Starches in Rice: Effects of Rice Variety and Processing/Cooking Methods on Their Glycemic Index
Abstract
:1. Introduction
2. Starch Composition and Granule Structure of Rice
3. Rice Types and Glycemic Index
Rice Type | Starch Content (%) | Amylose (%) | Amylopectin (%) | Glycemic Index | Reference |
---|---|---|---|---|---|
White Rice | 70–80 | 20–25 | 75–80 | 64–93 | [34] |
Brown Rice | 65–75 | 20–25 | 75–80 | 50–55 | [35] |
Red Rice | 65–75 | 20–30 | 70–80 | 55–65 | [36,37] |
Black Rice | 60–70 | 15–20 | 80–85 | 42–50 | [38,39] |
Glutinous Rice | 75–85 | 0–5 | 95–100 | 75–98 | [23,40] |
3.1. White Rice
3.2. Glutinous Rice
3.3. Brown Rice
3.4. Black Rice
3.5. Red Rice
4. Effects of Food Ingredient Interaction on Rice Starch
4.1. Starch–Protein Interaction
4.2. Starch–Lipid Interaction
4.3. Starch–Dietary Fiber Interaction
4.4. Starch–Polyphenol Interaction
5. Rice Genotypes
6. Processing Effects on the Glycemic Index of Rice
6.1. Milling
6.2. Extrusion
6.3. Baking
6.4. Cooking
6.5. Parboiling
6.6. Retrogradation
7. Conclusions and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandio, A.A.; Gokmenoglu, K.K.; Ahmad, M.; Jiang, Y. Towards sustainable rice production in Asia: The role of climatic factors. Earth Syst. Environ. 2022, 6, 1–14. [Google Scholar] [CrossRef]
- United States Department of Agriculture. World agricultural production: Ju Foreign Agricultural Service. 2024. Available online: https://www.fas.usda.gov/data/production/commodity/0422110 (accessed on 12 April 2025).
- Al-Hashimi, A.M. A review: Growing rice in the controlled environments. Biosci. Biotechnol. Res. Asia 2023, 20, 13–28. [Google Scholar] [CrossRef]
- Kumar, A.; Sahoo, U.; Lal, M.K.; Tiwari, R.K.; Lenka, S.K.; Singh, N.R.; Gupta, O.P.; Sah, R.P.; Sharma, S. Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. J. Cereal Sci. 2022, 106. [Google Scholar] [CrossRef]
- Lovegrove, A.; Kosik, O.; Bandonill, E.; Abilgos-Ramos, R.; Romero, M.; Sreenivasulu, N.; Shewry, P. Improving rice dietary fibre content and composition for human health. J. Nutr. Sci. Vitaminol. 2019, 65, S48–S50. [Google Scholar] [CrossRef]
- Reed, M.O.; Ai, Y.; Leutcher, J.L.; Jane, J.L. Effects of cooking methods and starch structures on starch hy-drolysis rates of rice. J. Food Sci. 2013, 78, H1076–H1081. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-T.; Stewart, M.L. Effect of variety and cooking method on resistant starch content of white rice and subsequent postprandial glucose response and appetite in humans. Asia Pac. J. Clin. Nutr. 2013, 22, 372–379. [Google Scholar] [CrossRef]
- Dwiningsih, Y.; Alkahtani, J. Glycemic index of diverse rice genotypes and rice products associated with health and diseases. ASSET 2023, 5, 0230112. [Google Scholar] [CrossRef]
- Howlader, M.Z.H.; Biswas, S.K. Screening for nutritionally rich and low glycemic index Bangladeshi rice varieties. Final Rep. CF 2009, 6, 1–34. [Google Scholar]
- Van Ngo, T.; Kunyanee, K.; Luangsakul, N. Insights into recent updates on factors and technologies that modulate the glycemic index of rice and its products. Foods 2023, 12, 3659. [Google Scholar] [CrossRef]
- Srikaeo, K. Application of a rapid in vitro method based on glucometer for determination of starch digestibility and estimated glycemic index in rice. Starch-Starke 2023, 75, 2200174. [Google Scholar] [CrossRef]
- Yao, F.; Li, C.; Li, J.; Chang, G.; Wang, Y.; Campardelli, R.; Perego, P.; Cai, C. Effects of different cooking methods on glycemic index, physicochemical indexes, and digestive characteristics of two kinds of rice. Processes 2023, 11, 2167. [Google Scholar] [CrossRef]
- Fitzgerald, M.A.; Rahman, S.; Resurreccion, A.P.; Concepcion, J.; Daygon, V.D.; Dipti, S.S.; Kabir, K.A.; Klingner, B.; Morell, M.K.; Bird, A.R. Identification of a major genetic determinant of glycaemic index in rice. Rice 2011, 4, 66–74. [Google Scholar] [CrossRef]
- Maji, B. Introduction to natural polysaccharides. In Functional Polysaccharides for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–31. [Google Scholar]
- Fernandes, J.-M.; Madalena, D.A.; Pinheiro, A.C.; Vicente, A.A. Rice in vitro digestion: Application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study. J. Food Sci. Technol. 2020, 57, 1393–1404. [Google Scholar] [CrossRef]
- Trinh, K.S. Recrystallization of starches by hydrothermal treatment: Digestibility, structural, and physicochemical properties. J. Food Sci. Technol. 2015, 52, 7640–7654. [Google Scholar] [CrossRef]
- Huang, M.; Hu, L.; Chen, J.; Cao, F. In vitro testing indicates an accelerated rate of digestion of starch into glucose of cooked rice with the development of low amylose rice in China. Food Chem. X 2022, 14, 100278. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.A.; Sarbini, S.R. The potential of resistant starch as a prebiotic. Crit. Rev. Biotechnol. 2016, 36, 578–584. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant starch—A review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Juliano, B.O.; Tuaño, A.P.P. 2-Gross structure and composition of the rice grain. In Rice, 4th ed.; Bao, J., Ed.; AACC International Press: St. Paul, MI, USA, 2019; pp. 31–53. [Google Scholar] [CrossRef]
- Wang, L.; Gong, Y.; Li, Y.; Tian, Y. Structure and properties of soft rice starch. Int. J. Biol. Macromol. 2020, 157, 10–16. [Google Scholar] [CrossRef]
- Fitzgerald, M.A.; McCouch, S.R.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef]
- Boers, H.M.; Hoorn, J.S.T.; Mela, D.J. A systematic review of the influence of rice characteristics and processing methods on postprandial glycaemic and insulinaemic responses. Br. J. Nutr. 2015, 114, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Li, C. Addition of rice protein inhibits rice starch digestibility by enlarging the hydrogel pore size and promoting the formation of resistant starch with a DP around 150. Food Hydrocoll. 2025, 164, 111211. [Google Scholar] [CrossRef]
- Wang, Y.; Ral, J.-P.; Saulnier, L.; Kansou, K. How Does Starch Structure Impact Amylolysis? Review of Current Strategies for Starch Digestibility Study. Foods 2022, 11, 1223. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.J.; Semmichon, S.; Jarh, A.; Sinha, M.; Gogoi, M. Factors affecting starch digestibility and glycemic index of rice: A comprehensive review. Plant Arch. 2024, 24, 568–576. [Google Scholar] [CrossRef]
- Guzman, M. Rice With a Hawaiian Touch. J. Ren. Nutr. 2016, 26, e19–e22. [Google Scholar] [CrossRef]
- Priya, T.S.R.; Nelson, A.R.L.E.; Ravichandran, K.; Antony, U. Nutritional and functional properties of coloured rice varieties of South India: A review. J. Ethn. Foods 2019, 6, 11. [Google Scholar] [CrossRef]
- Srichuwong, S.; Curti, D.; Austin, S.; King, R.; Lamothe, L.; Gloria-Hernandez, H. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chem. 2017, 233, 1–10. [Google Scholar] [CrossRef]
- Rondanelli, M.; Ferrario, R.A.; Barrile, G.C.; Guido, D.; Gasparri, C.; Ferraris, C.; Cavioni, A.; Mansueto, F.; Mazzola, G.; Patelli, Z.; et al. The Glycemic Index of Indica and Japonica Subspecies Parboiled Rice Grown in Italy and the Effect on Glycemic Index of Different Parboiling Processes. J. Med. Food 2023, 26, 422–427. [Google Scholar] [CrossRef]
- Gunaratne, A.; Wu, K.; Kong, X.; Gan, R.; Sui, Z.; Kumara, K.; Ratnayake, U.K.; Senarathne, K.; Kasapis, S.; Corke, H. Physicochemical properties, digestibility and expected glycaemic index of high amylose rice differing in length-width ratio in Sri Lanka. Int. J. Food Sci. Technol. 2019, 55, 74–81. [Google Scholar] [CrossRef]
- Afandi, F. The Correlation Between Amylopectin Chain-Length and Glycemic Index Value of Carbohydrate Foods: A Review. Food Sci. J. Food Sci. Technol. 2023, 3, 165–180. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Juliano, B.O. Rice in human nutrition. Int. Rice Res. Inst. 1993. [Google Scholar]
- Frei, M.; Becker, K. On Rice, Biodiversity & Nutrients. University of Hohenheim, Stuttgart. 2004. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d9dd183bb8763f44ad34be8906d60ba5f0b5383b (accessed on 15 April 2025).
- Ghasemzadeh, A.; Karbalaii, M.T.; Jaafar, H.Z.; Rahmat, A. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chem. Cent. J. 2018, 12, 17. [Google Scholar] [CrossRef]
- Somaratne, G.; Prasantha, B.; Dunuwila, G.; Chandrasekara, A.; Wijesinghe, D.; Gunasekara, D. Effect of polishing on glycemic index and antioxidant properties of red and white basmati rice. Food Chem. 2017, 237, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Tang, X.; Zhang, M.; Hu, X.; Yu, C.; Zhu, Z.; Shao, Y. Effects of different extrusion temperatures on extrusion behavior, phenolic acids, antioxidant activity, anthocyanins and phytosterols of black rice. RSC Adv. 2018, 8, 7123–7132. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef]
- Sun, Q.; Spiegelman, D.; van Dam, R.M.; Holmes, M.D.; Malik, V.S.; Willett, W.C.; Hu, F.B. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch. Intern. Med. 2010, 170, 961–969. [Google Scholar] [CrossRef]
- Paiva, F.F.; Vanier, N.L.; Berrios, J.D.J.; Pinto, V.Z.; Wood, D.; Williams, T.; Pan, J.; Elias, M.C. Polishing and parboiling effect on the nutritional and technological properties of pigmented rice. Food Chem. 2016, 191, 105–112. [Google Scholar] [CrossRef]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef]
- Kumari, S.D.P.; Devi, G.N.; Chamundeswari, N. Glycemic index studies in rice (Oryza sativa L.) varieties developed by ANGRAU. Int. J. Agric. Sci. 2021, 17, 133–137. [Google Scholar] [CrossRef]
- Subramaniam, J.; Yusof, B.N.M.; Ngan, H.B.; Ismail, A.; Azlan, A. Relationship between Amylose Con-tent and Glycemic Index of Commonly Consumed White Rice. IOSR J. Agric. Vet. Sci. 2014, 7, 12–18. [Google Scholar]
- Setyaningsih, W.; Hidayah, N.; Saputro, I.E.; Lovillo, M.P.; Barroso, C.G. Study of glutinous and non-glutinous rice (Oryza sativa) varieties on their antioxidant compounds. In Proceedings of the International Conference on Plant, Marine and Environmental Sciences, Kuala Lumpur, Malaysia, 1–2 January 2015. [Google Scholar]
- Guo, L.; Zhang, J.; Hu, J.; Li, X.; Du, X. Susceptibility of glutinous rice starch to digestive enzymes. Carbohydr. Polym. 2015, 128, 154–162. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S. Rice intake and type 2 diabetes in Japanese men and women: The Japan Public Health Center–based Prospective Study. Am. J. Clin. Nutr. 2010, 92, 1468–1477. [Google Scholar] [CrossRef]
- Kaur, B.; Ranawana, V.; Henry, J. The glycemic index of rice and rice products: A review, and table of GI values. Crit. Rev. Food Sci. Nutr. 2013, 56, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Sheng, T.; Mang, L.; Wu, Y.; Zhu, H.; Ha, C.; Xiao, S.; Yu, Z.; Zhou, Y. Functions of high glycemic index carbohydrates: Exploring the effect of amorphous rice starch digestibility on glycometabolism. Int. J. Biol. Macromol. 2025, 307, 142287. [Google Scholar] [CrossRef] [PubMed]
- Tuaño, A.P.P.; Barcellano, E.C.G.; Rodriguez, M.S. Resistant starch levels and in vitro starch digestibility of selected cooked Philippine brown and milled rices varying in apparent amylose content and glycemic index. Food Chem. Mol. Sci. 2021, 2, 100010. [Google Scholar] [CrossRef]
- Wiruch, P.; Naruenartwongsakul, S.; Chalermchart, Y. Textural properties, resistant starch, and in vitro starch digestibility as affected by parboiling of brown glutinous rice in a retort pouch. Curr. Res. Nutr. Food Sci. J. 2019, 7, 555–567. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Kalita, P. Rice-not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci. Technol. 2020, 97, 265–285. [Google Scholar] [CrossRef]
- Saleh, A.S.; Wang, P.; Wang, N.; Yang, L.; Xiao, Z. Brown rice versus white rice: Nutritional quality, po-tential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1070–1096. [Google Scholar] [CrossRef]
- Thondre, P.; Monro, J.; Mishra, S.; Henry, C. High molecular weight barley β-glucan decreases particle breakdown in chapattis (Indian flat breads) during in vitro digestion. Food Res. Int. 2010, 43, 1476–1481. [Google Scholar] [CrossRef]
- Zhang, B.; Qiao, D.; Zhao, S.; Lin, Q.; Wang, J.; Xie, F. Starch-based food matrices containing protein: Re-cent understanding of morphology, structure, and properties. Trends Food Sci. Technol. 2021, 114, 212–231. [Google Scholar] [CrossRef]
- Sapwarobol, S.; Saphyakhajorn, W.; Astina, J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr. Metab. Insights 2021, 14, 11786388211058559. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Wang, M.; Zhang, G. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. J. Agric. Food Chem. 2013, 61, 8608–8615. [Google Scholar] [CrossRef]
- Rattanamechaiskul, C.; Soponronnarit, S.; Prachayawarakorn, S.; Tungtrakul, P. Optimal operating conditions to produce nutritious partially parboiled brown rice in a humidified hot air fluidized bed dryer. Dry. Technol. 2013, 31, 368–377. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S.; Ramaswamy, H.S.; Du, Y.; Yu, Y.; Wu, J. Dynamics of texture change and in vitro starch digestibility with high-pressure, freeze-thaw cycle, and germination-parboiling treatments of brown rice. Trans. ASABE 2021, 64, 103–115. [Google Scholar] [CrossRef]
- Wu, J.; McClements, D.J.; Chen, J.; Hu, X.; Liu, C. Improvement in nutritional attributes of rice using su-perheated steam processing. J. Funct. Foods 2016, 24, 338–350. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.H.; Kim, S.H.; Lee, S.S. Meal replacement with mixed rice is more effective than white rice in weight control, while improving antioxidant enzyme activity in obese women. Nutr. Res. 2008, 28, 66–71. [Google Scholar] [CrossRef]
- Meera, K.; Smita, M.; Haripriya, S.; Sen, S. Varietal influence on antioxidant properties and glycemic index of pigmented and non-pigmented rice. J. Cereal Sci. 2019, 87, 202–208. [Google Scholar] [CrossRef]
- Zhu, R.; Fan, Z.; Han, Y.; Li, S.; Li, G.; Wang, L.; Ye, T.; Zhao, W. Acute effects of three cooked non-cereal starchy foods on postprandial glycemic responses and in vitro carbohydrate digestion in comparison with whole grains: A randomized trial. Nutrients 2019, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, B.; Zawawi, N.; Omar, A.R.; Ismail, M. Predisposition to insulin resistance and obesity due to staple consumption of rice: Amylose content versus germination status. PLoS ONE 2017, 12, e0181309. [Google Scholar] [CrossRef] [PubMed]
- Trinidad, T.P.; Mallillin, A.C.; Encabo, R.R.; Sagum, R.S.; Felix, A.D.; Juliano, B.O. The effect of apparent amylose content and dietary fibre on the glycemic response of different varieties of cooked milled and brown rice. Int. J. Food Sci. Nutr. 2013, 64, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Panlasigui, L.N.; Thompson, L.U. Blood glucose lowering effects of brown rice in normal and diabetic subjects. Int. J. Food Sci. Nutr. 2006, 57, 151–158. [Google Scholar] [CrossRef]
- Kumar, A.; Sahu, C.; A Panda, P.; Biswal, M.; Sah, R.P.; Lal, M.K.; Baig, M.J.; Swain, P.; Behera, L.; Chattopadhyay, K.; et al. Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.). J. Sci. Food Agric. 2020, 100, 1598–1607. [Google Scholar] [CrossRef]
- Nyambe-Silavwe, H.; Villa-Rodriguez, J.A.; Ifie, I.; Holmes, M.; Aydin, E.; Jensen, J.M.; Williamson, G. Inhibition of human α-amylase by dietary polyphenols. J. Funct. Foods 2015, 19, 723–732. [Google Scholar] [CrossRef]
- Drechsler, K.C.; Bornhorst, G.M. Modeling the softening of carbohydrate-based foods during simulated gastric digestion. J. Food Eng. 2018, 222, 38–48. [Google Scholar] [CrossRef]
- Farooq, M.A.; Murtaza, M.A.; Aadil, R.M.; Arshad, R.; Rahaman, A.; Siddique, R.; Hassan, S.; Akhtar, H.M.S.; Manzoor, M.F.; Karrar, E.; et al. Investigating the structural properties and in vitro digestion of rice flours. Food Sci. Nutr. 2021, 9, 2668–2675. [Google Scholar] [CrossRef]
- Klunklin, W.; Savage, G. Physicochemical, antioxidant properties and in vitro digestibility of wheat–purple rice flour mixtures. Int. J. Food Sci. Technol. 2018, 53, 1962–1971. [Google Scholar] [CrossRef]
- Farooq, A.M.; Li, C.; Chen, S.; Fu, X.; Zhang, B.; Huang, Q. Particle size affects structural and in vitro digestion properties of cooked rice flours. Int. J. Biol. Macromol. 2018, 118, 160–167. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, B.; Zhang, R.; Chi, J.; Wei, Z.; Xu, Z.; Zhang, Y.; Tang, X. Separation, pu-rification and identification of antioxidant compositions in black rice. Agric. Sci. China 2006, 5, 431–440. [Google Scholar] [CrossRef]
- Sangma, H.C.R.; Parameshwari, S. Health benefits of black rice (Zizania aqatica)—A review. Mater. Today: Proc. 2021, 80, 3380–3384. [Google Scholar] [CrossRef]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composi-tion, nutritional and functional properties, and applications and processing technologies. Food Chem. 2019, 301, 125304. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Zhang, H.; Kai, G.; Xia, Y.; Wang, G.; Ai, L. Antioxidant and in vitro digestion property of black rice (Oryza sativa L.): A comparison study between whole grain and rice bran. Int. J. Food Eng. 2020, 16, 20190260. [Google Scholar] [CrossRef]
- An, J.S.; Bae, I.Y.; Han, S.-I.; Lee, S.-J.; Lee, H.G. In vitro potential of phenolic phytochemicals from black rice on starch digestibility and rheological behaviors. J. Cereal Sci. 2016, 70, 214–220. [Google Scholar] [CrossRef]
- Hou, Z.; Qin, P.; Zhang, Y.; Cui, S.; Ren, G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res. Int. 2013, 50, 691–697. [Google Scholar] [CrossRef]
- Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks, J.L.F.; Elias, M.C.; Vanier, N.L.; de Oliveira, M. The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chem. 2016, 208, 116–123. [Google Scholar] [CrossRef]
- Aalim, H.; Wang, D.; Luo, Z. Black rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes. Food Res. Int. 2021, 141, 109898. [Google Scholar] [CrossRef]
- Shahidi, F.; Danielski, R.; Rhein, S.O.; Meisel, L.A.; Fuentes, J.; Speisky, H.; Schwember, A.R.; de Camargo, A.C. Wheat and rice beyond phenolic acids: Genetics, identification database, antioxidant properties, and potential health effects. Plants 2022, 11, 3283. [Google Scholar] [CrossRef]
- Xie, F.; Lei, Y.; Han, X.; Zhao, Y.; Zhang, S. Antioxidant ability of polyphenols from black rice, buckwheat and oats: In vitro and in vivo. Czech J. Food Sci. 2020, 38, 242–247. [Google Scholar] [CrossRef]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Tai, L.; Huang, S.; Zhao, Z.; Huang, G. Chemical composition analysis and antioxidant activity of black rice pigment. Chem. Biol. Drug Des. 2021, 97, 711–720. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Gao, J.; Gao, W.; Zhang, Y.; Zeng, H.; Zheng, B. Structural changes of butyrylated lotus seed starch and its impact on the gut microbiota of rat in vitro fermentation. Food Hydrocoll. 2023, 139, 108501. [Google Scholar] [CrossRef]
- Ou, S.J.L.; Fu, A.S.; Liu, M.H. Impact of starch-rich food matrices on black rice anthocyanin accessibility and carbohydrate digestibility. Foods 2023, 12, 880. [Google Scholar] [CrossRef]
- Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 2007, 101, 1616–1625. [Google Scholar] [CrossRef]
- Zeng, Y.-W.; Yang, J.-Z.; Pu, X.-Y.; Du, J.; Yang, T.; Yang, S.-M.; Zhu, W.-H. Strategies of functional food for cancer prevention in human beings. Asian Pac. J. Cancer Prev. 2013, 14, 1585–1592. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxida-tive properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Ribeira, S.; Prasantha, B.; Wickramasinghe, H. Diversity of physical and cooking quality characters of selected traditional and improved rice varieties in Sri Lanka. Sri Lankan J. Biol. 2016, 1, 15–26. [Google Scholar] [CrossRef]
- Abeysekera, W.; Somasiri, H.; Premakumara, G.; Bentota, A.; Rajapakse, D.; Ediriweera, N. Cooking and eating quality traits of some Sri Lankan traditional rice varieties across Yala and Maha seasons. Trop. Agric. Res. 2008, 20, 168–176. [Google Scholar]
- Prasantha, B.D.R. Glycemic index of four traditional red pigmented rice. Integr. Food Nutr. Metab. 2018, 5, 1–3. [Google Scholar] [CrossRef]
- Wu, M.; Wu, C.; Wang, Y.; Bian, X.; Liang, D.; Zhang, G.; Liu, X.; Zhang, N. Correlation between gastrointestinal index (GI) and the structure and physicochemical properties of rice starch from different varieties and colors. Carbohydr. Polym. Technol. Appl. 2025, 9, 100687. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, H.; Rong, L.; Chen, Y.; Yu, Q.; Shen, M.; Xie, J. Purple red rice bran anthocyanins reduce the digestibility of rice starch by forming V-type inclusion complexes. Food Res. Int. 2023, 166, 112578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Wang, P.; Zhao, Y.; Zhu, Y.; Xiao, X. The Effect of Protein–Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods 2025, 14, 778. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Fu, X.; Zhang, B.; Huang, Q. Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties. Int. J. Biol. Macromol. 2017, 98, 557–564. [Google Scholar] [CrossRef]
- Van Ngo, T.; Kusumawardani, S.; Kunyanee, K.; Luangsakul, N. Polyphenol-modified starches and their applications in the food industry: Recent updates and future directions. Foods 2022, 11, 3384. [Google Scholar] [CrossRef] [PubMed]
- Cagampang, G.; Cruz, L.; Espiritu, S.; Santiago, R.; Juliano, B. Studies on the Extraction and Composition of Rice Proteins. Cereal Chem. 1966, 43, 145–155. [Google Scholar]
- Zhang, Z.; Zhang, M.; Zhao, W. Effect of starch-protein interaction on regulating the digestibility of waxy rice starch under radio frequency treatment with added CaCl2. Int. J. Biol. Macromol. 2023, 232, 123236. [Google Scholar] [CrossRef]
- Khatun, A.; Waters, D.L.; Liu, L. The impact of rice protein on in vitro rice starch digestibility. Food Hydrocoll. 2020, 109, 106072. [Google Scholar] [CrossRef]
- Lu, X.; Ma, R.; Qiu, H.; Sun, C.; Tian, Y. Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. Int. J. Biol. Macromol. 2021, 193, 311–318. [Google Scholar] [CrossRef]
- Ye, J.; Hu, X.; Luo, S.; McClements, D.J.; Liang, L.; Liu, C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Res. Int. 2018, 106, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chang, R.; Lu, H.; Ma, R.; Qiu, L.; Tian, Y. Effect of amino acids composing rice protein on rice starch digestibility. LWT 2021, 146, 111417. [Google Scholar] [CrossRef]
- Chi, C.; Li, X.; Zhang, Y.; Chen, L.; Li, L. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates. Food Hydrocoll. 2018, 84, 473–480. [Google Scholar] [CrossRef]
- Kumar, A.; Panda, P.A.; Lal, M.K.; Ngangkham, U.; Sahu, C.; Soren, K.R.; Subudhi, H.N.; Samantaray, S.; Sharma, S. Addition of Pulses, Cooking Oils, and Vegetables Enhances Resistant Starch and Lowers the Glycemic Index of Rice (Oryza sativa L.). Starch-Starke 2020, 72, 1900081. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, D.; Fogliano, V.; Pellegrini, N. Rice varieties with a high endosperm lipid content have reduced starch digestibility and increased γ-oryzanol bioaccessibility. Food Funct. 2021, 12, 11547–11556. [Google Scholar] [CrossRef]
- Shu, X.; Jia, L.; Ye, H.; Li, C.; Wu, D. Slow digestion properties of rice different in resistant starch. J. Agric. Food Chem. 2009, 57, 7552–7559. [Google Scholar] [CrossRef] [PubMed]
- Luangsakul, N.; Ritudomphol, O. Effect of oil addition on in vitro starch digestibility and physicochemical properties of instant rice. Int. J. Agric. Technol. 2018, 14, 1399–1412. [Google Scholar]
- Fibri, D.L.N.; Marsono, Y. FiberCreme Addition in Rice Increases the Dietary Fiber, Resistant Starch and Decreases Glycemic Index. Indones. Food Sci. Technol. J. 2024, 7, 103–109. [Google Scholar] [CrossRef]
- Pinyo, J.; Wongsagonsup, R.; Panthong, N.; Kantiwong, P.; Huang, Q.; Tangsrianugul, N.; Suphantharika, M. Effects of different edible oils on in vitro starch digestibility and physical properties of rice starch and rice flour. Int. J. Food Sci. Technol. 2023, 59, 170–180. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, L.; Zheng, B. Control of starch–lipid interactions on starch digestibility during hot-extrusion 3D printing for starchy foods. Food Funct. 2022, 13, 5317–5326. [Google Scholar] [CrossRef]
- Mohan, V.; Anjana, R.M.; Gayathri, R.; Bai, M.R.; Lakshmipriya, N.; Ruchi, V.; Balasubramaniyam, K.K.; Jakir, M.M.; Shobana, S.; Unnikrishnan, R.; et al. Glycemic Index of a Novel High-Fiber White Rice Variety Developed in India—A Randomized Control Trial Study. Diabetes Technol. Ther. 2016, 18, 164–170. [Google Scholar] [CrossRef]
- Veni, B.K.; Raja, D.S.; Sridevi, P.; Tushara, M. Impact of starch profile on glycemic index of coloured and non-pigmented genotypes of rice (Oryza sativa L.). Electron. J. Plant Breed. 2024, 15, 700–707. [Google Scholar] [CrossRef]
- Chaichoompu, E.; Ruengphayak, S.; Wattanavanitchakorn, S.; Wansuksri, R.; Yonkoksung, U.; Suklaew, P.O.; Chotineeranat, S.; Raungrusmee, S.; Vanavichit, A.; Toojinda, T.; et al. Development of Whole-Grain Rice Lines Exhibiting Low and Intermediate Glycemic Index with Decreased Amylose Content. Foods 2024, 13, 3627. [Google Scholar] [CrossRef]
- Kwaśny, D.; Borczak, B.; Kapusta-Duch, J.; Kron, I. The Influence of Different Polyphenols on the Digestibility of Various Kinds of Starch and the Value of the Estimated Glycemic Index. Appl. Sci. 2024, 14, 8065. [Google Scholar] [CrossRef]
- Al-Atbi, D.M.; Alhelfi, N.; Mansour, A.A. Glycemic Index and glycemic load for different types of cooked rice for healthy volunteers. J. Glob. Innov. Agric. Sci. 2024, 12, 83–94. [Google Scholar] [CrossRef]
- Yulianto, W.A.; Suryani, C.L.; Susiati, M.; Permana, H.I. Evaluation of Chromium Fortified-Parboiled Rice Coated with Herbal Extracts: Resistant Starch, and Glycemic Index. Int. J. Nutr. Food Eng. 2018, 25, 2608–2613. [Google Scholar]
- Geng, D.; Liu, L.; Lin, Z.; Zhu, L.; Deng, J.; Chen, J.; Xiang, Z.; Yao, H.; Su, X.; Xia, C.; et al. Effects of red lentil protein addition on textural quality and starch digestibility of brown rice noodles. Int. J. Food Sci. Technol. 2021, 56, 6656–6666. [Google Scholar] [CrossRef]
- López-Barón, N.; Gu, Y.; Vasanthan, T.; Hoover, R. Plant proteins mitigate in vitro wheat starch digestibility. Food Hydrocoll. 2017, 69, 19–27. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.-L. Understanding starch structure and functionality. In Starch in Food; Elsevier: Amsterdam, The Netherlands, 2024; pp. 55–77. [Google Scholar]
- Gan, L.; Huang, B.; Song, Z.; Zhang, Y.; Zhang, Y.; Chen, S.; Tong, L.; Wei, Z.; Yu, L.; Luo, X.; et al. Unique glutelin expression patterns and seed endosperm structure facilitate glutelin accumulation in polyploid rice seed. Rice 2021, 14, 61. [Google Scholar] [CrossRef]
- Teo, C.; Karim, A.A.; Cheah, P.; Norziah, M.; Seow, C. On the roles of protein and starch in the aging of non-waxy rice flour. Food Chem. 2000, 69, 229–236. [Google Scholar] [CrossRef]
- López-Barón, N.; Sagnelli, D.; Blennow, A.; Holse, M.; Gao, J.; Saaby, L.; Müllertz, A.; Jespersen, B.; Vasanthan, T. Hydrolysed pea proteins mitigate in vitro wheat starch digestibility. Food Hydrocoll. 2018, 79, 117–126. [Google Scholar] [CrossRef]
- Wu, C.; Gong, X.; Zhang, J.; Zhang, C.; Qian, J.-Y.; Zhu, W. Effect of rice protein on the gelatinization and retrogradation properties of rice starch. Int. J. Biol. Macromol. 2023, 242, 125061. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.; Blanchard, C.; Zhao, J. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour. J. Cereal Sci. 2014, 60, 414–420. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Z.; Xu, Y.; Ma, M.; Xu, S.; Gebre, B.A.; Corke, H.; Sui, Z. Absolute Quantitative Lipidomics Reveals Different Granule-Associated Surface Lipid Roles in the Digestibility and Pasting of Waxy, Normal, and High-Amylose Rice Starches. J. Agric. Food Chem. 2024, 72, 12842–12858. [Google Scholar] [CrossRef]
- Zhao, X.; Mei, T.; Cui, B. Lipids-modified starch: Advances in structural characteristic, physicochemical property, and application. Food Res. Int. 2024, 197, 115146. [Google Scholar] [CrossRef]
- Kaur, B.; Ranawana, V.; Teh, A.; Henry, C.J. The glycemic potential of white and red rice affected by oil type and time of addition. J. Food Sci. 2015, 80, H2316–H2321. [Google Scholar] [CrossRef]
- Farooq, A.M.; Dhital, S.; Li, C.; Zhang, B.; Huang, Q. Effects of palm oil on structural and in vitro digestion properties of cooked rice starches. Int. J. Biol. Macromol. 2018, 107, 1080–1085. [Google Scholar] [CrossRef]
- Zu-Man, D.; Yu-Long, Z.; Chun-Yang, T.; Chuang, L.; Jia-Qin, F.; Qiang, H.; Chun, C.; Li-Jun, Y.; Chin-Ping, T.; Hui, N.; et al. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells. Food Res. Int. 2024, 187, 114428. [Google Scholar] [CrossRef]
- Niu, H.; Chen, X.; Fu, X.; Zhang, B.; Dou, Z.; Huang, Q. Pectin-stabilized emulsions: Structure-emulsification relationships, covalent and non-covalent modifications, and future trends. Trends Food Sci. Technol. 2025, 159, 104986. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, J.; Zhang, X.; Li, Y.; Zhao, J.; Li, T.; Zhou, B.; Yang, H.; Qiao, L. Enrichment of soybean dietary fiber and protein fortified rice grain by dry flour extrusion cooking: The physicochemical, pasting, taste, palatability, cooking and starch digestibility properties. RSC Adv. 2018, 8, 26682–26690. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, S.; Ai, L. Physical barrier effects of dietary fibers on lowering starch digestibility. Curr. Opin. Food Sci. 2022, 48, 100940. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhu, J.; Cheung, P.C.; Li, C. The physical and chemical interactions between starch and dietary fiber: Their impact on the physicochemical and nutritional properties of starch. Trends Food Sci. Technol. 2024, 149, 104566. [Google Scholar] [CrossRef]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Liu, M.; Hu, B.; Zhang, H.; Zhang, Y.; Wang, L.; Qian, H.; Qi, X. Inhibition study of red rice polyphenols on pancreatic α-amylase activity by kinetic analysis and molecular docking. J. Cereal Sci. 2017, 76, 186–192. [Google Scholar] [CrossRef]
- Aalim, H.; Luo, Z. Insight into rice (Oryza sativa L.) cooking: Phenolic composition, inhibition of α-amylase and α-glucosidase, and starch physicochemical and functional properties. Food Biosci. 2021, 40, 100917. [Google Scholar] [CrossRef]
- Chusak, C.; Ying, J.A.Y.; Zhien, J.L.; Pasukamonset, P.; Henry, C.J.; Ngamukote, S.; Adisakwattana, S. Impact of Clitoria ternatea (butterfly pea) flower on in vitro starch digestibility, texture and sensory attributes of cooked rice using domestic cooking methods. Food Chem. 2019, 295, 646–652. [Google Scholar] [CrossRef]
- El Oirdi, M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals 2024, 17, 692. [Google Scholar] [CrossRef]
- Tai, N.; Kunyanee, K.; Luangsakul, N. Multivariable analysis of physicochemical and functional charac-terization of four Thai pigmented rice varieties. Int. J. Agric. Technol. 2023, 19, 2693–2706. [Google Scholar]
- Yamuangmorn, S.; Prom-u-Thai, C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef]
- Yang, J.; Dong, M.; Fang, F.; Li, Y.; Li, C. Effects of varied preparation processes on polyphenol-rice starch complexes, in vitro starch digestion, and polyphenols release. Food Chem. 2024, 450, 139330. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.; Zhang, R.; Huang, L.; Jia, X.; Huang, F.; Liu, L. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes. LWT 2020, 125, 109227. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-S.; Ryoo, N.; Hahn, T.-R.; Walia, H.; Nakamura, Y. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Cakir, B.; Tian, L.; Crofts, N.; Chou, H.; Koper, K.; Ng, C.; Tuncel, A.; Gargouri, M.; Hwang, S.; Fujita, N.; et al. Re-programming of gene expression in the CS8 rice line over-expressing ADP glucose pyrophosphorylase induces a suppressor of starch biosynthesis. Plant J. 2019, 97, 1073–1088. [Google Scholar] [CrossRef]
- Yang, R.; Bai, J.; Fang, J.; Wang, Y.; Lee, G.; Piao, Z. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. Breed. Sci. 2016, 66, 481–489. [Google Scholar] [CrossRef]
- Bao, J.; Zhou, X.; Xu, F.; He, Q.; Park, Y. Genome-wide association study of the resistant starch content in rice grains. Starch-Starke 2017, 69, 1600343. [Google Scholar] [CrossRef]
- Kong, X.; Chen, Y.; Zhu, P.; Sui, Z.; Corke, H.; Bao, J. Relationships among genetic, structural, and functional properties of rice starch. J. Agric. Food Chem. 2015, 63, 6241–6248. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, L.; Liu, G.; Meng, X.; Jing, Y.; Shu, X.; Kong, X.; Sun, J.; Yu, H.; Smith, S.M.; et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc. Natl. Acad. Sci. USA 2016, 113, 12844–12849. [Google Scholar] [CrossRef]
- Tsuiki, K.; Fujisawa, H.; Itoh, A.; Sato, M.; Fujita, N. Alterations of starch structure lead to increased resistant starch of steamed rice: Identification of high resistant starch rice lines. J. Cereal Sci. 2016, 68, 88–92. [Google Scholar] [CrossRef]
- Badoni, S.; Pasion-Uy, E.A.; Kor, S.; Kim, S.-R.; Tiozon, R.N.; Misra, G.; Buenafe, R.J.Q.; Labarga, L.M.; Ramos-Castrosanto, A.R.; Pratap, V.; et al. Multiomics of a rice population identifies genes and genomic regions that bestow low glycemic index and high protein content. Proc. Natl. Acad. Sci. USA 2024, 121, e2410598121. [Google Scholar] [CrossRef]
- Kongkachuichai, R.; Charoensiri, R.; Meekhruerod, A.; Kettawan, A. Effect of processing conditions on bioactive compounds and glycemic index of the selected landrace rice variety in pre-diabetes. J. Cereal Sci. 2020, 94, 102994. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Liu, G.; Deng, Y.; Zhang, Y.; Tang, X.; Li, P.; Wei, Z. Effect of the degree of milling on the physicochemical properties, pasting properties and in vitro digestibility of Simiao rice. Grain Oil Sci. Technol. 2021, 4, 45–53. [Google Scholar] [CrossRef]
- Tian, Y.; Ding, L.; Liu, Y.; Shi, L.; Wang, T.; Wang, X.; Dang, B.; Li, L.; Gou, G.; Wu, G.; et al. The Effect of Different Milling Methods on the Physicochemical and In Vitro Digestibility of Rice Flour. Foods 2023, 12, 3099. [Google Scholar] [CrossRef]
- Shobana, S.; Lakshmipriya, N.; Bai, M.R.; Gayathri, R.; Ruchi, V.; Sudha, V.; Malleshi, N.G.; Krishnaswamy, K.; Henry, C.-J.K.; Anjana, R.M.; et al. Even minimal polishing of an Indian parboiled brown rice variety leads to increased glycemic responses. Asia Pac. J. Clin. Nutr. 2017, 26, 829–836. [Google Scholar]
- Yang, W.; Zheng, Y.; Sun, W.; Chen, S.; Liu, D.; Zhang, H.; Fang, H.; Tian, J.; Ye, X. Effect of extrusion processing on the microstructure and in vitro digestibility of broken rice. LWT 2020, 119, 108835. [Google Scholar] [CrossRef]
- Cai, C.; Tian, Y.; Yu, Z.; Sun, C.; Jin, Z. In Vitro Digestibility and Predicted Glycemic Index of Chemically Modified Rice Starch by One-Step Reactive Extrusion. Starch-Starke 2020, 72, 1900012. [Google Scholar] [CrossRef]
- Naseer, B.; Naik, H.R.; Hussain, S.Z.; Zargar, I.; Beenish; Bhat, T.A.; Nazir, N. Effect of carboxymethyl cellulose and baking conditions on in-vitro starch digestibility and physico-textural characteristics of low glycemic index gluten-free rice cookies. LWT 2021, 141, 110885. [Google Scholar] [CrossRef]
- Bagchi, T.B.; Das, B.; Kumar, A.; Kumar, G.; Banerjee, J.; Gain, H.; Adhikari, A.A.; Chattopadhyay, K. Impact of cooking, parboiling and fermentation on nutritional components, predicted glycemic index and pasting properties of rice. J. Cereal Sci. 2023, 114, 103763. [Google Scholar] [CrossRef]
- Garg, S.; Sharma, N.; Kumari, A.; Bala, M.; Kaur, R. Impact of parboiling on nutritionally important starch fractions, pasting properties, and in vitro starch digestibility of rice genotypes. Cereal Res. Commun. 2024, 53, 439–449. [Google Scholar] [CrossRef]
- Soltani, A.; Golmakani, M.-T.; Fazaeli, M.; Niakousari, M.; Hosseini, S.M.H. Evaluating the effect of different physical pretreatments and cooking methods on nutritional (starch digestibility) and physicochemical properties of white rice grains (Fajr cultivar). LWT 2023, 184, 115101. [Google Scholar] [CrossRef]
- Sanusi, M.; Hussein, J. Impacts of soaking time and steaming time on proximate, vitro-starch digestibility and amylose content of short, medium and long rice grain type. Carpathian J. Food Sci. Technol. 2023, 15, 68–77. [Google Scholar]
- Yang, R.; Tang, J.; Zhao, Q.; Piao, Z.; Lee, G.; Wan, C.; Bai, J. Starch Properties of Roasting Rice from Naturally High-Resistant Starch Rice Varieties. Molecules 2023, 28, 6408. [Google Scholar] [CrossRef]
- Karupaiah, T.; Aik, C.K.; Heen, T.C.; Subramaniam, S.; Bhuiyan, A.R.; Fasahat, P.; Zain, A.M.; Ratnam, W. A transgressive brown rice mediates favourable glycaemic and insulin responses. J. Sci. Food Agric. 2011, 91, 1951–1956. [Google Scholar] [CrossRef]
- Casiraghi, M.; Brighenti, F.; Pellegrini, N.; Leopardi, E.; Testolin, G. Effect of Processing on Rice Starch Digestibility Evaluated by in Vivo and in Vitro Methods. J. Cereal Sci. 1993, 17, 147–156. [Google Scholar] [CrossRef]
- Mohan, V.; Spiegelman, D.; Sudha, V.; Gayathri, R.; Hong, B.; Praseena, K.; Anjana, R.M.; Wedick, N.M.; Arumu-gam, K.; Malik, V. Effect of brown rice, white rice, and brown rice with legumes on blood glucose and in-sulin responses in overweight Asian Indians: A randomized controlled trial. Diabetes Technol. Ther. 2014, 16, 317–325. [Google Scholar] [CrossRef]
- Sasaki, T.; Okunishi, T.; Sotome, I.; Okadome, H. Effects of milling and cooking conditions of rice on in vitro starch digestibility and blood glucose response. Cereal Chem. 2016, 93, 242–247. [Google Scholar] [CrossRef]
- Li, F.; Guan, X.; Li, C. Effects of degree of milling on the starch digestibility of cooked rice during (in vitro) small intestine digestion. Int. J. Biol. Macromol. 2021, 188, 774–782. [Google Scholar] [CrossRef]
- Chanvrier, H.; Pillin, C.N.; Vandeputte, G.; Haiduc, A.; Leloup, V.; Gumy, J.-C. Impact of extrusion parameters on the properties of rice products: A physicochemical and X-ray tomography study. Food Struct. 2015, 6, 29–40. [Google Scholar] [CrossRef]
- Das, A.B.; Bhattacharya, S. Characterization of the batter and gluten-free cake from extruded red rice flour. LWT 2019, 102, 197–204. [Google Scholar] [CrossRef]
- Goger, A.; Thompson, M.; Pawlak, J.; Arnould, M.; Klymachyov, A.; Sheppard, R.; Lawton, D. Inline rheological behavior of dispersed water in a polyester matrix with a twin screw extruder. Polym. Eng. Sci. 2018, 58, 775–783. [Google Scholar] [CrossRef]
- Sivakamasundari, S.K.; Priyanga, S.; Moses, J.A.; Anandharamakrishnan, C. Impact of processing techniques on the glycemic index of rice. Crit. Rev. Food Sci. Nutr. 2021, 62, 3323–3344. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, Y. Effect of specific mechanical energy on in-vitro digestion and physical properties of extruded rice-based snacks. Food Nutr. Sci. 2014, 5, 1818–1827. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, K.; McClements, D.J.; Hu, X.; Luo, S.; Liu, C. Phenolics, antioxidant activity, and in vitro starch digestibility of extruded brown rice influenced by Choerospondias axillaris fruit peels addition. Starch-Stärke 2019, 71, 1800346. [Google Scholar] [CrossRef]
- Ye, J.; Liu, C.; Luo, S.; Wu, J.; Hu, X.; McClements, D.J. A simulated gastrointestinal tract study of texturized rice grains: Impact of texturization on starch digestibility. J. Cereal Sci. 2019, 89, 102800. [Google Scholar] [CrossRef]
- Giuberti, G.; Marti, A.; Fortunati, P.; Gallo, A. Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics. J. Cereal Sci. 2017, 76, 157–164. [Google Scholar] [CrossRef]
- Rakmai, J.; Haruthaithanasan, V.; Chompreeda, P.; Chatakanonda, P.; Yonkoksung, U. Development of gluten-free and low glycemic index rice pancake: Impact of dietary fiber and low-calorie sweeteners on texture pro-file, sensory properties, and glycemic index. Food Hydrocoll. Health 2021, 1, 100034. [Google Scholar] [CrossRef]
- Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent updates on bioaccessi-bility of phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- Singh, A.; Raigond, P.; Lal, M.K.; Singh, B.; Thakur, N.; Changan, S.S.; Kumar, D.; Dutt, S. Effect of cooking methods on glycemic index and in vitro bioaccessibility of potato (Solanum tuberosum L.) carbohydrates. LWT 2020, 127, 109363. [Google Scholar] [CrossRef]
- Jung, E.Y.; Suh, H.J.; Hong, W.S.; Kim, D.G.; Hong, Y.H.; Hong, I.S.; Chang, U.J. Uncooked rice of relatively low gelatinization degree resulted in lower metabolic glucose and insulin responses compared with cooked rice in female college students. Nutr. Res. 2009, 29, 457–461. [Google Scholar] [CrossRef]
- Wolever, T.M.S.; Vorster, H.H.; Björck, I.; Brand-Miller, J.; Brighenti, F.; Mann, J.I.; Ramdath, D.D.; Granfeldt, Y.; Holt, S.; Perry, T.L.; et al. Determination of the glycaemic index of foods: Interlaboratory study. Eur. J. Clin. Nutr. 2003, 57, 475–482. [Google Scholar] [CrossRef]
- Liu, X.; Huang, S.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. Changes of starch during thermal processing of foods: Current status and future directions. Trends Food Sci. Technol. 2022, 119, 320–337. [Google Scholar] [CrossRef]
- Mohamed, I.O. Effects of processing and additives on starch physicochemical and digestibility properties. Carbohydr. Polym. Technol. Appl. 2021, 2, 100039. [Google Scholar] [CrossRef]
- Fan, C.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Ban, X.; Gu, Z. Study on the gelatinization and digestive characteristics of wheat starch and potato starch under low moisture conditions. Int. J. Biol. Macromol. 2024, 269, 132192. [Google Scholar] [CrossRef]
- Kumari, A.; Roy, A. Impact of the degree of starch gelatinization on the texture, soaking, and cooking characteristics of high amylose rice: An experimental and numerical study. J. Food Meas. Charact. 2024, 18, 8200–8217. [Google Scholar] [CrossRef]
- Shukla, A.P.; Iliescu, R.G.; Thomas, C.E.; Aronne, L.J. Food order has a significant impact on postpran-dial glucose and insulin levels. Diabetes Care 2015, 38, e98–e99. [Google Scholar] [CrossRef]
- Sagum, R.; Arcot, J. Effect of domestic processing methods on the starch, non-starch polysaccharides and in vitro starch and protein digestibility of three varieties of rice with varying levels of amylose. Food Chem. 2000, 70, 107–111. [Google Scholar] [CrossRef]
- Ai, Y.; Hasjim, J.; Jane, J.-L. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr. Polym. 2013, 92, 120–127. [Google Scholar] [CrossRef]
- Gunathilaka, M.; Ekanayake, S. Effect of different cooking methods on glycaemic index of Indian and Pakistani basmati rice varieties. Ceylon Med J. 2015, 60, 57. [Google Scholar] [CrossRef]
- Ritudomphol, O.; Luangsakul, N. Optimization of processing condition of instant rice to lower the glycemic index. J. Food Sci. 2019, 84, 101–110. [Google Scholar] [CrossRef]
- Kim, H.R.; Hong, J.S.; Ryu, A.; Choi, H. Combination of rice varieties and cooking methods resulting in a high content of resistant starch. Cereal Chem. 2020, 97, 149–157. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, S.; Kong, J.; Li, N.; Qiao, D.; Zhang, B.; Xu, Y.; Jia, C. Changing cooking mode can slow the starch digestion of colored brown rice: A view of starch structural changes during cooking. Int. J. Biol. Macromol. 2020, 155, 226–232. [Google Scholar] [CrossRef]
- Kwofie, E.; Ngadi, M. A review of rice parboiling systems, energy supply, and consumption. Renew. Sustain. Energy Rev. 2017, 72, 465–472. [Google Scholar] [CrossRef]
- Buggenhout, J.; Brijs, K.; Celus, I.; Delcour, J. The breakage susceptibility of raw and parboiled rice: A re-view. J. Food Eng. 2013, 117, 304–315. [Google Scholar] [CrossRef]
- Muchlisyiyah, J.; Shamsudin, R.; Kadir Basha, R.; Shukri, R.; How, S.; Niranjan, K.; Onwude, D. Parboiled Rice Processing Method, Rice Quality, Health Benefits, Environment, and Future Perspectives: A Review. Agriculture 2023, 13, 1390. [Google Scholar] [CrossRef]
- Scazzina, F.; Dall’asta, M.; Casiraghi, M.; Sieri, S.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Glycemic index and glycemic load of commercial Italian foods. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 419–429. [Google Scholar] [CrossRef]
- Rondanelli, M.; Haxhari, F.; Gasparri, C.; Barrile, G.C.; Cavioni, A.; Guido, D.; Mansueto, F.; Zese, M.; Mazzola, G.; Moroni, A.; et al. Glycemic Index and Amylose Content of 25 Japonica Rice Italian Cultivar. Starch-Starke 2023, 75, 2300031. [Google Scholar] [CrossRef]
- Pathiraje, P.; Madhujith, W.; Chandrasekara, A.; Nissanka, S. The effect of rice variety and parboiling on in vivo glycemic response. Trop. Agric. Res. 2011, 22, 26–33. [Google Scholar] [CrossRef]
- Bhar, S.; Bose, T.; Dutta, A.; Mande, S.S. A perspective on the benefits of consumption of parboiled rice over brown rice for glycaemic control. Eur. J. Nutr. 2022, 61, 615–624. [Google Scholar] [CrossRef]
- Chakraborty, I.; N., P.; Mal, S.S.; Paul, U.C.; Rahman, H.; Mazumder, N. An insight into the gelatinization properties influencing the modified starches used in food industry: A review. Food Bioprocess Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Chang, Q.; Zheng, B.; Zhang, Y.; Zeng, H. A comprehensive review of the factors influencing the formation of retrograded starch. Int. J. Biol. Macromol. 2021, 186, 163–173. [Google Scholar] [CrossRef]
- Chung, H.-J.; Lim, H.S.; Lim, S.-T. Effect of partial gelatinization and retrogradation on the enzymatic di-gestion of waxy rice starch. J. Cereal Sci. 2006, 43, 353–359. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Shin, M. A Comparative study on retrogradation of rice starch gels by dsc, x-ray and α-amylase methods. Starch-Starke 1997, 49, 71–75. [Google Scholar] [CrossRef]
- Chakraborty, I.; Govindaraju, I.; Kunnel, S.; Managuli, V.; Mazumder, N. Effect of Storage Time and Tem-perature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels 2023, 9, 142. [Google Scholar] [CrossRef]
Interaction Type | Rice Starch Type | Types of Constituents | Mechanism | Study Results | Reference |
---|---|---|---|---|---|
Starch–Protein Interaction | Waxy rice | Whey protein isolate (WPI), soy protein isolate (SPI), pea protein isolate (PPI) | Starch–protein interaction through hydrogen bonding and hydrophobic interactions limited water mobility | Reduced RDS and increased RS content; low glycemic index | [102] |
Polished long-grain Jasmine | Albumin, globulin, glutelin, prolamin, and acetic rice proteins | Protein forms a protective network around starch granules, reducing their accessibility to digestive enzymes | A negative correlation was observed between residual rice protein and digestibility | [103] | |
Japonica | Endogenous/exogenous rice protein hydrolysate mixtures | Enzyme activity is inhibited by peptides or free amino acids | Raw rice starch’s digestion rate constants (k) dropped from 2.34 × 10−2 to 2.16 × 10−2 and 2.09 × 10−2 min−1, whereas cooked rice starch’s k dropped from 4.28 × 10−2 to 3.24 × 10−2 and 2.94 × 10−2 min−1, with a significantly lower GI | [104] | |
Native long Indica RF—rice flour | Endogenous proteins RF-P: rice flour protein | Endogenous proteins encase starch granules, limiting their expansion and interaction with digestive enzymes | Based on the first model kinetics, RF > RF-P showed increasing trends in C∞, HI, and eGI values | [105] | |
Japonica | Rice protein and amino acids | Amino acids inhibit rice starch digestion by reducing enzymes’ access to starch and enhancing the stability of starch granules, creating a more compact structure | A complex formed between rice starch and amino acids, resulting in increased SDS and RS content and the development of low-GI-based foods | [106] | |
Starch | Rice protein hydrolysate | Native and pepsin hydrolyzed proteins enhanced starch retrogradation, whereas pepsin–pancreatin hydrolyzed protein decreased retrogradation but enhanced V-type complexes and inhibited α-amylase | Protein hydrolysates increased in SDS and RS content | [107] | |
Starch–Lipid Interaction | Low/medium/high GI rice varieties | Cooking oils and ghee | The addition of fat or oil delays gastric emptying, enhances incretin secretion, and forms amylose–lipid complexes that decrease starch digestion by α-amylase | Combining rice with ghee and soybean oil significantly lowers the GI values of Shaktiman, Hue, and Kalashree rice varieties by 3.83%, 24.90%, and 7.96% for ghee and 3.65%, 24.12%, and 7.61% for soybean oil | [108] |
High-lipid mutants (ALK3 and RS4) | Rice endosperm lipids | Pancreatic lipase hydrolysis of triglycerides makes the lipid–starch complex vulnerable to α-amylase breakdown | High-lipid white rice holds significant promise for creating functional rice-based foods, offering a comparatively lower GI and higher γ-oryzanol levels | [109] | |
Seven rice mutants with different RS contents | Native rice lipids | Starch–lipid complexes and short chains (DP 8–12) significantly affect starch digestion, while the integrity of aggregated starch and the morphology of spherical starch granules may also influence digestibility | There was a positive correlation between lipid content RS content and a negative correlation between lipid content and eGI | [110] | |
Sao Hai rice (SH) | Coconut oil and rice bran oil at 2.5, 5, and 7.5% (w/w, based on uncooked rice) | The formation of the amylose–lipid complex increases crystallinity, which exhibits a V-type crystalline structure | Rice bran oil at 2.5% resulted in cooked rice with the highest SDS and RS and the lowest eGI | [111] | |
Rice cooked with FiberCreme | Coconut oil made with FiberCreme | The interaction between rice starch and lipid and fiber in FiberCreme led to increased RS | Notable reduction in the GI, decreasing from 79.8 to 70.7 | [112] | |
Rice starch and rice flour | Coconut oil (CO), rice bran oil (RO), palm oil (PO), and soybean oil (SO) | Adding CO and PO improved the melting temperatures, dissociation enthalpies, and V-type crystalline order of the amylose–lipid complex compared to RO and SO | High levels of saturated fatty acids in CO and PO decreased RDS and increased RS in cooked rice starch and flour | [113] | |
Starchy foods | Glycerol monostearate (GMS)/stearic acid (SA) | Thermal shear force in HE-3DP facilitated hydrophobic interactions, resulting in a compact V-type starch–lipid complex that exhibits enhanced enzymatic resistance | The content of slowly digestible starch (SDS) and resistant starch (RS) attained 25.06% with an added SA content of 10% | [114] | |
Starch–Dietary Fiber Interaction | High-fiber white rice (HFWR) | Dietary fiber (fivefold higher than white rice) | A high dietary fiber content, along with the presence of amylose tightly bound glucose chains, makes amylose less available for amylolytic attack compared to the amylopectin | HFWR exhibited a medium GI, which is 23% lower than that of commercial white rice | [115] |
Pigmented and non-pigmented rice | Dietary fiber | Dietary fibers, including soluble/insoluble fiber, and resistant starch affect the morphology, digestibility, and antioxidant activity cooked grain in the gut | GI is negatively correlated with levels of RS and SDS but positively correlated with RDS | [116] | |
Extruded rice grain | Soybean dietary fiber (DF) | Influences the molecular interactions, microstructure, and pasting properties | GI decreased when the DF content exceeded 6%; lower RDS and higher RS | [117] | |
White rice | FiberCreme (isomalto oligosaccharides, inulin, iso maltodextrin) | Modify the starch structure by weakening hydrogen bonds, reducing enzyme binding sites, and producing a viscous gel matrix with dense molecular network that limits surface contact and slows enzyme penetration | Increased the RS content from 3.40 to 5.21%, decreasing the GI | [112] | |
Starch–Polyphenol Interaction | Various kinds of starch | (+)Catechin, EGCG, quercetin, kaempferol, naringenin, hesperidin, trans-ferulic acid, and p-coumaric acid | (+)Catechin, epigallocatechin gallate, is the most effective starch digestion inhibitor due to its abundant hydroxyl groups, galloyl moiety, and lack of -OCH3 and glycosylation, which improve binding and α-amylase inhibition | (+)Catechin, epigallocatechin gallate (20 mg) significantly reduced RDS, TS, and eGI, regardless of the starch type or the timing of addition | [118] |
Rice (Basmati rice) | Cinnamon and turmeric | The bioactive compounds in cinnamon and turmeric alter the enzyme’s structure through non-covalent interactions, such as hydrogen bonding and hydrophobic interactions, ultimately reducing catalytic activity | Reduced GI level of rice from 66.6 to 46.0 and glycemic load (GL) from 33.0 to 23.0 | [119] | |
Cr-fortified parboiled rice (Cr-PR) | Coated with 3%, 6%, and 9% herbal extract from cinnamon, pandan, bay leaf | Formed starch–polyphenol complexes through hydrogen bonding, delaying starch digestion and glucose absorption | Cr-PR coated with a 3% herbal extract had higher RS levels than those with 6% and 9% herbal extracts; however, the lowest GI (29–30) was achieved by the Cr-PR coated with 6–9% cinnamon extract | [120] |
Processing Method | Processing Parameters | Possible Effects | Reference |
---|---|---|---|
Milling | Degree of milling (DOM): 2%, 4%, 6%, 8%, 10%, and 12% | Increased DOMs lowered SDS and RS content and increased rice digestibility and eGI | [157] |
Semi-dry-milled (SRF), wet-milled (WRF), dry-milled (DRF), jet-milled (JRF) | WRF and SRF had substantially lower eGI values than DRF and JRF | [158] | |
Polishing to a degree of 2.3% and 9.7% based on the amount of bran removed | Increasing degree of milling leads to higher glycemic responses | [159] | |
Polishing | Producing white rice from brown rice by removing bran and germs | Polishing removed bran (DF, vitamins, minerals), germs (protein, lipid) and bioactives; polishing increased the GI from 55.10 ± 5.37 to 83.10 ± 5.10 and reduced the nutritional value of rice | [156] |
Extrusion | Twin-screw extruder with co-rotating screw configurations and a 6 mm die; a three-section heating procedure (75–85 °C, 105–115 °C, and 80–90 °C) | Extrusion cooking resulted in a rough surface and converted the crystalline structure from an A-type to a mixture of B- and V-types; lowered the equilibrium starch hydrolysis rate (C∞) and kinetic constant (k) of broken rice | [160] |
Barrel length relative to barrel diameter is 25:1, with maximum single-shaft torque at 52.5 Nm, temperature at 400 °C, pressure at 000 psi, and screw speed at 500 rpm | Chemically modified rice starch through one-step reactive extrusion (REX) demonstrates that esterification retards starch breakdown and cross-linking accelerates and increases the RS content and the reduced (pGI) score compared to native rice | [161] | |
Baking | Rice cookie baking temperature, 170–190 °C; baking time, 12–25 min; and 0.2–1.0% of carboxymethyl cellulose | Optimal conditions for gluten-free, low-GI cookies from rice flour are 185 °C for 22 min with 0.8% carboxymethyl cellulose. RS increased from 2.85% in rice flour to 7.20% in cookies, while pGI and glycemic load decreased from 50.12–30.07 to 44.60–17.51 | [162] |
Parboiling | CR = cooked rice, FR = fermented rice, PR = parboiled rice, PCR = parboiled cooked rice, PFR = parboiled fermented rice | The PCR had the lowest pGI and the highest RS (2.7%), while raw fermented rice had the highest pGI and the lowest RS (0.31%) | [163] |
PBR (parboiled rice): soaked at 30–40 °C for 6–8 h, steamed 8–12 min, and then dried in an oven at 50–60 °C to a moisture content of 14%. GPBR (germinated parboiled rice): soaked at 30–40 °C for 12–15 h, changed water after 3–4 h, steamed for 8–12 min, and dried at 50–60 °C to 14% moisture content | PBR and GPBR exhibited higher polyphenol and γ-aminobutyric acid (GABA) contents but a lower GI than brown rice and parboiled white rice, indicating that parboiling and germination delayed carbohydrate digestion and glucose absorption | [156] | |
Autoclave at 105 °C, 15 psi for 12 min, soak at 32 ± 2 °C, and then autoclave for 8 min. Cool and dry at 40 °C to achieve 13 ± 1% moisture content | Reduced in vitro starch digestibility, projected glycemic index (pGI), and protein digestibility by approximately 1.14-fold | [164] | |
Cooking | Boiling, dry heating, steaming, rinsing, and steam cooking | Pre-treated and cooked grains increased the RS content (5–20%) and decreased the eGI | [165] |
Steaming levels: 30, 35, and 40 min | Steaming duration influences amylose and amylopectin levels and also reduced the GI (67.24 ± 0.02 to 50.41 ± 0.23 g) | [166] | |
Natural high-resistant starch (RS) rice varieties roasted at 150 °C for 30 to 50 min at different moisture levels | Improved the thermal stability of the rice, shortened the chain length distribution of amylopectin of rice starch, increased the RS content, resulted in reduced digestibility, generated desirable flavoring compounds, and reduced water solubility and swelling potential | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, M.A.; Yu, J. Starches in Rice: Effects of Rice Variety and Processing/Cooking Methods on Their Glycemic Index. Foods 2025, 14, 2022. https://doi.org/10.3390/foods14122022
Farooq MA, Yu J. Starches in Rice: Effects of Rice Variety and Processing/Cooking Methods on Their Glycemic Index. Foods. 2025; 14(12):2022. https://doi.org/10.3390/foods14122022
Chicago/Turabian StyleFarooq, Muhammad Adil, and Jianmei Yu. 2025. "Starches in Rice: Effects of Rice Variety and Processing/Cooking Methods on Their Glycemic Index" Foods 14, no. 12: 2022. https://doi.org/10.3390/foods14122022
APA StyleFarooq, M. A., & Yu, J. (2025). Starches in Rice: Effects of Rice Variety and Processing/Cooking Methods on Their Glycemic Index. Foods, 14(12), 2022. https://doi.org/10.3390/foods14122022