Effects of Grape Pomace Powder Alone and in Combination with Pomegranate Peel Extract and Lactic Acid to Prolong the Shelf Life of Chicken Nuggets
Abstract
1. Introduction
2. Materials and Methods
2.1. Grape Pomace Powder (GPP) Preparation
2.2. Pomegranate Peel Extract (PE) Preparation
2.3. Evaluation of the Antioxidant Properties of GPP and PE
2.4. Sample Preparation
2.5. Microbiological Analyses
2.6. Sensory Analysis
2.7. Measurements of pH
2.8. Shelf Life Calculation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Properties of GPP and PE
3.2. Chicken Nugget Shelf Life
3.3. Effects of Antimicrobials on Shelf Life
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bazara, W.A.; Khattab, A.E.N.A.; Osman, E.M.; Ali, M.R. Extension of Chicken Fillets Shelf Life Using Genetically Improved Probiotic Strain and Chitosan. Food Control 2025, 168, 110827. [Google Scholar] [CrossRef]
- Garavito, J.; Moncayo-Martínez, D.; Castellanos, D.A. Evaluation of Antimicrobial Coatings on Preservation and Shelf Life of Fresh Chicken Breast Fillets Under Cold Storage. Foods 2020, 9, 1203. [Google Scholar] [CrossRef] [PubMed]
- krishnan, R.; Babuskin, K.; Azhagu, S.; Babu, S.; Sasikala, P.; Sabina, M.; Archana, K.; Sivarajan, G.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef]
- Serrano-León, J.S.; Bergamaschi, K.B.; Yoshida, C.M.P.; Saldaña, E.; Selani, M.M.; Rios-Mera, J.D.; Alencar, S.M.; Contreras-Castillo, C.J. Chitosan active films containing agro-industrial residue extracts for shelf life extension of chicken restructured product. Food Res. Int. 2018, 108, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calleja, J.M.; Cruz-Romero, M.C.; O’Sullivan, M.G.; García-López, M.L.; Kerry, J.P. High-pressure-based hurdle strategy to extend the shelf-life of fresh chicken breast fillets. Food Control 2012, 25, 516–524. [Google Scholar] [CrossRef]
- Mexis, S.F.; Chouliara, E.; Kontominas, M.G. Shelf life extension of ground chicken meat using an oxygen absorber and a citrus extract. LWT–Food Sci. Technol. 2012, 49, 21–27. [Google Scholar] [CrossRef]
- Raeisi, S.; Ojagh, S.M.; Pourashouri, P.; Salaun, F.; Quek, S.Y. Shelf-life and quality of chicken nuggets fortified with encapsulated fish oil and garlic essential oil during refrigerated storage. J. Food Sci. Technol. 2021, 58, 121–128. [Google Scholar] [CrossRef]
- Dogan, S.F.; Sahin, S.; Sumnu, G. Effects of soy and rice flour addition on batter rheology and quality of deep-fat fried chicken nuggets. J. Food Eng. 2005, 71, 127–132. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Abd El-Wahab, M.G.; Oleneva, Z.A.; Toshev, A.D. Physicochemical, organoleptic evaluation and shelf life extension of quinoa flour-coated chicken nuggets. J. Food Qual. 2022, 9, 9312179. [Google Scholar] [CrossRef]
- Martínez, L.; Ros, G.; Nieto, G. Effect of natural extracts obtained from food industry by-products on nutritional quality and shelf life of chicken nuggets enriched with organic Zn and Se provided in broiler diet. Poult. Sci. 2020, 99, 1491–1501. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F. Fruit and Pomace Extracts: Applications to Improve the Safety and Quality of Meat Products. In Fruit and Pomace Extracts: Biological Activity, Potential Applications and Beneficial Health Effects; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 1–28. [Google Scholar]
- McClements, D.J. Future foods: Is it possible to design a healthier and more sustainable food supply? Nutr. Bull. 2020, 45, 341–354. [Google Scholar] [CrossRef]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Khalek, H.H.; Zahran, D.A. Utilization of fruit by-product in ground meat preservation. Food Sci. Qual. Manag. 2013, 11, 49–60. [Google Scholar]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of agri-food by-products in the food industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Ozkan, G.; Günal-Köroğlu, D.; Capanoglu, E. Chapter One-Valorization of fruit and vegetable processing by-products/wastes. Adv. Food Nutr. Res. 2023, 107, 1–39. [Google Scholar] [PubMed]
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary fiber from underutilized plant resources—A positive approach for valorization of fruit and vegetable wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of vegetable and fruit by-products as functional ingredient and food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Samarakoo, K.; Rupasighe, H.P.V. Valorization of grape pomace by microbial fermentation: Composition, biological activities and potential applications for the food industry. J. Food Compos. Anal. 2025, 144, 107656. [Google Scholar] [CrossRef]
- Kaseke, T.; Chew, S.C.; Magangana, T.P.; Fawole, O.A. Elucidating the Microencapsulation of bioactives from pomegranate fruit waste for enhanced stability, controlled release, biological activity, and application. Food Bioproc. Technol. 2025, 18, 4222–4250. [Google Scholar] [CrossRef]
- Conte, A.; Panza, O.; Del Nobile, M.A. Modeling the dehydration kinetic of grape pomace. LWT-Food Sci. Technol. 2024, 198, 116021. [Google Scholar] [CrossRef]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Gökmen, V.; Serpen, A.; Fogliano, V. Direct measurement of the total antioxidant capacity of foods: The “QUENCHER” approach. Trends Food Sci. Technol. 2009, 20, 278–288. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Seifzadeh, N.; Ali Sahari, M.; Barzegar, M.; Ahmadi Gavlighi, H.; Calani, L.; Del Rio, D.; Galaverna, G. Evaluation of polyphenolic compounds in membrane concentrated pistachio hull extract. Food Chem. 2019, 277, 398–406. [Google Scholar] [CrossRef]
- Ministerial Health Decree, 03/08/85 n. 32, Rev. 00/2013. Guide-Lines for the Risk Analysis in the Field of Food Microbiology. Available online: https://www.ceirsa.org/docum/allegato_punto4.pdf (accessed on 14 February 2025).
- Incoronato, A.L.; Gammariello, D.; Conte, A.; Del Nobile, M.A. Technological solutions to increase shelf life of fresh meat burger. J. Food Process. Preserv. 2015, 39, 1324–1333. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Incoronato, A.L.; Conte, A.; Del Nobile, M.A. Shelf life of reduced pork back-fat content sausages as affected by antimicrobial compounds and modified atmosphere packaging. Int. J. Food Microbiol. 2011, 150, 1–7. [Google Scholar] [CrossRef]
- Moccia, F.; Agustin-Salazar, S.; Verotta, L.; Caneva, E.; Giovando, S.; D’Errico, G.; Panzella, L.; d’Ischia, M.; Napolitano, A. Antioxidant properties of agri-food byproducts and specific boosting effects of hydrolytic treatments. Antioxidants 2009, 9, 438. [Google Scholar] [CrossRef]
- Panzella, L.; Cerruti, P.; Ambrogi, V.; Agustin-Salazar, S.; D’Errico, G.; Carfagna, C.; Goya, L.; Ramos, S.; Martín, M.A.; Napolitano, A.; et al. A superior all-natural antioxidant biomaterial from spent coffee grounds for polymer stabilization, cell protection, and food lipid preservation. ACS Sustain. Chem. Eng. 2016, 4, 1169–1179. [Google Scholar] [CrossRef]
- Sağdıç, O.; Öztürk, I.; Yılmaz, M.T.; Yetim, H. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. J. Food Sci. 2011, 76, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Selani, M.M.; Contreras-Castillo, C.J.; Shirahigue, L.D.; Gallo, C.R.; Plata-Oviedo, M.; Montes-Villanueva, N.D. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011, 88, 397–403. [Google Scholar] [CrossRef]
- Hayrapetyan, H.; Hazeleger, H.C.; Beumer, R.R. Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control 2011, 30, 1–7. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Mantzourani, I.; Daoutidou, M.; Alexopoulos, A. The antimicrobial effect of thymol and carvacrol in combination with organic acids against foodborne pathogens in chicken and beef meat fillets. Microorganisms 2025, 13, 182. [Google Scholar] [CrossRef]
- Cortez-Vega, W.R.; Pizato, S.; Prentice, C. Quality of raw chicken breast stored at 5°C and packaged under different modified atmospheres. J. Food Saf. 2012, 32, 360–368. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Esteves, A.; Carballo, J.; Alonso-Calleja, C.; Capita, R. Effect of sodium nitrite, nisin and lactic acid on the prevalence and antibiotic resistance patterns of Listeria monocytogenes naturally present in poultry. Foods 2023, 12, 3273. [Google Scholar] [CrossRef]
- Garcia-Lomillo, J.; Gonzalez-SanJose, M.L.; Del Pino-García, R.; Rivero-Perez, M.D.; Muñiz-Rodríguez, P. Antioxidant and Antimicrobial Properties of Wine Byproducts and Their Potential Uses in the Food Industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef]
- Alberto, M.R.; Farías, M.E.; Manca de Nadra, M.C. Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J. Agric. Food Chem. 2001, 49, 4359–4363. [Google Scholar] [CrossRef]
- Hervert-Hernandez, D.; Pintado, C.; Rotger, R.; Goni, I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int. J. Food Microbiol. 2009, 136, 119–122. [Google Scholar] [CrossRef]
- Bekeir, H.S.; Hamad, A.; Eleiwa, N.Z.; Amin, R.A. Effect of pomegranate (Punica granatum) fruit molasses as a natural marinade on the microbiological quality and shelf life of refrigerated chicken fillet. Meat Technol. 2024, 65, 93–102. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Naveena, B.M.; Muthukumar, M.; Girish, P.S.; Kondaiah, N. Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 °C). Meat Sci. 2011, 88, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Naveena, B.M.; Sen, A.R.; Vaithiyanathan, S.; Babji, Y.; Kondaiah, N. Comparative efficacy of pomegranate juice, pomegranate rind powder and BHT in cooked chicken patties. Meat Sci. 2008, 80, 1304–1308. [Google Scholar] [CrossRef] [PubMed]
- Devatkal, S.K.; Naveena, B.M. Effect of salt, kinnow and pomegranate fruit byproduct powders on color and oxidative stability of raw ground goat meat during refrigerated storage. Meat Sci. 2010, 85, 306–311. [Google Scholar] [CrossRef]
- Rahman, M.; Hashem, M.; Azad, M.; Choudhury, M.; Bhuiyan, M. Techniques of meat preservation—A review. Meat Res. 2023, 3, 55. [Google Scholar] [CrossRef]
Ingredients | #A (g) | #B (g) | #C (g) |
---|---|---|---|
Sparkling water | 95 | 95 | 95 |
Wheat flour 00 | 55 | 25 | 25 |
Pomace powder | - | 30 | 30 |
Pomegranate extract | - | - | 12 |
Sample | Dipping in Lactic Acid | Batter | Breaded Coating |
---|---|---|---|
CTRL 1 | no | #A | Breadcrumb |
CTRL 2 | yes | #A | Breadcrumb |
SAMP_1 | no | #B | GPP |
SAMP_2 | yes | #B | GPP |
SAMP_3 | no | #C | GPP |
SAMP_4 | yes | #C | GPP |
Sample |
EC50 (mg/mL) (DPPH) |
Trolox Equivalents (FRAP) |
Trolox Equivalents (CUPRAC) |
Gallic Acid Equivalents (TPC) |
---|---|---|---|---|
GPP | 0.365 ± 0.041 a | 0.024 ± 0.002 b | 0.049 ± 0.003 b | 0.045 ± 0.001 b |
PE | 0.031 ± 0.001 b | 0.645 ± 0.028 a | 0.316 ± 0.003 a | 0.221 ± 0.001 a |
Sample | MESOF | MAL | ||||
---|---|---|---|---|---|---|
PSY | LAB | ENTER | PSEUD | STAPH | ||
CTRL_1 | 1.804 ± 0.299 d | 0.762 ± 0.164 e | >13 | 1.8165 ± 0.163 a | 1.151 ± 0.207 c | >13 |
CTRL_2 | 2.650 ± 0.210 d | 2.099 ± 0.162 d | >13 | 2.2175 ± 0.233 a | 1.730 ± 0.171 c | >13 |
SAMP_1 | 7.156 ± 0.349 c | 3.989 ± 0.335 c | 10.331 ± 0.481 b | >13 | 2.905 ± 0.406 b | >13 |
SAMP_2 | 7.924 ± 0.371 b,c | 6.780 ± 0.211 b | 13.029 ± 0.996 a | >13 | 6.584 ± 0.225 a | >13 |
SAMP_3 | 8.578 ± 0.470 b | 5.965 ± 0.474 b | >13 | >13 | 3.927 ± 0.698 b | >13 |
SAMP_4 | 9.978 ± 0.541 a | 10.725 ± 0.388 a | >13 | >13 | >13 | >13 |
Sample | SAL | |
---|---|---|
QG Uncooked [Day] | QG Cooked [Day] | |
CTRL_1 | 7.337 ± 0.191 b | 7.778 ± 0.191 b |
CTRL_2 | 7.495 ± 0.218 b | 8.028 ± 0.243 b |
SAMP_1 | 10.351 ± 0.433 a | 13.703 ± 0.840 a |
SAMP_2 | 10.508 ± 0.533 a | 13.445 ± 0.784 a |
SAMP_3 | 11.545 ± 0.538 a | >13 |
SAMP_4 | 11.180 ± 0.741 a | >13 |
Sample | Shelf Life [Day] |
---|---|
CTRL_1 | 0.762 ± 0.164 e |
CTRL_2 | 1.730 ± 0.171 d,e |
SAMP_1 | 2.905 ± 0.406 c,d |
SAMP_2 | 6.584 ± 0.225 b |
SAMP_3 | 3.927 ± 0.698 c |
SAMP_4 | 9.978 ± 0.541 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Corcia, M.L.; Lordi, A.; Moccia, F.; Conte, A.; Del Nobile, M.A. Effects of Grape Pomace Powder Alone and in Combination with Pomegranate Peel Extract and Lactic Acid to Prolong the Shelf Life of Chicken Nuggets. Foods 2025, 14, 2040. https://doi.org/10.3390/foods14122040
Di Corcia ML, Lordi A, Moccia F, Conte A, Del Nobile MA. Effects of Grape Pomace Powder Alone and in Combination with Pomegranate Peel Extract and Lactic Acid to Prolong the Shelf Life of Chicken Nuggets. Foods. 2025; 14(12):2040. https://doi.org/10.3390/foods14122040
Chicago/Turabian StyleDi Corcia, Maria Luigia, Adriana Lordi, Federica Moccia, Amalia Conte, and Matteo Alessandro Del Nobile. 2025. "Effects of Grape Pomace Powder Alone and in Combination with Pomegranate Peel Extract and Lactic Acid to Prolong the Shelf Life of Chicken Nuggets" Foods 14, no. 12: 2040. https://doi.org/10.3390/foods14122040
APA StyleDi Corcia, M. L., Lordi, A., Moccia, F., Conte, A., & Del Nobile, M. A. (2025). Effects of Grape Pomace Powder Alone and in Combination with Pomegranate Peel Extract and Lactic Acid to Prolong the Shelf Life of Chicken Nuggets. Foods, 14(12), 2040. https://doi.org/10.3390/foods14122040