A Novel Electromagnetic Response Measurement System for Continuous Monitoring of Meat Aging
Abstract
1. Introduction
2. Materials and Methods
2.1. Electromagnetic Response Measurement System for Meat Aging
2.2. Measurement Probes
2.3. Meat Samples
2.4. Measurement Parameters and Duration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Zhuang, H.; Yoon, S.-C.; Dong, Y.; Wang, W.; Zhao, W. Electrical Impedance Spectroscopy for Quality Assessment of Meat and Fish: A Review on Basic Principles, Measurement Methods, and Recent Advances. J. Food Qual. 2017, 2017, 6370739. [Google Scholar] [CrossRef]
- Damez, J.-L.; Clerjon, S. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: An overview. Meat Sci. 2013, 95, 879–896. [Google Scholar] [CrossRef] [PubMed]
- Ashim, B.; Zhang, Y.; Kumar, P.; Smith, J. Current Perspectives of Meat Quality Evaluation: Techniques, Technologies, & Challenges. Meat Qual. Anal. 2020, 3, 3–17. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, D.-H.; Ji, D.; Lee, H.-J.; Yoon, D.-K.; Lee, C.-H. Effect of Aging Process and Time on Physicochemical and Sensory Evaluation of Raw Beef Top Round and Shank Muscles Using an Electronic Tongue. Korean J. Food Sci. Anim. Resour. 2017, 37, 823–832. [Google Scholar] [CrossRef]
- Guo, L.-Y.; Shao, J.-H.; Liu, D.-Y.; Xu, X.-L.; Zhou, G.-H. The Distribution of Water in Pork Meat during Wet-curing as Studied by Low-field NMR. Food Sci. Technol. Res. 2014, 20, 393–399. [Google Scholar] [CrossRef]
- Setyabrata, D.; Cooper, B.R.; Sobreira, T.J.P.; Legako, J.F.; Martini, S.; Kim, Y.H.B. Elucidating mechanisms involved in flavor generation of dry-aged beef loins using metabolomics approach. Food Res. Int. 2021, 139, 109969. [Google Scholar] [CrossRef] [PubMed]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of Specific Taste-Active Components on Meat Flavor as Affected by Intrinsic and Extrinsic Factors: An Overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Joo, S.-T.; Lee, E.-Y.; Son, Y.-M.; Hossain, M.J.; Kim, C.-J.; Kim, S.-H.; Hwang, Y.-H. Aging Mechanism for Improving the Tenderness and Taste Characteristics of Meat. J. Anim. Sci. Technol. 2023, 65, 1151–1168. [Google Scholar] [CrossRef]
- Shi, H.; Shahidi, F.; Wang, J.; Huang, Y.; Zou, Y.; Xu, W.; Wang, D. Techniques for Postmortem Tenderisation in Meat Processing: Effectiveness, Application and Possible Mechanisms. Food Prod. Process. Nutr. 2021, 3, 21. [Google Scholar] [CrossRef]
- Altmann, M.; Pliquett, U. Prediction of Intramuscular Fat by Impedance Spectroscopy. Meat Sci. 2006, 72, 666–671. [Google Scholar] [CrossRef]
- Lepetit, J.; Salé, P.; Favier, R.; Dalle, R. Electrical Impedance and Tenderisation in Bovine Meat. Meat Sci. 2002, 60, 51–62. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Zhao, X.; Xiao, X. Electrical Impedance Spectroscopy for Non-Destructive Meat Freshness Assessment. Discov. Food 2024, 4, 177. [Google Scholar] [CrossRef]
- Magwili, G.V.; Cruz, F.R.G.; De Pedro, R.A.C.; Evangelista, R.L.C.; Icaro, K.P.G.; Villarosa, K.A. Non-Invasive Moisture Content Prediction and Characterization of Chicken Meat Freshness by Bioelectrical Impedance Spectroscopy. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–5. [Google Scholar]
- Nguyen, H.B.; Nguyen, L.T. Rapid and Non-Invasive Evaluation of Pork Meat Quality during Storage via Impedance Measurement. Int. J. Food Sci. Technol. 2015, 50, 1718–1725. [Google Scholar] [CrossRef]
- Leng, Y.; Zhang, C.; Gao, Y.; Wang, X. Bio-Impedance Measurements for Meat Quality Determination of Pork Loins under Repeated Freeze-Thaw Treatments. J. Food Compos. Anal. 2024, 125, 105779. [Google Scholar] [CrossRef]
- Nouri, H.; Guermazi, M.; Kallel, A.Y.; Hao, W.; Kanoun, O. Meat Freshness Assessment Based on Impedance Spectroscopy and Distribution of Relaxation Times (DRT). In Proceedings of the 2022 International Workshop on Impedance Spectroscopy (IWIS), Chemnitz, Germany, 27–30 September 2022; pp. 41–45. [Google Scholar]
- Arsalane, A.; Klilou, A.; Barbri, N.E. Performance Evaluation of Machine Learning Algorithms for Meat Freshness Assessment. IJECE 2024, 14, 5858–5865. [Google Scholar] [CrossRef]
- Bhuiyan, Z.W.; Redwanul Haider, S.A.; Haque, A.; Hasan, M.; Uddin, M.R. Meat Freshness Classifier with Machine and AI. In Proceedings of the 2023 IEEE Region 10 Symposium (TENSYMP), New Delhi, India, 6–8 September 2023; IEEE: Canberra, Australia; pp. 1–5. [Google Scholar]
- Xiong, Y.; Li, Y.; Wang, C.; Shi, H.; Wang, S.; Yong, C.; Gong, Y.; Zhang, W.; Zou, X. Non-Destructive Detection of Chicken Freshness Based on Electronic Nose Technology and Transfer Learning. Agriculture 2023, 13, 496. [Google Scholar] [CrossRef]
- Viancy, V.; Gobalakrishnan, N.; Anitha, E. Advancements in Food and Meat Freshness Monitoring: Integrating Machine Learning and Advanced Technologies. In Proceedings of the 2024 International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal, 24–26 April 2024; pp. 393–400. [Google Scholar]
- Muradov, M.; Cullen, J.; Mason, A. Real-Time Monitoring of Meat Drying Process Using Electromagnetic Wave Sensors. In Next Generation Sensors and Systems; Mukhopadhyay, S.C., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 221–233. ISBN 978-3-319-21671-3. [Google Scholar]
- Goñi, S.M.; d’Amore, M.; Della Valle, M.; Olivera, D.F.; Salvadori, V.O.; Marra, F. Effect of Load Spatial Configuration on the Heating of Chicken Meat Assisted by Radio Frequency at 40.68 MHz. Foods 2022, 11, 1096. [Google Scholar] [CrossRef]
- Swatland, H.J. Objective Measurement of Physical Aspects of Meat Quality. In Proceedings of the Reciprocal Meat Conference; American Meat Science Association: Guelph, ON, Canada, 1989. [Google Scholar]
- Damez, J.-L.; Clerjon, S.; Abouelkaram, S.; Lepetit, J. Beef Meat Electrical Impedance Spectroscopy and Anisotropy Sensing for Non-Invasive Early Assessment of Meat Ageing. J. Food Eng. 2008, 85, 116–122. [Google Scholar] [CrossRef]
- Muramatsu, D.; Koshiji, F.; Koshiji, K.; Sasaki, K. Development and Study of Electrical Property on Phantom for Human Body Communication Considering Tissue Structure of Human Arm. Trans. Jpn. Inst. Electron. Packag. 2014, 17, 63–68. [Google Scholar] [CrossRef]
- Muramatsu, D.; Koshiji, F.; Koshiji, K.; Sasaki, K. Multilayered Phantom for Input Impedance Evaluation of Human Body Communication Electrodes. EAI Endorsed Trans. Cogn. Commun. 2015, 2, 313. [Google Scholar] [CrossRef]
- Muramatsu, D. NaCl-Based Blood Phantom Analysis for In Vitro Bioimpedance Measurement. AIP Adv. 2021, 11, 085301. [Google Scholar] [CrossRef]
- Muramatsu, D.; Sasaki, K. Bioimpedance Emulation Performance of Multilayered Phantom for HF-Band. IEEJ Trans. Electron. Inf. Syst. 2022, 142, 625–626. [Google Scholar] [CrossRef]
- Stuchly, M.A.; Stuchly, S.S. Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review. IEEE Trans. Instrum. Meas. 1980, 29, 176–183. [Google Scholar] [CrossRef]
- Liu, S.; Fukuoka, M.; Sakai, N. Dielectric Properties of Fish Flesh at Microwave Frequency. Food Sci. Technol. Res. 2012, 18, 157–166. [Google Scholar] [CrossRef]
- Anand, G.; Lowe, A.; Al-Jumaily, A. Tissue phantoms to mimic the dielectric properties of human forearm section for multi-frequency bioimpedance analysis at low frequencies. Mater. Sci. Eng. C 2019, 96, 496–508. [Google Scholar] [CrossRef]
- Muramatsu, D.; Sasaki, K. Input Impedance Analysis of Wearable Antenna and Experimental Study with Real Human Subjects: Differences between Individual Users. Electronics 2021, 10, 1152. [Google Scholar] [CrossRef]
- Muramatsu, D. Bioimpedance-Based Plethysmogram Detection Using MHz Band. IEEJ Trans. Electr. Electron. Eng. 2021, 16, e23388. [Google Scholar] [CrossRef]
- Japan Meat Grading Association. Beef Carcass Grading Standards (12-Grade Marbling Scale); Japan Meat Grading Association: Tokyo, Japan, 2016. [Google Scholar]
- Analog Devices. AD5933: High Precision Impedance Converter Network Analyzer Data Sheet; Analog Devices: Norwood, MA, USA, 2012; Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf (accessed on 2 May 2025).
- Foster, F.C.; Schwan, H.P. Dielectric properties of tissues in the 10 Hz to 20 GHz range. IEEE Trans. Microw. Theory Tech. 1971, MTT-19, 492–502. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrical properties of tissues and cell suspensions: Mechanisms and models. In Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, MD, USA, 3–6 November 1994; pp. A70–A71. [Google Scholar] [CrossRef]
- Takamatsu, R.; Higuchi, K.; Muramatsu, D. Measurement Frequency Evaluation for Bioimpedance-Based Blood-Glucose Estimation. In Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), Nara, Japan, 9–11 March 2021; pp. 309–310. [Google Scholar] [CrossRef]
- Robin, A.; Levkov, K.; González-Díaz, C.; López-Saquisilí, N.; Golberg, A. Electrical bioimpedance spectroscopy as a non-invasive monitoring tool of physiological states of macroalgae tissues: Example on the impact of electroporation on 8 different seaweed species. Eur. Food Res. Technol. 2024, 250, 2011–2023. [Google Scholar] [CrossRef]
- Kitamura, Y.; Toyoda, K.; Park, B. Electric Impedance Spectroscopy for Yogurt Processing. Food Sci. Technol. Res. 2000, 6, 310–313. [Google Scholar] [CrossRef]
- Huh, S.; Kim, H.-J.; Lee, S.; Cho, J.; Jang, A.; Bae, J. Utilization of Electrical Impedance Spectroscopy and Image Classification for Non-Invasive Early Assessment of Meat Freshness. Sensors 2021, 21, 1001. [Google Scholar] [CrossRef] [PubMed]
- Jilani, M.T.; Wen, W.P.; Cheong, L.Y.; Ur Rehman, M.Z. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging. Sensors 2016, 16, 52. [Google Scholar] [CrossRef]
- Trabelsi, S. Variation of the Dielectric Properties of Chicken Meat with Frequency and Temperature. Food Meas. 2015, 9, 299–304. [Google Scholar] [CrossRef]
- European Commission Scientific Committees. Intermediate-Frequency Electromagnetic Fields. Champs Électromagnétiques (Layman’s Guide). 2015. Available online: https://ec.europa.eu/health/scientific_committees/opinions_layman/fr/champs-electromagnetiques/l-2/6-intermediate-fields.htm (accessed on 5 May 2025).
- Dashdorj, D.; Tripathi, V.K.; Cho, S.; Kim, Y.; Hwang, I. Dry Aging of Beef; Review. J. Anim. Sci. Technol. 2016, 58, 20. [Google Scholar] [CrossRef]
- Ellies-Oury, M.-P.; Guéguen, B.; Deschamps, M.; Picard, S.; Sabatier, P.; Hocquette, J.-F.; Astruc, E. Evolution of Sensory Properties of Beef during Long Dry Ageing. Foods 2022, 11, 2822. [Google Scholar] [CrossRef]
- DeGreer, S.L.; Hunt, M.C.; Bratcher, C.L.; Crozier-Dodson, B.A.; Johnson, D.E.; Stika, J.F. Effects of Dry Age of Bone-In and Boneless Strip Loins Using Two Aging Processes for Two Aging Times. Meat Sci. 2009, 83, 768–774. [Google Scholar] [CrossRef]
- Smith, R.D.; Nicholson, K.L.; Nicholson, J.D.W.; Harris, K.B.; Miller, R.K.; Griffin, D.B.; Savell, J.W. Dry versus Wet Aging of Beef: Retail Cutting Yields and Consumer Palatability Evaluations of Steaks from US Choice and US Select Short Loins. Meat Sci. 2008, 79, 631–639. [Google Scholar] [CrossRef]
- Laster, M.A.; Smith, R.D.; Nicholson, K.L.; Nicholson, J.D.W.; Miller, R.K.; Griffin, D.B.; Harris, K.B.; Savell, J.W. Dry versus Wet Aging of Beef: Retail Cutting Yields and Consumer Sensory Attribute Evaluations of Steaks from Ribeyes, Strip Loins, and Top Sirloins from Two Quality Grade Groups. Meat Sci. 2008, 80, 795–804, ISSN 0309-1740. [Google Scholar] [CrossRef]
- Schwan, H.P. Linear and Nonlinear Electrode Polarization and Biological Materials. Ann. Biomed. Eng. 1992, 20, 269–288. [Google Scholar] [CrossRef]
- Martinsen, Ø.G.; Grimnes, S. Bioimpedance and Bioelectricity Basics, 3rd ed.; Academic Press: London, UK, 2014; ISBN 978-0-08-101312-0. [Google Scholar]
- Barsoukov, E.; Macdonald, J.R. (Eds.) Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
Category | Open-Ended Coaxial Probe | Surface-Attached Flexible Electrode Probe | Puncture-Type Semi-Rigid Coaxial Probe |
---|---|---|---|
Destructiveness | Non-destructive | Non-destructive | Minimally destructive |
Frequency range | Wide several MHz–several hundred GHz (probe-dependent) | Moderate several kHz–several tens of MHz | Wide several kHz–several GHz |
Sensing depth | Shallow | Moderate | Deep |
Main features | Well-studied and easy to apply, but expensive | Easy to apply, but strongly affected by contact conditions | Easy to apply, inexpensive, and less affected by contact conditions |
Sample | Beef Round | Pork Leg |
---|---|---|
Origin | Australia | Japan |
Marbling | Almost none | |
Size | 60 × 60 × 100 mm3 block | |
Weight | 314 g | 294 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muramatsu, D.; Sasaki, Y. A Novel Electromagnetic Response Measurement System for Continuous Monitoring of Meat Aging. Foods 2025, 14, 2016. https://doi.org/10.3390/foods14122016
Muramatsu D, Sasaki Y. A Novel Electromagnetic Response Measurement System for Continuous Monitoring of Meat Aging. Foods. 2025; 14(12):2016. https://doi.org/10.3390/foods14122016
Chicago/Turabian StyleMuramatsu, Dairoku, and Yukino Sasaki. 2025. "A Novel Electromagnetic Response Measurement System for Continuous Monitoring of Meat Aging" Foods 14, no. 12: 2016. https://doi.org/10.3390/foods14122016
APA StyleMuramatsu, D., & Sasaki, Y. (2025). A Novel Electromagnetic Response Measurement System for Continuous Monitoring of Meat Aging. Foods, 14(12), 2016. https://doi.org/10.3390/foods14122016