2021, 8, 721291. [Google Scholar] [CrossRef]
- Ezquerra-Brauer, J.M.; Miranda, J.M.; Cepeda, A.; Barros-Velázquez, J.; Aubourg, S.P. Effect of Jumbo Squid (Dosidicus gigas) Skin Extract on the Microbial Activity in Chilled Mackerel (Scomber scombrus). LWT—Food Sci. Technol. 2016, 72, 134–140. [Google Scholar] [CrossRef]
- Waraczewski, R.; Muszyński, S.; Sołowiej, B.G. An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules 2022, 27, 8686. [Google Scholar] [CrossRef]
- López-Medina, F.A.; Dublán-García, O.; Morachis-Valdez, A.G.; Gómez-Oliván, L.M.; Islas-Flores, H.; Hernández-Navarro, M.D. Functional and Physicochemical Properties of Protein from Giant Squid (Dosidicus gigas) Extracted Using Foam-aided PH-shift Processing. J. Food Sci. 2023, 88, 1409–1419. [Google Scholar] [CrossRef]
- Dihort-Garcia, G.; Ocano-Higuera, V.M.; Ezquerra-Brauer, J.M.; Lugo-Sanchez, M.E.; Pacheco-Aguilar, R.; Barrales-Heredia, S.M.; Marquez-Rios, E. Producción y Evaluación Funcional de Un Concentrado Proteico de Calamar Gigante (Dosidicus gigas) Obtenido Mediante Disolución Alcalina Production and Functional Evaluation of a Protein Concentrate from Giant Squid ( Dosidicus gigas) Obtained by Alkaline Dissolution. CyTA—J. Food 2011, 9, 171–179. [Google Scholar] [CrossRef]
- Seibel, B.A.; Goffredi, S.K.; Thuesen, E.V.; Childress, J.J.; Robison, B.H. Ammonium Content and Buoyancy in Midwater Cephalopods. J. Exp. Mar. Biol. Ecol. 2004, 313, 375–387. [Google Scholar] [CrossRef]
- Sénchez-Brambila, G.Y.; Alvarez-Manilla, G.; Soto-Cordova, F.; Lyon, B.G.; Pacheco-Aguilar, R. Identification and Characterization of the off-Flavor in Mantle Muscle of Jumbo Squid (Dosidicus gigas) from the Gulf of California. J. Aquat. Food Prod. Technol. 2004, 13, 55–67. [Google Scholar] [CrossRef]
- Jones, B.C.; Rocker, M.M.; Keast, R.S.J.; Callahan, D.L.; Redmond, H.J.; Smullen, R.P.; Francis, D.S. Systematic Review of the Odorous Volatile Compounds That Contribute to Flavour Profiles of Aquatic Animals. Rev. Aquac. 2022, 14, 1418–1477. [Google Scholar] [CrossRef]
- Pires, A.F.; Díaz, O.; Cobos, A.; Pereira, C.D. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-Based Materials. Foods 2024, 13, 2638. [Google Scholar] [CrossRef]
- Matloob, A.; Ayub, H.; Mohsin, M.; Ambreen, S.; Khan, F.A.; Oranab, S.; Rahim, M.A.; Khalid, W.; Nayik, G.A.; Ramniwas, S.; et al. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS Omega 2023, 8, 28932–28944. [Google Scholar] [CrossRef]
- Kumar, L.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Edible Films and Coatings for Food Packaging Applications: A Review. Environ. Chem. Lett. 2022, 20, 875–900. [Google Scholar] [CrossRef]
- Wibowo, C.; Salsabila, S.; Muna, A.; Rusliman, D.; Wasisto, H.S. Advanced Biopolymer-based Edible Coating Technologies for Food Preservation and Packaging. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13275. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wei, Z.; Zhang, Z. Antimicrobial Edible Films for Food Preservation: Recent Advances and Future Trends. Food Bioprocess Technol. 2024, 17, 1391–1411. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef]
- Desobry, S.; Arab-Tehrany, E. Diffusion Barrier Layers for Edible Food Packaging. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 499–518. [Google Scholar]
- Priya, K.; Thirunavookarasu, N.; Chidanand, D.V. Recent Advances in Edible Coating of Food Products and Its Legislations: A Review. J. Agric. Food Res. 2023, 12, 100623. [Google Scholar] [CrossRef]
- Ulusoy, B.H.; Yildirim, F.K.; Hecer, C. Edible Films and Coatings: A Good Idea From Past to Future Technology. J. Food Technol. Res. 2018, 5, 28–33. [Google Scholar] [CrossRef]
- Rajaei Lak, H.; Bazargani-Gilani, B.; Karami, M. Different Coating Application Methods: Zein-based Edible Coating Containing Heracleum persicum Essential Oil for Shelf-life Enhancement of Whey-less Cheese. Food Sci. Nutr. 2024, 12, 5990–6010. [Google Scholar] [CrossRef]
- Jose, A.; Pareek, S.; Radhakrishnan, E.K. Advances in Edible Fruit Coating Materials. In Advances in Agri-Food Biotechnology; Springer: Singapore, 2020; pp. 391–408. [Google Scholar]
- Karnwal, A.; Kumar, G.; Singh, R.; Selvaraj, M.; Malik, T.; Al Tawaha, A.R.M. Natural Biopolymers in Edible Coatings: Applications in Food Preservation. Food Chem. X 2025, 25, 102171. [Google Scholar] [CrossRef]
- Khan, A.; Vu, K.D.; Riedl, B.; Lacroix, M. Optimization of the Antimicrobial Activity of Nisin, Na-EDTA and PH against Gram-Negative and Gram-Positive Bacteria. LWT—Food Sci. Technol. 2015, 61, 124–129. [Google Scholar] [CrossRef]
- Delves-Broughton, J. The Use of EDTA to Enhance the Efficacy of Nisin towards Gram-Negative Bacteria. Int. Biodeterior. Biodegrad. 1993, 32, 87–97. [Google Scholar] [CrossRef]
- Alexieva, I.; Baeva, M.; Popova, A.; Fidan, H.; Goranova, Z.; Milkova-Tomova, I. Development and Application of Edible Coatings with Malva sylvestris L. Extract to Extend Shelf-Life of Small Loaf. Foods 2022, 11, 3831. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lan, X.; Guan, X.; Luo, R.; Zhang, Q.; Ren, H.; Xu, Z.; Tang, J. Comparative Study on the Effects of Chitosan, Carrageenan, and Sodium Alginate on the Film-Forming Properties of Fish Skin Gelatin. LWT 2024, 199, 116111. [Google Scholar] [CrossRef]
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible Films and Coatings in Seafood Preservation: A Review. Food Chem. 2018, 240, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Hossain, A. Preservation of aquatic food using edible films and coatings containing essential oils: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 66–105. [Google Scholar] [CrossRef]
- Abarca, R.L.; Medina, J.; Alvarado, N.; Ortiz, P.A.; Carrillo López, B. Biodegradable Gelatin-Based Films with Nisin and EDTA That Inhibit Escherichia Coli. PLoS ONE 2022, 17, e0264851. [Google Scholar] [CrossRef]
- Mosleh, Y.; de Zeeuw, W.; Nijemeisland, M.; Bijleveld, J.C.; van Duin, P.; Poulis, J.A. The Structure–Property Correlations in Dry Gelatin Adhesive Films. Adv. Eng. Mater. 2021, 23, 2000716. [Google Scholar] [CrossRef]
- Baydin, T.; Aarstad, O.A.; Dille, M.J.; Hattrem, M.N.; Draget, K.I. Long-Term Storage Stability of Type A and Type B Gelatin Gels: The Effect of Bloom Strength and Co-Solutes. Food Hydrocoll. 2022, 127, 107535. [Google Scholar] [CrossRef]
- Fonseca-García, A.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Preparation of a Novel Biodegradable Packaging Film Based on Corn Starch-Chitosan and Poloxamers. Carbohydr. Polym. 2021, 251, 117009. [Google Scholar] [CrossRef]
- Vaidya, A.; Pathak, K. Mechanical Stability of Dental Materials. In Applications of Nanocomposite Materials in Dentistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 285–305. [Google Scholar]
- Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E.; Fávaro Perez, M.A.; Ramos Souza Felipe, F.; Padula, M. Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis Cinerea. Food Bioprocess Technol. 2017, 10, 1585–1594. [Google Scholar] [CrossRef]
- Abarca, R.L.; Vargas, F.; Medina, J.; Paredes, J.C.; López, B.C.; Ortiz, P.A.; Vargas-Bello-Pérez, E. Development and Characterization of Films with Propolis to Inhibit Mold Contamination in the Dairy Industry. Foods 2023, 12, 1633. [Google Scholar] [CrossRef]
- Irissin-Mangata, J.; Bauduin, G.; Boutevin, B.; Gontard, N. New Plasticizers for Wheat Gluten Films. Eur. Polym. J. 2001, 37, 1533–1541. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Liu, C. Film Transparency and Opacity Measurements. Food Anal. Methods 2022, 15, 2840–2846. [Google Scholar] [CrossRef]
- Oliveira Filho, J.G.d.; Rodrigues, J.M.; Valadares, A.C.F.; de Almeida, A.B.; de Lima, T.M.; Takeuchi, K.P.; Alves, C.C.F.; Sousa, H.A.d.F.; da Silva, E.R.; Dyszy, F.H.; et al. Active Food Packaging: Alginate Films with Cottonseed Protein Hydrolysates. Food Hydrocoll. 2019, 92, 267–275. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Suthiluk, P.; Kamhangwong, D.; Benjakul, S. Mechanical, Physico-Chemical, and Antimicrobial Properties of Gelatin-Based Film Incorporated with Catechin-Lysozyme. Chem. Cent. J. 2012, 6, 131. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. Membranes 2022, 12, 442. [Google Scholar] [CrossRef]
- Bishnoi, S.; Trifol, J.; Moriana, R.; Mendes, A.C. Adjustable Polysaccharides-Proteins Films Made of Aqueous Wheat Proteins and Alginate Solutions. Food Chem. 2022, 391, 133196. [Google Scholar] [CrossRef]
- Pranoto, Y.; Salokhe, V.M.; Rakshit, S.K. Physical and Antibacte Rial Properties of Alginate-Based Edible Film Incorporated with Garlic Oil. Food Res. Int. 2005, 38, 267–272. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Gay, J.; Karbowiak, T.; Debeaufort, F. Tuning the Functional Properties of Polysaccharide–Protein Bio-Based Edible Films by Chemical, Enzymatic, and Physical Cross-Linking. Compr. Rev. Food Sci. Food Saf. 2016, 15, 739–752. [Google Scholar] [CrossRef]
- Farahnaky, A.; Dadfar, S.M.M.; Shahbazi, M. Physical and Mechanical Properties of Gelatin–Clay Nanocomposite. J. Food Eng. 2014, 122, 78–83. [Google Scholar] [CrossRef]
- Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-Induced Gelation of Alginate: Mechanisms and Applications. Int. J. Biol. Macromol. 2021, 177, 578–588. [Google Scholar] [CrossRef]
- Kaklamani, G.; Cheneler, D.; Grover, L.M.; Adams, M.J.; Bowen, J. Mechanical Properties of Alginate Hydrogels Manufactured Using External Gelation. J. Mech. Behav. Biomed. Mater. 2014, 36, 135–142. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food Products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Moura-Alves, M.; Souza, V.G.L.; Silva, J.A.; Esteves, A.; Pastrana, L.M.; Saraiva, C.; Cerqueira, M.A. Characterization of Sodium Alginate-Based Films Blended with Olive Leaf and Laurel Leaf Extracts Obtained by Ultrasound-Assisted Technology. Foods 2023, 12, 4076. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Zehetmeyer, G.; Werner, J.O.; Brandelli, A. A Novel Active Packaging Material Based on Starch-Halloysite Nanocomposites Incorporating Antimicrobial Peptides. Food Hydrocoll. 2017, 63, 561–570. [Google Scholar] [CrossRef]
- Perera, K.Y.; Sharma, S.; Duffy, B.; Pathania, S.; Jaiswal, A.K.; Jaiswal, S. An Active Biodegradable Layer-by-Layer Film Based on Chitosan-Alginate-TiO2 for the Enhanced Shelf Life of Tomatoes. Food Packag. Shelf Life 2022, 34, 100971. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Kim, H.-J.; Rhim, J.-W. Effect of Sulfur Nanoparticles on Properties of Alginate-Based Films for Active Food Packaging Applications. Food Hydrocoll. 2021, 110, 106155. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Waldron, K.W. Crosslinking in Polysaccharide and Protein Films and Coatings for Food Contact—A Review. Trends Food Sci. Technol. 2016, 52, 109–122. [Google Scholar] [CrossRef]
- Luciano, C.G.; Tessaro, L.; Lourenço, R.V.; Bittante, A.M.Q.B.; Fernandes, A.M.; Moraes, I.C.F.; do Amaral Sobral, P.J. Effects of Nisin Concentration on Properties of Gelatin Film-forming Solutions and Their Films. Int. J. Food Sci. Technol. 2021, 56, 587–599. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Ben Amara, C.; Oulahal, N.; Gharsallaoui, A.; Joly, C.; Tongdeesoontorn, W.; Rawdkuen, S.; Degraeve, P. Gelatin Films with Nisin and Catechin for Minced Pork Preservation. Food Packag. Shelf Life 2018, 18, 173–183. [Google Scholar] [CrossRef]
- Mokrzycki Cardinal Stefan, W.; Tatol, M. Color Difference Delta E—A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Imran, M.; Revol-Junelles, A.-M.; René, N.; Jamshidian, M.; Akhtar, M.J.; Arab-Tehrany, E.; Jacquot, M.; Desobry, S. Microstructure and Physico-Chemical Evaluation of Nano-Emulsion-Based Antimicrobial Peptides Embedded in Bioactive Packaging Films. Food Hydrocoll. 2012, 29, 407–419. [Google Scholar] [CrossRef]
Nisin/Na-EDTA Condition | Film | Y | TS | Eeff |
---|---|---|---|---|
(%) | (Pa) ×105 | (N/mm2) | ||
non-active film | alginate | 4.95 ± 0.50 A,x | 88.63 ± 9.46 A,x | 284.91 ± 0.67 A,x |
gelatin 220 | 41.75 ± 5.05 A,y | 16.37 ± 1.18 A,y | 34.48 ± 8.37 A,y | |
gelatin 280 | 36.87 ± 7.52 A,y | 21.74 ± 17.94 A,y | 145.84 ± 8.32 A,z | |
G:A = 1:1 | 11.87 ± 1.87 A,z | 40.69 ± 0.87 A,z | 188.33 ± 9.69 A,z | |
active film | alginate | 16.03 ± 2.80 B,x | 7.98 ± 3.45 B,x | 31.64 ± 7.77 B,x |
gelatin 220 | 26.39 ± 0.90 B,x | 2.80 ± 1.17 B,x | 69.50 ± 16.34 B,x | |
gelatin 280 | 65.13 ± 8.65 B,y | 7.46 ± 1.34 B,x | 48.15 ± 27.75 B,x | |
G:A = 1:1 | 19.98 ± 1.44 A,x | 14.66 ± 3.66 B,y | 41.87 ± 1.50 B,x |
Nisin/Na-EDTA Condition | Film | Thickness ε (mm) | Opacity Op (1/mm) | Transparency T (%) |
---|---|---|---|---|
non-active film | alginate | 0.05 ± 0.02 A,x | 3.14 ± 0.58 A,x | 60.84 ± 3.02 A,x |
gelatin 220 | 0.35 ± 0.14 A,y | 0.39 ± 0.05 A,y | 68.05 ± 0.68 A,y | |
gelatin 280 | 0.37 ± 0.15 A,y | 0.43 ± 0.11 A,y | 63.97 ± 1.95 A,x | |
G:A = 1:1 | 0.06 ± 0.01 A,x | 2.49 ± 0.30 A,z | 61.22 ± 1.33 A,x | |
active film | alginate | 0.09 ± 0.02 B,x | 6.21 ± 1.13 B,x | 24.09 ± 2.77 B,x |
gelatin 220 | 0.50 ± 0.06 B,y | 0.67 ± 0.04 A,y | 67.49 ± 0.68 A,y | |
gelatin 280 | 0.53 ± 0.12 B,y | 1.09 ± 0.24 A,y | 57.52 ± 5.23 B,z | |
G:A = 1:1 | 0.08 ± 0.01 A,x | 4.83 ± 0.55 B,z | 48.22 ± 1.88 B,w |
Nisin/Na-EDTA Condition | Formulation | Weight Loss (WL) (%) | |
---|---|---|---|
With Skin | Without Skin | ||
Non-active film | alginate | 63.63 ± 3.79 A,x,C | 59.77 ± 10.51 A,x,C |
gelatin 220 | 68.69 ± 1.89 A,x,C | 65.17 ± 3.69 A,x,C | |
gelatin 280 | 65.70 ± 0.24 A,x,C | 64.21 ± 2.81 A,x,C | |
G:A = 1:1 | 46.15 ± 13.40 A,y,C,* | 65.88 ± 11.13 A,x,D | |
Active film | alginate | 80.41 ± 10.94 B,x,C,* | 64.29 ± 7.36 A,x,D |
gelatin 220 | 54.98 ± 8.79 A,y,C | 55.18 ± 11.37 A,x,C | |
gelatin 280 | 71.28 ± 2.45 A,x,C | 61.34 ± 0.51 A,x,C | |
G:A = 1:1 | 24.05 ± 9.83 B,z,C,* | 59.44 ± 12.41 A,x,D | |
Control | - | 66.36 ± 8.62 * | 62.88 ± 5.97 * |
Nisin/Na-EDTA Condition | Formulation | L* (-) | a* (-) | b* (-) | ΔE* (-) | WI (-) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
With Skin | Without Skin | With Skin | Without Skin | With Skin | Without Skin | With Skin | Without Skin | With Skin | Without Skin | ||
non-active film | alginate | 33.0 ± 2.0 A,x,C | 51.2 ± 4.9 A,x,D | 7.2 ± 3.7 A,x,C | 5.1 ± 0.1 A,x,C,* | 7.4 ± 2.2 A,x,C | 20.9 ± 2.9 A,x,D,* | 26.5 ± 2.6 A,x,C | 27.1 ± 1.1 A,x,C,* | 32.2 ± 1.5 A,x,C,* | 46.5 ± 3.4 A,x,D,* |
gelatin 220 | 44.2 ± 10.1 A,y,C | 54.7 ± 2.7 A,x,D | 6.4 ± 2.6 A,x,C | 3.2 ± 0.6 A,x,D,* | 13.2 ± 5.8 A,x,C,* | 19.1 ± 2.2 A,x,C,* | 17.1 ± 6.5 A,y,C,* | 23.0 ± 2.1 A,x,D,* | 41.9 ± 8.2 A,y,C,* | 50.6 ± 1.7 A,x,D,* | |
gelatin 280 | 35.3 ± 4.3 A,x,C | 51.21 ± 1.4 A,x,D | 7.9 ± 1.2 A,x,C | 3.2 ± 1.5 A,x,D,* | 9.5 ± 2.5 A,x,C | 18.8 ± 4.2 A,x,D | 24.1 ± 3.9 A,x,C | 24.3 ± 3.6 A,x,C,* | 34.1 ± 3.8 A,x,C,* | 47.4 ± 0.9 A,x,D,* | |
G:A = 1:1 | 36.8 ± 3.5 A,x,C | 55.9 ± 1.6 A,x,D | 6.9 ± 0.1 A,x,C | 0.4 ± 0.6 A,y,D | 8.7 ± 1.4 A,x,C | 11.0 ± 1.0 A,y,C | 22.4 ± 3.8 A,x,C | 14.7 ± 2.7 A,y,D | 35.8 ± 3.1 A,x,C,* | 54.6 ± 1.6 A,y,D,* | |
active film | alginate | 31.3 ± 2.4 A,x,C | 55.3 ± 1.9 A,x,D | 10.2 ± 2.3 A,x,C | 3.5 ± 0.3 A,x,D,* | 6.8 ± 1.4 A,x,C | 20.9 ± 1.0 A,x,D,* | 29.0 ± 1.9 A,x,C | 24.2 ± 3.1 A,x,C,* | 30.2 ± 1.9 A,x,C,* | 50.5 ± 1.9 A,x,D,* |
gelatin 220 | 36.2 ± 3.8 A,x,C | 57.1 ± 3.3 A,x,D | 5.2 ± 0.2 A,y,C | 3.2 ± 2.0 A,x,C,* | 7.9 ± 2.5 A,x,C | 19.3 ± 2.8 A,x,D,* | 22.6 ± 5.2 B,y,C | 22.2 ± 2.5 A,x,C,* | 35.5 ± 3.5 B,y,C,* | 52.7 ± 4.0 A,x,D,* | |
gelatin 280 | 32.8 ± 2.2 B,x,C | 55.4 ± 0.8 A,x,D | 9.7 ± 2.8 A,x,C | 1.7 ± 1.3 A,x,D | 8.7 ± 1.7 A,x,C | 14.7 ± 2.8 A,x,C | 27.2 ± 1.6 A,x,C | 18.6 ± 1.7 B,y,D | 31.5 ± 1.5 A,x,C,* | 52.9 ± 0.4 B,x,D,* | |
G:A = 1:1 | 34.3 ± 2.6 A,x,C | 54.3 ± 0.2 A,x,D | 5.4 ± 0.9 A,y,C | 1.1 ± 0.4 A,x,D | 7.7 ± 0.3 A,x,C | 13.7 ± 0.8 A,x,C | 24.5 ± 3.7 A,x,C | 18.0 ± 1.3 A,y,D | 33.7 ± 2.7 A,x,C,* | 52.2 ± 0.3 A,x,D,* | |
Control | 34.6 ± 0.6 C | 57.6 ± 1.3 D | 8.2 ± 0.5 C | 0.5 ± 0.5 D,* | 6.5 ± 0.7 C,* | 13.7 ± 1.7 D,* | 25.4 ± 1.6 C,* | 16.1 ± 2.2 D,* | 55.4 ± 1.3 C,* | 64.9 ± 1.9 D,* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Vera, W.; Escobar-Aguirre, S.; Mora-Luna, R.E.; Abarca, R.L. Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation. Foods 2025, 14, 2100. https://doi.org/10.3390/foods14122100
Silva-Vera W, Escobar-Aguirre S, Mora-Luna RE, Abarca RL. Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation. Foods. 2025; 14(12):2100. https://doi.org/10.3390/foods14122100
Chicago/Turabian StyleSilva-Vera, Wladimir, Sebastián Escobar-Aguirre, Robert Emilio Mora-Luna, and Romina L. Abarca. 2025. "Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation" Foods 14, no. 12: 2100. https://doi.org/10.3390/foods14122100
APA StyleSilva-Vera, W., Escobar-Aguirre, S., Mora-Luna, R. E., & Abarca, R. L. (2025). Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation. Foods, 14(12), 2100. https://doi.org/10.3390/foods14122100