Technological Development in Wholegrain Food Processing
Abstract
1. Introduction
2. Emerging Physical Technologies
2.1. Micronization
2.1.1. Effect on Baking Performance
2.1.2. Effect on Phytochemical Extractability
2.1.3. Effect on Pasta and Noodle Quality
2.1.4. Effect on Wheat Bran
2.2. Steam Explosion
2.2.1. Effect on Phytochemical Compounds
2.2.2. Effect on Rheology and Shelf Life
2.2.3. Application of SE on Other Cereals
2.3. Extrusion Cooking
2.3.1. Effect on Bran Microstructure
2.3.2. Development of Novel Products
2.4. High Hydrostatic Pressure
2.4.1. Effect on Nutritional Compounds
2.4.2. Effect on Rheology
2.4.3. Application of HHP for Gluten-Free Foods
2.5. Ohmic Heating
2.5.1. Effect on Processability
2.5.2. Effect on Nutritional Compounds
2.6. Three-Dimensional (3D) Food Printing
2.6.1. Effect on Processability
2.6.2. Effect on Nutritional Compounds
3. Bioprocessing
3.1. Germination
3.1.1. Effect on Nutritional Compounds
3.1.2. Effect on Baking Performances
3.2. Sourdough Fermentation
3.2.1. Effect on Nutritional Compounds
3.2.2. Effect on Baking Performances
3.2.3. Effect on Adverse Food Compounds
3.3. Enzymes
3.3.1. Effect on Nutritional Compounds
3.3.2. Effect on Processability
4. Driving the Future of Whole Cereal Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sofi, S.A.; Nazir, A.; Ashraf, U. Cereal bioactive compounds: A review. Int. J. Agric. Environ. Biotechnol. 2019, 12, 107–113. [Google Scholar] [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Pop, O.L.; Coldea, T.E.; Fogarasi, M.; Biriș-Dorhoi, E.S. An update regarding the bioactive compound of cereal by-products: Health benefits and potential applications. Nutrients 2022, 14, 3470. [Google Scholar] [CrossRef]
- Garutti, M.; Nevola, G.; Mazzeo, R.; Cucciniello, L.; Totaro, F.; Bertuzzi, C.A.; Caccialanza, R.; Pedrazzoli, P.; Puglisi, F. The impact of cereal grain composition on the health and disease outcomes. Front. Nutr. 2022, 9, 888974. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Choi, I.; Hyun, J.N.; Jeong, Y.K.; Baik, B.K. Influence of bran particle size on bread-baking quality of whole grain wheat flour and starch retrogradation. Cereal Chem. 2014, 91, 65–71. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Nocente, F.; Sgrulletta, D.; Gazza, L. Cooking quality, biochemical and technological characteristics of bran-enriched pasta obtained by a novel pasta-making process. LWT 2019, 101, 10–16. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Nagi, H.P.S.; Dar, B.N. Functional properties of pasta enriched with variable cereal brans. J. Food Sci. Technol. 2012, 49, 467–474. [Google Scholar] [CrossRef]
- Niu, M.; Hou, G.G.; Kindelspire, J.; Krishnan, P.; Zhao, S. Microstructural, textural, and sensory properties of whole-wheat noodle modified by enzymes and emulsifiers. Food Chem. 2017, 223, 16–24. [Google Scholar] [CrossRef]
- Li, C.; Tilley, M.; Chen, R.; Siliveru, K.; Li, Y. Effect of bran particle size on rheology properties and baking quality of whole wheat flour from four different varieties. LWT 2023, 175, 114504. [Google Scholar] [CrossRef]
- Alzuwaid, N.T.; Pleming, D.; Fellows, C.M.; Laddomada, B.; Sissons, M. Influence of durum wheat bran particle size on phytochemical content and on leavened bread baking quality. Foods 2021, 10, 489. [Google Scholar] [CrossRef]
- Lin, S.; Gao, J.; Jin, X.; Wang, Y.; Dong, Z.; Ying, J.; Zhou, W. Whole-wheat flour particle size influences dough properties, bread structure and in vitro starch digestibility. Food Funct. 2020, 11, 3610–3620. [Google Scholar] [CrossRef]
- Lai, S.; Liu, J.; Zhang, Y.; Wang, Y.; Li, G.; Cui, Q. Effects of wheat bran micronization on the quality of reconstituted whole-wheat flour and its cooked noodles. Processes 2022, 10, 1001. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Nocente, F.; Natale, C.; Taddei, F. Cooking quality and chemical and technological characteristics of wholegrain einkorn pasta obtained from micronized flour. Foods 2022, 11, 2905. [Google Scholar] [CrossRef] [PubMed]
- Taddei, F.; Galassi, E.; Nocente, F.; Gazza, L. Innovative milling processes to improve the technological and nutritional quality of parboiled brown rice pasta from contrasting amylose content cultivars. Foods 2021, 10, 1316. [Google Scholar] [CrossRef]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT 2019, 114, 108421. [Google Scholar] [CrossRef]
- Nocente, F.; Natale, C.; Galassi, E.; Taddei, F.; Gazza, L. Using einkorn and tritordeum brewers’ spent grain to increase the nutritional potential of durum wheat pasta. Foods 2021, 10, 502. [Google Scholar] [CrossRef]
- Onipe, O.O.; Beswa, D.; Jideani, A.I.O. Effect of size reduction on colour, hydration and rheological properties of wheat bran. Food Sci. Technol. 2017, 37, 389–396. [Google Scholar] [CrossRef]
- Lai, S.; Chen, Z.; Zhang, Y.; Li, G.; Wang, Y.; Cui, Q. Micronization effects on structural, functional, and antioxidant properties of wheat bran. Foods 2022, 12, 98. [Google Scholar] [CrossRef]
- Nikinmaa, M.; Nordlund, E.; Poutanen, K.; Sozer, N. From underutilized side-streams to hybrid food ingredients for health. Cereal Foods World 2018, 63, 137–142. [Google Scholar]
- Silventoinen, P.; Rommi, K.; Holopainen-Mantila, U.; Poutanen, K.; Nordlund, E. Biochemical and techno-functional properties of protein-and fibre-rich hybrid ingredients produced by dry fractionation from rice bran. Food Bioprocess Technol. 2019, 12, 1487–1499. [Google Scholar] [CrossRef]
- Silventoinen, P.; Kortekangas, A.; Ercili-Cura, D.; Nordlund, E. Impact of ultra-fine milling and air classification on biochemical and techno-functional characteristics of wheat and rye bran. Food Res. Int. 2021, 139, 109971. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Terracciano, G.; Cammerata, A.; Sgrulletta, D.; Del Frate, V.; Gazza, L.; Nocente, F. Hydrothermal grain pre-processing and ultra-fine milling for the production of durum wheat flour fractions with high nutritional value. Food Sci. Technol. Int. 2018, 24, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Wang, L.; Kong, F.; Yang, W.; Chen, H. Steam explosion pretreatment: Dramatic reduction in energy consumption for wheat bran grinding. J. Cereal Sci. 2024, 117, 103893. [Google Scholar] [CrossRef]
- Aktas-Akyildiz, E.; Mattila, O.; Sozer, N.; Poutanen, K.; Koksel, H.; Nordlund, E. Effect of steam explosion on enzymatic hydrolysis and baking quality of wheat bran. J. Cereal Sci. 2017, 78, 25–32. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Liao, A.M.; Thakur, K.; Huang, J.H.; Zhang, J.G.; Wei, Z.J. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution. Food Chem. 2019, 297, 124983. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pang, T.; Kong, F.; Chen, H. Steam explosion pretreatment for improving wheat bran extrusion capacity. Foods 2022, 11, 2850. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, S.; Meng, T.; Wang, Y.; Zhang, Z. Effects of steam explosion on the nutritional and functional properties of black-grained wheat bran and its application. J. Sci. Food Agric. 2023, 103, 2175–2185. [Google Scholar] [CrossRef]
- Kong, F.; Wang, L.; Chen, H.; Zhao, X. Improving storage property of wheat bran by steam explosion. Int. J. Food Sci. Technol. 2021, 56, 287–292. [Google Scholar] [CrossRef]
- Kong, F.; Zeng, Q.; Li, Y.; Zhao, Y.; Guo, X. Improving bioaccessibility and physicochemical property of blue-grained wholemeal flour by steam explosion. Front. Nutr. 2022, 9, 877704. [Google Scholar] [CrossRef]
- Bharathi, R.; Grandal, S.; Westereng, B.; Annor, G.; Tyl, C. Steam explosion technology as a tool to alter the physicochemical properties of intermediate wheatgrass (Thinopyrum intermedium) bran. Innov. Food Sci. Emerg. Technol. 2024, 93, 103627. [Google Scholar] [CrossRef]
- Dang, B.; Zhang, W.-G.; Zhang, J.; Yang, X.-J.; Xu, H.-D. Effect of thermal treatment on the internal structure, physicochemical properties and storage stability of whole grain highland barley flour. Foods 2022, 11, 2021. [Google Scholar] [CrossRef]
- Hong, Q.; Chen, G.; Wang, Z.; Chen, X.; Shi, Y.; Chen, Q.; Kan, J. Impact of processing parameters on physicochemical properties and biological activities of Qingke (highland hull-less barley) treated by steam explosion. J. Food Process. Preserv. 2020, 44, e14793. [Google Scholar] [CrossRef]
- Ziegler-Devin, I.; Chrusciel, L.; Brosse, N. Steam explosion pretreatment of lignocellulosic biomass: A mini-review of theorical and experimental approaches. Front. Chem. 2021, 9, 705358. [Google Scholar] [CrossRef]
- Yi, C.; Qiang, N.; Zhu, H.; Xiao, Q.; Li, Z. Extrusion processing: A strategy for improving the functional components, physicochemical properties, and health benefits of whole grains. Food Res. Int. 2022, 160, 111681. [Google Scholar] [CrossRef]
- Roye, C.; Henrion, M.; Chanvrier, H.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-cooking modifies physicochemical and nutrition-related properties of wheat bran. Foods 2020, 9, 738. [Google Scholar] [CrossRef]
- Roye, C.; Van Wayenbergh, E.; Henrion, M.; De Bondt, Y.; Chanvrier, H.; King, R.; Lamothe, L.M.; Courtin, C.M. Extrusion-cooking affects oat bran physicochemical and nutrition-related properties and increases its β-glucan extractability. J. Cereal Sci. 2021, 102, 103360. [Google Scholar] [CrossRef]
- Roye, C.; Chanvrier, H.; Henrion, M.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Single-pass, double-pass and acid twin-screw extrusion-cooking impact physicochemical and nutrition-related properties of wheat bran. Innov. Food. Sci. Emerg. Technol. 2020, 66, 102520. [Google Scholar] [CrossRef]
- Cui, C.; Li, D.; Wang, L.J.; Wang, Y. Microstructure of extrusion-cooked whole grain in controlling product quality. Food Rev. Int. 2024, 40, 1621–1646. [Google Scholar] [CrossRef]
- Caporizzi, R.; Schönlechner, R.; D’amico, S.; Severini, C.; Derossi, A. Novel gluten-free breakfast cereals produced by extrusion cooking from rice and teff: Effects on microstructural, physical and nutritional properties. Foods 2023, 12, 609. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Schmiele, M.; Steel, C.J. Development of whole grain wheat flour extruded cereal and process impacts on color, expansion, and dry and bowl-life texture. LWT 2017, 75, 261–270. [Google Scholar] [CrossRef]
- Nath, K.G.; Pandiselvam, R.; Sunil, C.K. High-pressure processing: Effect on textural properties of food—A review. J. Food Eng. 2023, 351, 111521. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.M.; Yang, Y.; Wang, B.; Liu, X.F.; Wang, Y.; Bian, X.; Zhang, Z.; Zhang, N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res. Int. 2024, 195, 114991. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Hsu, C.P.; Wang, C.Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J. Food Drug Anal. 2020, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. The efficacy and safety of high-pressure processing of food. EFSA J. 2022, 20, e07128. [Google Scholar]
- Baldelli, A.; Shi, J.; Singh, A.; Guo, Y.; Fathordoobady, F.; Amiri, A.; Pratap-Singh, A. Effect of high-pressure on protein structure, refolding, and crystallization. Food Chem. Adv. 2024, 5, 100741. [Google Scholar] [CrossRef]
- Barros, J.H.T.; de Carvalho Oliveira, L.; Cristianini, M.; Steel, C.J. Non-thermal emerging technologies as alternatives to chemical additives to improve the quality of wheat flour for breadmaking: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1612–1628. [Google Scholar] [CrossRef]
- Castro, L.M.; Alexandre, E.M.; Saraiva, J.A.; Pintado, M. Impact of high pressure on starch properties: A review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- Han, Z.; Shi, R.; Sun, D.W. Effects of novel physical processing techniques on the multi-structures of starch. Trends Food Sci. Technol. 2020, 97, 126–135. [Google Scholar] [CrossRef]
- Rao, M.V.; Sunil, C.K.; Rawson, A.; Chidanand, D.V.; Venkatachlapathy, N. Modifying the plant proteins techno-functionalities by novel physical processing technologies: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4070–4091. [Google Scholar]
- Dapčević-Hadnađev, T.; Tomić, J.; Škrobot, D.; Šarić, B.; Hadnađev, M. Processing strategies to improve the breadmaking potential of whole-grain wheat and non-wheat flours. Discov. Food 2022, 2, 11. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.Z.; Arfat, Y.A. Particle size, rheological and structural properties of whole wheat flour doughs as treated by high pressure. Int. J. Food Prop. 2017, 20, 1829–1842. [Google Scholar] [CrossRef]
- Lee, N.Y.; Koo, J.G. Effects of high hydrostatic pressure on quality changes of blends with low-protein wheat and oat flour and derivative foods. Food Chem. 2019, 271, 685–690. [Google Scholar] [CrossRef]
- Jakobi, S.; Jekle, M.; Becker, T. High-pressure treatment of non-hydrated flour affects structural characteristics and hydration. Foods 2018, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Ayala, J.E.; Soler, A.; Mendez-Montealvo, G.; Velazquez, G. Supramolecular structure and technofunctional properties of starch modified by high hydrostatic pressure (HHP): A review. Carbohydr. Polym. 2022, 291, 119609. [Google Scholar] [CrossRef] [PubMed]
- Shorstkii, I.; Sosnin, M.; Mounassar, E.H.A.; Bindrich, U.; Heinz, V.; Aganovic, K. The effect of high-pressure pre-soaking on the water absorption, gelatinization properties, and microstructural properties of wheat grains. AgriEngineering 2022, 4, 1153–1163. [Google Scholar] [CrossRef]
- Cappa, C.; Barbosa-Cánovas, G.V.; Lucisano, M.; Mariotti, M. Effect of high pressure processing on the baking aptitude of corn starch and rice flour. LWT 2016, 73, 20–27. [Google Scholar] [CrossRef]
- Seo, J.H.; Jo, Y.J.; Lee, Y.R.; Lee, J.; Jeong, H.S. Physicochemical properties of soft and hard-type rice flour according to moisture content and high hydrostatic pressure treatment. Foods 2023, 12, 227. [Google Scholar] [CrossRef]
- Zhu, F.; Li, H. Effect of high hydrostatic pressure on physicochemical properties of quinoa flour. LWT 2019, 114, 108367. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.H.; Sastry, S. Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1040–1052. [Google Scholar] [CrossRef]
- Tumpanuvatr, T.; Jittanit, W. Application of ohmic heating in cooking mixtures of brown rice and whole grains: Total phenolic content, antioxidant activities, vitamin B1, some minerals, and energy consumption. Int. J. Food Prop. 2024, 27, 431–447. [Google Scholar] [CrossRef]
- Dias-Martins, A.M.; Cappato, L.P.; da Costa Mattos, M.; Rodrigues, F.N.; Pacheco, S.; Carvalho, C.W. Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. J. Cereal Sci. 2019, 85, 120–129. [Google Scholar] [CrossRef]
- Sain, M.; Minz, P.S.; John, H.; Singh, A. Effect of ohmic heating on food products: An In-Depth Review Approach Associated with Quality Attributes. J. Food Process. Preserv. 2024, 2024, 2025937. [Google Scholar] [CrossRef]
- Nandi, B.; Sandeep, K.; Jindal, N.; Singh, I.; Kumar, N. Fabrication of laboratory scale ohmic heater and its application in wheat bran stabilization. J. Food Process. Preserv. 2017, 41, e13035. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef]
- Waziiroh, E.; Bender, D.; Jäger, H.; Schönlechner, R. Ohmic baking of gluten-free bread: Role of non-gluten protein on GF bread structure and properties. Int. J. Food Sci. Technol. 2023, 58, 595–609. [Google Scholar] [CrossRef]
- Kewuyemi, Y.O.; Kesa, H.; Meijboom, R.; Alimi, O.A.; Adebo, O.A. 3D food printing improves color profile and structural properties of the derived novel whole-grain sourdough and malt biscuits. Sci. Rep. 2022, 12, 12347. [Google Scholar] [CrossRef]
- Singhal, S.; Rasane, P.; Kaur, S.; Garba, U.; Bankar, A.; Singh, J.; Gupta, N. 3D food printing: Paving way towards novel foods. An. Acad. Bras. Cienc. 2020, 92, e20180737. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Iskandar, M.M.; Baeghbali, V.; Kubow, S. Three-Dimensional printing of foods: A critical review of the present state in healthcare applications, and potential risks and benefits. Foods 2023, 12, 3287. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R.J.P.M. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Le-Bail, A.; Maniglia, B.C.; Le-Bail, P. Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Curr. Opin. Food Sci. 2020, 35, 54–64. [Google Scholar] [CrossRef]
- Lee, J. A 3D food printing process for the new normal era: A review. Processes 2021, 9, 1495. [Google Scholar] [CrossRef]
- Mustač, N.Č.; Pastor, K.; Kojić, J.; Voučko, B.; Ćurić, D.; Rocha, J.M.; Novotni, D. Quality assessment of 3D-printed cereal-based products. LWT 2023, 184, 115065. [Google Scholar] [CrossRef]
- Guo, T.; Wang, T.; Chen, L.; Zheng, B. Whole-grain highland barley premade biscuit prepared by hot-extrusion 3D printing: Printability and nutritional assessment. Food Chem. 2024, 432, 137226. [Google Scholar] [CrossRef]
- Lille, M.; Kortekangas, A.; Heiniö, R.L.; Sozer, N. Structural and textural characteristics of 3D-printed protein-and dietary fibre-rich snacks made of milk powder and wholegrain rye flour. Foods 2020, 9, 1527. [Google Scholar] [CrossRef]
- Habuš, M.; Mykolenko, S.; Iveković, S.; Pastor, K.; Kojić, J.; Drakula, S.; Novotni, D. Bioprocessing of wheat and amaranth bran for the reduction of fructan levels and application in 3D-printed snacks. Foods 2022, 11, 1649. [Google Scholar] [CrossRef]
- Gunathunga, C.; Senanayake, S.; Jayasinghe, M.A.; Brennan, C.S.; Truong, T.; Marapana, U.; Chandrapala, J. Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. J. Food Compos. Anal. 2024, 128, 106024. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Delcour, J.A. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef]
- Majzoobi, M.; Wang, Z.; Teimouri, S.; Pematilleke, N.; Brennan, C.S.; Farahnaky, A. Unlocking the potential of sprouted cereals, pseudocereals, and pulses in combating malnutrition. Foods 2023, 12, 3901. [Google Scholar] [CrossRef]
- Elliott, H.; Woods, P.; Green, B.D.; Nugent, A.P. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Nutr. Bull. 2022, 47, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Gill, B.S. Comparative evaluation of physicochemical, nutritional and molecular interactions of flours from different cereals as affected by germination duration. J. Food Meas. Charact. 2020, 14, 1147–1157. [Google Scholar] [CrossRef]
- Kaur, H.; Gill, B.S. Changes in physicochemical, nutritional characteristics and ATR–FTIR molecular interactions of cereal grains during germination. J. Food Sci. Technol. 2021, 58, 2313–2324. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, Y.; Wu, D.; Chen, Q.; Shu, X. Germinated high-resistant starch rice: A potential novel functional food. Int. J. Food Sci. Technol. 2022, 57, 5439–5449. [Google Scholar] [CrossRef]
- Munarko, H.; Sitanggang, A.B.; Kusnandar, F.; Budijanto, S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int. J. Food Sci. Technol. 2021, 56, 4540–4548. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Zhao, G.; Peng, H.; Zhang, D.; Li, Z. Effects of germination time on phenolics, antioxidant capacity, in vitro phenolic bioaccessibility and starch digestibility in sorghum. Int. J. Food Sci. Technol. 2022, 57, 5175–5185. [Google Scholar] [CrossRef]
- Kayisoglu, C.; Altikardes, E.; Guzel, N.; Uzel, S. Germination: A powerful way to improve the nutritional, functional, and molecular properties of white-and red-colored sorghum grains. Foods 2024, 13, 662. [Google Scholar] [CrossRef] [PubMed]
- Baranzelli, J.; Somacal, S.; Monteiro, C.S.A.; Mello, R.D.O.; Rodrigues, E.; Prestes, O.D.; Emanuelli, T. Grain germination changes the profile of phenolic compounds and benzoxazinoids in wheat: A study on hard and soft cultivars. Molecules 2023, 28, 721. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem. 2021, 338, 127972. [Google Scholar] [CrossRef]
- Johnston, R.; Martin, J.M.; Vetch, J.M.; Byker-Shanks, C.; Finnie, S.; Giroux, M.J. Controlled sprouting in wheat increases quality and consumer acceptability of whole-wheat bread. Cereal Chem. 2019, 96, 866–877. [Google Scholar] [CrossRef]
- Cardone, G.; D’Incecco, P.; Pagani, M.A.; Marti, A. Sprouting improves the bread-making performance of whole wheat flour (Triticum aestivum L.). J. Sci. Food Agric. 2020, 100, 2453–2459. [Google Scholar] [CrossRef]
- Naumenko, N.; Potoroko, I.; Kalinina, I.; Fatkullin, R.; Ivanisova, E. The influence of the use of whole grain flour from sprouted wheat grain on the rheological and microstructural properties of dough and bread. Int. J. Food Sci. 2021, 2021, 7548759. [Google Scholar] [CrossRef]
- Stern, A.L.; Berstein, J.; Jones, S.S.; Blumberg, J.B.; Griffin, T.S. The impacts of germinating organic wheat: Effects on phytic acid, resistant starch, and functional properties of flour, and sensory attributes of sourdough bread. Int. J. Food Sci. Technol. 2021, 56, 3858–3865. [Google Scholar] [CrossRef]
- Moreno, E.D.J.M.; Palma-Rodríguez, H.M.; Hernández-Uribe, J.P.; Soto-Simental, S.; Berrios, J.D.J.; Vargas-Torres, A. Effect of wheat grain germination time on physicochemical and texture properties, starch digestion, and protein hydrolysis rate in bread making. J. Cereal Sci. 2025, 121, 104091. [Google Scholar] [CrossRef]
- Dhillon, B.; Choudhary, G.; Sodhi, N.S. A study on physicochemical, antioxidant and microbial properties of germinated wheat flour and its utilization in breads. J. Food Sci. Technol. 2020, 57, 2800–2808. [Google Scholar] [CrossRef]
- Graham, A.E.; Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Petrova, P.; Petrov, K. Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients 2020, 12, 1118. [Google Scholar] [CrossRef]
- Sawant, S.S.; Park, H.Y.; Sim, E.Y.; Kim, H.S.; Choi, H.S. Microbial fermentation in food: Impact on functional properties and nutritional enhancement—A Review of Recent Developments. Fermentation 2025, 11, 15. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Polo, A.; Rizzello, C.G. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 2158–2173. [Google Scholar] [CrossRef]
- Tomassi, E.; Arouna, N.; Brasca, M.; Silvetti, T.; de Pascale, S.; Troise, A.D.; Pucci, L. Fermentation of whole-wheat using different combinations of lactic acid bacteria and yeast: Impact on in vitro and ex vivo antioxidant activity. Foods 2025, 14, 421. [Google Scholar] [CrossRef]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-inflammatory and immunomodulatory properties of fermented plant foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef] [PubMed]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef]
- Akamine, I.T.; Mansoldo, F.R.; Vermelho, A.B. Probiotics in the sourdough bread fermentation: Current status. Fermentation 2023, 9, 90. [Google Scholar] [CrossRef]
- Kezer, G. Functional perspective on sourdough bread. Turk. J. Agric. Food Sci. Technol. 2022, 10, 1410–1414. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Proestos, C. Food preservation: Challenges and efforts for the future. Foods 2020, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of different fermentation conditions on estimated glycemic index, in vitro starch digestibility, and textural and sensory properties of sourdough bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, B. Effects of different solid-state fermentation ratios of S. cerevisiae and L. plantarum on physicochemical properties of wheat bran and the quality of whole wheat bread. J. Sci. Food Agric. 2021, 101, 4551–4560. [Google Scholar] [CrossRef]
- Wang, M.; Lei, M.; Samina, N.; Chen, L.; Liu, C.; Yin, T.; Yi, C. Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran. Food Chem. 2020, 330, 127156. [Google Scholar] [CrossRef]
- Cera, S.; Tuccillo, F.; Knaapila, A.; Sim, F.; Manngård, J.; Niklander, K.; Coda, R. Role of tailored sourdough fermentation in the flavor of wholegrain-oat bread. Curr. Res. Food Sci. 2024, 8, 100697. [Google Scholar] [CrossRef] [PubMed]
- Zadeike, D.; Vaitkeviciene, R.; Bartkevics, V.; Bogdanova, E.; Bartkiene, E.; Lele, V.; Valatkeviciene, Z. The expedient application of microbial fermentation after whole-wheat milling and fractionation to mitigate mycotoxins in wheat-based products. LWT 2021, 137, 110440. [Google Scholar] [CrossRef]
- Torbica, A.M.; Vujasinović, V.; Miljić, U.; Radivojević, G.; Filipčev, B.; Miljić, M.; Radosavljević, M. Successful strategy in creating low-FODMAP wholegrain bread—Simple and global. Foods 2025, 14, 304. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Beck, H.; Gütler, A.; Gütler, H.; Heilig, W.; Zimmermann, J.; Würschum, T. Influence of wheat variety and dough preparation on FODMAP content in yeast-leavened wheat breads. J. Cereal Sci. 2020, 95, 103021. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; De Marco, I.; Neves Oliveira dos Santos, N.; Costa Nunes, C.; Leite Cartabiano, C.E.; Molognoni, L.; De Dea Lindner, J. Reducing FODMAPs and improving bread quality using type II sourdough with selected starter cultures. Int. J. Food Sci. Nutr. 2021, 72, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.M.; Filipčev, B.; Vujasinović, V.; Miljić, U.; Radivojević, G.; Miljić, M.; Radosavljević, M. Biotechnological tools for the production of low-FODMAP wholegrain wheat and rye cookies and crackers. Foods 2025, 14, 582. [Google Scholar] [CrossRef] [PubMed]
- Mencin, M.; Markanovič, N.; Mikulič Petkovšek, M.; Veberič, R.; Terpinc, P. Bioprocessed wholegrain spelt flour improves the quality and physicochemical characteristics of wheat bread. Molecules 2023, 28, 3428. [Google Scholar] [CrossRef] [PubMed]
- Onipe, O.O.; Ramashia, S.E.; Jideani, A.I. Wheat bran modifications for enhanced nutrition and functionality in selected food products. Molecules 2021, 26, 3918. [Google Scholar] [CrossRef]
- Torbica, A.; Radosavljević, M.; Belović, M.; Djukić, N.; Marković, S. Overview of nature, frequency and technological role of dietary fibre from cereals and pseudocereals from grain to bread. Carbohydr. Polym. 2022, 290, 119470. [Google Scholar] [CrossRef]
- Han, W.; Ma, S.; Li, L.; Zheng, X.; Wang, X. Impact of wheat bran dietary fiber on gluten and gluten-starch microstructure formation in dough. Food Hydrocoll. 2019, 95, 292–297. [Google Scholar] [CrossRef]
- Wang, C.C.; Yang, Z.; Xing, J.J.; Guo, X.N.; Zhu, K.X. Effects of insoluble dietary fiber and ferulic acid on the rheological properties of dough. Food Hydrocoll. 2021, 121, 107008. [Google Scholar] [CrossRef]
- Mendonça, M.; Barroca, M.; Collins, T. Endo-1, 4-β-xylanase-containing glycoside hydrolase families: Characteristics, singularities and similarities. Biotechnol. Adv. 2023, 65, 108148. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zoghi, A.; Azizi, M.H. Effect of xylanase and pentosanase enzymes on dough rheological properties and quality of baguette bread. J. Food Qual. 2022, 2022, 2910821. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Yang, M.; Ou, Z.; Lin, Y.; Zhao, F.; Han, S. Characterization and application of a novel xylanase from Halolactibacillus miurensis in wholewheat bread making. Front. Bioeng. Biotechnol. 2022, 10, 1018476. [Google Scholar] [CrossRef]
- He, N.; Xia, M.; Zhang, X.; He, M.; Li, L.; Li, B. Quality attributes and functional properties of whole wheat bread baked from frozen dough with the addition of enzymes and hydrocolloids. J. Sci. Food Agric. 2024, 104, 1928–1941. [Google Scholar] [CrossRef] [PubMed]
- Sheikholeslami, Z.; Mahfouzi, M.; Karimi, M.; Ghiafehdavoodi, M. Modification of dough characteristics and baking quality based on whole wheat flour by enzymes and emulsifiers supplementation. LWT 2021, 139, 110794. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, X.; Zhang, Z.; Zhou, T.; Gao, R.; Li, Y.; Ding, X. Effect of β-endoxylanase and α-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chem. 2020, 302, 125332. [Google Scholar] [CrossRef] [PubMed]
- Tebben, L.; Chen, G.; Tilley, M.; Li, Y. Individual effects of enzymes and vital wheat gluten on whole wheat dough and bread properties. J. Food Sci. 2020, 85, 4201–4208. [Google Scholar] [CrossRef]
- Geng, D.H.; Lin, Z.; Liu, L.U.; Qin, W.; Wang, A.; Wang, F.; Tong, L.T. Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT 2021, 146, 111543. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Ngo, T.C.T.; Tran, T.T.T.; Ton, N.M.N.; Le, V.V.M. Pasta from cellulase-treated wheat bran and durum semolina: Effects of vital gluten addition and/or transglutaminase treatment. Food Biosci. 2020, 38, 100782. [Google Scholar] [CrossRef]
Process | Advantages | Disadvantages |
---|---|---|
Micronization | Moderate energy consumption and cost production; minimal denaturation of nutrients | Moderate initial cost investment for equipment |
Steam Explosion | Low cost; simple and fast operation procedures; low chemical usage | High energy consumption; large initial cost investment for equipment; Maillard reaction; denaturation of nutrients; shortened shelf life; discontinuous production |
Extrusion Cooking | Fast operation procedures; low chemical usage; versatility | High energy consumption and cost production; Maillard reaction; denaturation of nutrients; formation of harmful compounds and off-flavors |
High Hydrostatic Pressure | Fast; low energy consumption; low chemical usage; minimal denaturation of nutrients; minimal formation of off-flavors; extended shelf life | Large initial cost investment for equipment |
Ohmic Heating | Moderate energy consumption and cost production; fast; low chemical usage | Maillard reaction; moderate denaturation of nutrients |
3D Printing | Minimal denaturation of nutrients; versatility and customizability | High energy consumption; shortened shelf life; large initial cost investment for equipment, software, and set up |
Process | Advantages | Disadvantages |
---|---|---|
Germination | Increased content and bioavailability of nutrients; reduced content of antinutrients; low chemical usage | Time-consuming; continuous monitoring of the process; growth of harmful microorganisms |
Sourdough Fermentation | Increased content and bioavailability of nutrients; low chemical usage; production of probiotics; extended shelf life | Time-consuming; continuous monitoring of the process |
Enzyme treatments | Increased content and bioavailability of nutrients; low chemical usage | High cost production; continuous monitoring of the process; persistence of process residues |
Enhanced Nutritional Value and Biochemical Extraction | Enhanced Functional Properties, Texture, and Sensorial Perception | Increased Shelf Life | Reduced Energy Consumption |
---|---|---|---|
[9,10,11,23,24,25,26,28,29,31,32,34,35,37,38,41,53,59,63,65,66,72,74,75,76,77,78,79,80,81,82,83,84,85,86,87,93,96,99,100,104,105,109,110,111,112,113,114,115,120,121,123,126] | [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,25,26,29,30,31,33,34,35,36,39,44,45,46,48,49,50,51,52,53,54,55,56,57,60,64,71,72,73,74,82,88,89,90,91,92,93,94,95,96,101,102,105,106,107,115,119,122,123,124,125] | [27,28,29,37,42,61,62,103,108,111,119] | [22,37,58,60,63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocente, F.; Gazza, L. Technological Development in Wholegrain Food Processing. Foods 2025, 14, 2009. https://doi.org/10.3390/foods14122009
Nocente F, Gazza L. Technological Development in Wholegrain Food Processing. Foods. 2025; 14(12):2009. https://doi.org/10.3390/foods14122009
Chicago/Turabian StyleNocente, Francesca, and Laura Gazza. 2025. "Technological Development in Wholegrain Food Processing" Foods 14, no. 12: 2009. https://doi.org/10.3390/foods14122009
APA StyleNocente, F., & Gazza, L. (2025). Technological Development in Wholegrain Food Processing. Foods, 14(12), 2009. https://doi.org/10.3390/foods14122009