Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Strain and Culture Conditions
2.2. pH and Growth Measurement
2.3. Photosynthetic Performance Analysis
2.4. Starch Measurement
2.5. Biochemical Component Analysis
2.6. Acetate Analysis
2.7. Cell Morphology
2.8. Enzyme Activity Assays
2.9. Starch Isolation and the In Vitro Digestion of Starch
2.10. Scanning Electron Microscopy (SEM)
2.11. X-Ray Diffraction (XRD)
2.12. Fourier Transform Infrared Spectroscopy (FTIR)
2.13. Statistical Analysis
3. Results and Discussion
3.1. Production of Starch with Different Carbon Sources
3.1.1. Cell Growth and Biomass Production
3.1.2. Photosynthetic Performance
3.1.3. Starch Production
3.1.4. Enzyme Activity Related to Starch Metabolism
3.2. The Characterization of Starch Produced Under Different Carbon Sources
3.2.1. Morphology
3.2.2. Ordered Structure
3.2.3. Digestibility
3.3. A Discussion on the Acetate-CO2 Strategy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Y.; Li, X.; Ji, H.; Wang, Y.; Zheng, D.; Wang, Y.; Jin, Z. A review of the design and architecture of starch-based dietary foods. Engineering 2021, 7, 663–673. [Google Scholar] [CrossRef]
- Zhong, Y.; Tai, L.; Blennow, A.; Ding, L.; Herburger, K.; Qu, J.; Xin, A.; Guo, D.; Hebelstrup, K.H.; Liu, X. High-amylose starch: Structure, functionality and applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 8568–8590. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Kainuma, K. On the cluster structure of amylopectin. Plant Mol. Biol. 2022, 108, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, Z.; Fan, L.; Ma, S. A review of wheat starch analyses: Methods, techniques, structure and function. Int. J. Biol. Macromol. 2022, 203, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutririonally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Cai, J.; Cai, C.; Man, J.; Zhou, W.; Wei, C. Structural and functional properties of C-type starches. Carbohydr. Polym. 2014, 101, 289–300. [Google Scholar] [CrossRef]
- Zhang, Z.; Bao, J. Recent advances in modification approaches, health benefits, and food applications of resistant starch. Starch-Stärke 2023, 75, 2100141. [Google Scholar] [CrossRef]
- Adewale, P.; Yancheshmeh, M.S.; Lam, E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr. Polym. 2022, 291, 119590. [Google Scholar] [CrossRef]
- Gojon, A.; Nussaume, L.; Luu, D.T.; Murchie, E.H.; Baekelandt, A.; Rodrigues Saltenis, V.L.; Cohan, J.p.; Desnos, T.; Inzé, D.; Ferguson, J.N. Approaches and determinants to sustainably improve crop production. Food Energy Secur. 2023, 12, e369. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, H.; Zhang, B.; Xie, C.; Liao, L.; Ran, X.; Zhang, Y.; Yao, C. Production of high-amylose starch with low digestibility in a green marine microalga Tetraselmis subcordiformis by delaying high-bicarbonate induction. Carbohydr. Polym. 2025, 356, 123382. [Google Scholar] [CrossRef]
- Devi, T.; Deepa, N.; Gayathri, N.; Rakesh Kumar, S. AI-based weather forecasting system for smart agriculture system using a recurrent neural networks (RNN) algorithm. In Sustainable Management of Electronic Waste; Wiley: Hoboken, NJ, USA, 2024; pp. 97–112. [Google Scholar]
- Yang, J.; Dou, S.; Liu, X.; Zhu, L.; Liu, K.; Zhang, Y.; Li, L.; Liu, G.; Yang, M. Enhanced starch accumulation in Chlorella sorokiniana as sugar platform and the expression profiling of key regulatory proteins. Ind. Crops Prod. 2024, 213, 118433. [Google Scholar] [CrossRef]
- Ran, W.; Wang, H.; Liu, Y.; Qi, M.; Xiang, Q.; Yao, C.; Zhang, Y.; Lan, X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour. Technol. 2019, 291, 121894. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A. Seaweeds and microalgae: An overview for unlocking their potential in global aquaculture development. FAO Fish. Aquac. Circ. 2021, 1229, 48. [Google Scholar]
- Eroldoğan, O.T.; Glencross, B.; Novoveska, L.; Gaudêncio, S.P.; Rinkevich, B.; Varese, G.C.; de Fátima Carvalho, M.; Tasdemir, D.; Safarik, I.; Nielsen, S.L. From the sea to aquafeed: A perspective overview. Rev. Aquac. 2023, 15, 1028–1057. [Google Scholar] [CrossRef]
- Sun, Z.; Bo, C.; Cao, S.; Sun, L. Enhancing CO2 fixation in microalgal systems: Mechanistic insights and bioreactor strategies. Mar. Drugs 2025, 23, 113. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Rodas-Zuluaga, L.I.; Cuellar-Bermudez, S.P.; Hidalgo-Vázquez, E.; Molina-Vazquez, A.; Araújo, R.G.; Martínez-Ruiz, M.; Varjani, S.; Barceló, D.; Iqbal, H.M. Revalorization of microalgae biomass for synergistic interaction and sustainable applications: Bioplastic generation. Mar. Drugs 2022, 20, 601. [Google Scholar] [CrossRef]
- Yao, C.; Ai, J.; Cao, X.; Xue, S.; Zhang, W. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour. Technol. 2012, 118, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Brányiková, I.; Maršálková, B.; Doucha, J.; Brányik, T.; Bišová, K.; Zachleder, V.; Vítová, M. Microalgae—Novel highly efficient starch producers. Biotechnol. Bioeng. 2011, 108, 766–776. [Google Scholar] [CrossRef]
- Gardner, R.D.; Lohman, E.; Gerlach, R.; Cooksey, K.E.; Peyton, B.M. Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2013, 110, 87–96. [Google Scholar] [CrossRef]
- Ran, W.; Xiang, Q.; Pan, Y.; Xie, T.; Zhang, Y.; Yao, C. Enhancing photosynthetic starch production by γ-aminobutyric acid addition in a marine green microalga Tetraselmis subcordiformis under nitrogen stress. Ind. Eng. Chem. Res. 2020, 59, 17103–17112. [Google Scholar] [CrossRef]
- Liao, L.; Shen, Y.; Xie, C.; Zhang, Y.; Yao, C. Ultrasonication followed by aqueous two-phase system for extraction, on-site modification and isolation of microalgal starch with reduced digestibility. Ultrason. Sonochem. 2024, 106, 106891. [Google Scholar] [CrossRef] [PubMed]
- Tanadul, O.-u.-m.; VanderGheynst, J.S.; Beckles, D.M.; Powell, A.L.T.; Labavitch, J.M. The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol. Bioeng. 2014, 111, 1323–1331. [Google Scholar] [CrossRef]
- Velazquez, G.; Ramirez-Gutierrez, C.F.; Mendez-Montealvo, G.; Velazquez-Castillo, R.; Morelos-Medina, L.F.; Morales-Sánchez, E.; Gaytán-Martínez, M.; Rodríguez-García, M.E.; Contreras-Jiménez, B. Effect of long-term retrogradation on the crystallinity, vibrational and rheological properties of potato, corn, and rice starches. Food Chem. 2025, 477, 143455. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; He, Y.; Xiao, X.; Chen, B.; Zhou, Y.; Tan, X.; Ji, Z.; Zhang, Y.; Liu, P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int. J. Biol. Macromol. 2023, 225, 557–564. [Google Scholar] [CrossRef]
- Chi, C.; Zhou, Y.; Cheng, F.; Guo, X.; Chen, B.; Zhang, Y.; He, Y. Chlorella sp. MBFJNU-17 as an emerging source of starch: Changes in starch structures during heterotrophic cultivation. Ind. Crops Prod. 2023, 204, 117345. [Google Scholar] [CrossRef]
- Saha, S.; Maji, S.; Ghosh, S.K.; Maiti, M.K. Engineered Chlorella vulgaris improves bioethanol production and promises prebiotic application. World J. Microbiol. Biotechnol. 2024, 40, 271. [Google Scholar] [CrossRef]
- Abreu, A.P.; Morais, R.C.; Teixeira, J.A.; Nunes, J. A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renew. Sustain. Energy Rev. 2022, 159, 112247. [Google Scholar] [CrossRef]
- Izumo, A.; Fujiwara, S.; Oyama, Y.; Satoh, A.; Fujita, N.; Nakamura, Y.; Tsuzuki, M. Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Sci. 2007, 172, 1138–1147. [Google Scholar] [CrossRef]
- Proietti Tocca, G.; Agostino, V.; Menin, B.; Tommasi, T.; Fino, D.; Di Caprio, F. Mixotrophic and heterotrophic growth of microalgae using acetate from different production processes. Rev. Environ. Sci. Bio/Technol. 2024, 23, 93–132. [Google Scholar] [CrossRef]
- Bogaert, K.A.; Perez, E.; Rumin, J.; Giltay, A.; Carone, M.; Coosemans, N.; Radoux, M.; Eppe, G.; Levine, R.D.; Remacle, F. Metabolic, physiological, and transcriptomics analysis of batch cultures of the green microalga Chlamydomonas grown on different acetate concentrations. Cells 2019, 8, 1367. [Google Scholar] [CrossRef]
- Fett, J.P.; Coleman, J.R. Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH. Plant Physiol. 1994, 106, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Samadhiya, K.; Kiran, B. Multi-objective tailored optimization deciphering carbon partitioning and metabolomic tuning in response to elevated CO2 levels, organic carbon and sparging period. Environ. Res. 2022, 204, 112137. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hu, Z.; Yin, Q.; Song, C. Improving the growth of Spirulina in CO2 absorption and microalgae conversion (CAMC) system through mixotrophic cultivation: Reveal of metabolomics. Sci. Total Environ. 2023, 858, 159920. [Google Scholar] [CrossRef]
- Peng, S.; Cao, Y.; Xie, Z.; Zhang, X.; Ma, S.; Kong, W. Effects of sodium acetate and ammonium acetate on the growth and production of cellular components of Chlorella vulgaris 31. J. Appl. Phycol. 2024, 36, 1–14. [Google Scholar] [CrossRef]
- Li, J.; Kuang, Y.; Zhang, X.; Hung, W.-H.; Chiang, C.-Y.; Zhu, G.; Chen, G.; Wang, F.; Liang, P.; Dai, H. Electrochemical acetate production from high-pressure gaseous and liquid CO2. Nat. Catal. 2023, 6, 1151–1163. [Google Scholar] [CrossRef]
- Mansouri, H.; Ebrahim Nezhad, S.; Kamyab, H.; Chelliapan, S.; Kirpichnikova, I. The effects of aeration and mixotrophy by acetate and pyruvate on the growth parameters in Scenedesmus obliquus. Biomass Convers. Biorefinery 2022, 12, 4611–4620. [Google Scholar] [CrossRef]
- Young, E.B.; Reed, L.; Berges, J.A. Growth parameters and responses of green algae across a gradient of phototrophic, mixotrophic and heterotrophic conditions. PeerJ 2022, 10, e13776. [Google Scholar] [CrossRef]
- Qi, M.; Yao, C.; Sun, B.; Cao, X.; Fei, Q.; Liang, B.; Ran, W.; Xiang, Q.; Zhang, Y.; Lan, X. Application of an in situ CO2-bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis. Biotechnol. Biofuels 2019, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Jiang, J.; Cao, X.; Liu, Y.; Xue, S.; Zhang, Y. Phosphorus enhances photosynthetic storage starch production in a green microalga (Chlorophyta) Tetraselmis subcordiformis in nitrogen starvation conditions. J. Agric. Food Chem. 2018, 66, 10777–10787. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Govindjee. Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Hovenkamp-Hermelink, J.; De Vries, J.; Adamse, P.; Jacobsen, E.; Witholt, B.; Feenstra, W. Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato. Potato Res. 1988, 31, 241–246. [Google Scholar] [CrossRef]
- Landers, P.S.; Gbur, E.E.; Sharp, R.N. Comparison of 2 models to predict amylose concentration in rice flours as determined by spectrophotometric assay. Cereal Chem. 1991, 68, 545–548. [Google Scholar]
- Mishra, S.K.; Suh, W.I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M.S.; Yang, J.-W. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 2014, 155, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Tan, J.; Xiong, Z.; Fu, Z.; Chen, J.; Xie, T.; Zheng, J.; Zhang, Y.; Li, P. Regulation of the autochthonous microbial community in excess sludge for the bioconversion of carbon dioxide to acetate without exogenic hydrogen. Bioresour. Technol. 2023, 378, 129011. [Google Scholar]
- Jiang, J.; Yao, C.; Cao, X.; Liu, Y.; Xue, S. Characterization of starch phosphorylase from the marine green microalga (Chlorophyta) Tetraselmis subcordiformis reveals its potential role in starch biosynthesis. J. Plant Physiol. 2017, 218, 84–93. [Google Scholar] [CrossRef]
- Buleon, A.; Gallant, D.J.; Bouchet, B.; Mouille, C.; Dhulst, C.; Kossmann, J.; Ball, S. Starches from A to C—Chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal. Plant Physiol. 1997, 115, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Cummings, J.H. Digestion of the polysaccharides of some cereal foods in the human small-intestine. Am. J. Clin. Nutr. 1985, 42, 778–787. [Google Scholar] [CrossRef]
- Huang, A.; Sun, L.; Wu, S.; Liu, C.; Zhao, P.; Xie, X.; Wang, G. Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J. Appl. Phycol. 2017, 29, 23–33. [Google Scholar] [CrossRef]
- Joun, J.; Hong, M.E.; Sirohi, R.; Sim, S.J. Enhanced biomass production through a repeated sequential auto-and heterotrophic culture mode in Chlorella protothecoides. Bioresour. Technol. 2021, 338, 125532. [Google Scholar] [CrossRef]
- Wang, Y.; Chiu, S.Y.; Ho, S.H.; Liu, Z.; Hasunuma, T.; Chang, T.T.; Chang, K.F.; Chang, J.S.; Ren, N.Q.; Kondo, A. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation. Biotechnol. J. 2016, 11, 1072–1081. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.; De-Bashan, L.E.; Bashan, Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, R.; Kim, Y.J.; Radican, E.; Lei, Y.; Cho, Y.K.; Xiao, Z.; Qiao, M.; Luo, Y. Acetate as a sustainable organic carbon to support mixotrophic growth of Chlorella sorokiniana for alternative protein production. Biomass Bioenergy 2025, 199, 107901. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, P.; Guo, L.; Wang, Y.; She, Z.; Gao, M.; Zhao, Y.; Jin, C.; Wang, G. Elucidating temperature on mixotrophic cultivation of a Chlorella vulgaris strain: Different carbon source application and enzyme activity revelation. Bioresour. Technol. 2020, 314, 123721. [Google Scholar] [CrossRef]
- Joun, J.; Sirohi, R.; Sim, S.J. The effects of acetate and glucose on carbon fixation and carbon utilization in mixotrophy of Haematococcus pluvialis. Bioresour. Technol. 2023, 367, 128218. [Google Scholar] [CrossRef] [PubMed]
- Castillo, T.; Ramos, D.; García-Beltrán, T.; Brito-Bazan, M.; Galindo, E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem. Eng. J. 2021, 176, 108183. [Google Scholar] [CrossRef]
- Lacroux, J.; Trably, E.; Bernet, N.; Steyer, J.-P.; van Lis, R. Mixotrophic growth of microalgae on volatile fatty acids is determined by their undissociated form. Algal Res. 2020, 47, 101870. [Google Scholar] [CrossRef]
- Xiang, Q.; Wei, X.; Yang, Z.; Xie, T.; Zhang, Y.; Li, D.; Pan, X.; Liu, X.; Zhang, X.; Yao, C. Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production. Sci. Total Environ. 2021, 781, 146687. [Google Scholar] [CrossRef]
- Zhao, L.-S.; Li, K.; Wang, Q.-M.; Song, X.-Y.; Su, H.-N.; Xie, B.-B.; Zhang, X.-Y.; Huang, F.; Chen, X.-L.; Zhou, B.-C.; et al. Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci. Rep. 2017, 7, 8542. [Google Scholar] [CrossRef]
- Pang, N.; Gu, X.; Chen, S.; Kirchhoff, H.; Lei, H.; Roje, S. Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew. Sustain. Energy Rev. 2019, 112, 450–460. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Liu, J. Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage. J. Appl. Phycol. 2019, 31, 1001–1008. [Google Scholar] [CrossRef]
- Johnson, G.N. Physiology of PSI cyclic electron transport in higher plants. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Mao, B.-D.; Vadiveloo, A.; Li, K.-Y.; Qiu, J.; Gao, F. Bioconversion of C1 and C2 artificial photosynthesis products into high-value bioproducts by mixotrophic microalgae Chlorella pyrenoidosa. Chem. Eng. J. 2024, 499, 155979. [Google Scholar] [CrossRef]
- Xie, X.; Huang, A.; Gu, W.; Zang, Z.; Pan, G.; Gao, S.; He, L.; Zhang, B.; Niu, J.; Lin, A. Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light. New Phytol. 2016, 209, 987–998. [Google Scholar] [CrossRef]
- Lu, X.; Liu, B.; He, Y.; Guo, B.; Sun, H.; Chen, F. Novel insights into mixotrophic cultivation of Nitzschia laevis for co-production of fucoxanthin and eicosapentaenoic acid. Bioresour. Technol. 2019, 294, 122145. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Zhang, H.; Ran, X.; Xie, T.; Zhang, Y.; Yao, C. Fine-tuned regulation of photosynthetic performance via γ-aminobutyric acid (GABA) supply coupled with high initial cell density culture for economic starch production in microalgae. Bioresour. Bioprocess. 2022, 9, 52. [Google Scholar] [CrossRef]
- Ball, S.G.; Dirick, L.; Decq, A.; Martiat, J.-C.; Matagne, R. Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci. 1990, 66, 1–9. [Google Scholar] [CrossRef]
- Fan, J.; Yan, C.; Andre, C.; Shanklin, J.; Schwender, J.; Xu, C. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol. 2012, 53, 1380–1390. [Google Scholar] [CrossRef]
- Shen, Y.; Liao, L.; Wu, W.; Zhang, H.; Ran, X.; Xie, T.; Zhang, Y.; Yao, C. CO2-Inorganic carbon auto-buffering system for efficient ammonium reclamation coupled with valuable biomass production in a euryhaline microalga Tetraselmis subcordiformis. Water 2023, 15, 1671. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Qin, S.; Zeng, M.; Jiang, Y.; Hu, L.; Xiao, P.; Hao, W.; Hu, Z.; Lei, A. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnol. Biofuels 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Chavoshi, Z.Z.; Shariati, M. Lipid production in Dunaliella salina under autotrophic, heterotrophic, and mixotrophic conditions. Biologia 2019, 74, 1579–1590. [Google Scholar] [CrossRef]
- Oyama, Y.; Izumo, A.; Fujiwara, S.; Shimonaga, T.; Nakamura, Y.; Tsuzuki, M. Granule-bound starch synthase cDNA in Chlorella kessleri 11 h: Cloning and regulation of expression by CO2 concentration. Planta 2006, 224, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.G. The intricate pathway of starch biosynthesis and degradation in the monocellular alga Chlamydomonas reinhardtii. Aust. J. Chem. 2002, 55, 49–59. [Google Scholar] [CrossRef]
- Zhong, Y.; Qu, J.Z.; Liu, X.; Ding, L.; Liu, Y.; Bertoft, E.; Petersen, B.L.; Hamaker, B.R.; Hebelstrup, K.H.; Blennow, A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr. Polym. 2022, 287, 119327. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, L.; Qu, J.; Li, S.; Blennow, A.; Seytahmetovna, S.A.; Liu, X.; Guo, D. The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch. Carbohydr. Polym. 2020, 247, 116681. [Google Scholar] [CrossRef]
- Izumo, A.; Fujiwara, S.; Sakurai, T.; Ball, S.G.; Ishii, Y.; Ono, H.; Yoshida, M.; Fujita, N.; Nakamura, Y.; Buleon, A.; et al. Effects of granule-bound starch synthase I-defective mutation on the morphology and structure of pyrenoidal starch in Chlamydomonas. Plant Sci. 2011, 180, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; Li, X.; Huang, S.; Chen, L.; Zhang, Y.; Li, L.; Miao, S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci. Technol. 2021, 109, 154–168. [Google Scholar] [CrossRef]
- Peng, H.; Zhai, L.; Xu, S.; Xu, P.; He, C.; Xiao, Y.; Gao, Y. Efficient hydrolysis of raw microalgae starch by an α-amylase (amyP) of glycoside hydrolase subfamily GH13_37. J. Agric. Food Chem. 2018, 66, 12748–12755. [Google Scholar] [CrossRef]
- Obadi, M.; Qi, Y.; Xu, B. High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr. Polym. 2023, 299, 120185. [Google Scholar] [CrossRef]
- Shi, P.; Zhao, Y.; Qin, F.; Liu, K.; Wang, H. Understanding the multi-scale structure and physicochemical properties of millet starch with varied amylose content. Food Chem. 2023, 410, 135422. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolym. Orig. Res. Biomol. 2008, 89, 761–768. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, L.; Dai, Y.; Yu, J. Physicochemical properties of starch obtained from Dioscorea nipponica Makino comparison with other tuber starches. J. Food Eng. 2007, 82, 436–442. [Google Scholar] [CrossRef]
- Chan, C.-H.; Wu, R.-G.; Shao, Y.-Y. The effects of ultrasonic treatment on physicochemical properties and in vitro digestibility of semigelatinized high amylose maize starch. Food Hydrocoll. 2021, 119, 106831. [Google Scholar] [CrossRef]
- Okumus, B.N.; Tacer-Caba, Z.; Kahraman, K.; Nilufer-Erdil, D. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids. Food Chem. 2018, 240, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α-amylase and starch digestion: An interesting marriage. Starch-Stärke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch structure and digestibility enzyme-substrate relationship. World’s Poult. Sci. J. 2004, 60, 186–195. [Google Scholar] [CrossRef]
- Li, C.; Wu, A.; Yu, W.; Hu, Y.; Li, E.; Zhang, C.; Liu, Q. Parameterizing starch chain-length distributions for structure-property relations. Carbohydr. Polym. 2020, 241, 116390. [Google Scholar] [CrossRef]
- Sahoo, U.; Biswal, M.; Nayak, L.; Kumar, R.; Tiwari, R.K.; Lal, M.K.; Bagchi, T.B.; Sah, R.P.; Singh, N.R.; Sharma, S. Rice with lower amylose content could have reduced starch digestibility due to crystallized resistant starch synthesized by linearized amylopectin. J. Sci. Food Agric. 2025, 105, 3064–3072. [Google Scholar] [CrossRef]
- Kumar, Y.; Shikha, D.; Guzmán-Ortiz, F.A.; Sharanagat, V.S.; Kumar, K.; Saxena, D.C. Starch: Current production and consumption trends. In Starch: Advances in Modifications, Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–10. [Google Scholar]
- Hadj-Romdhane, F.; Zheng, X.; Jaouen, P.; Pruvost, J.; Grizeau, D.; Croué, J.-P.; Bourseau, P. The culture of Chlorella vulgaris in a recycled supernatant: Effects on biomass production and medium quality. Bioresour. Technol. 2013, 132, 285–292. [Google Scholar] [CrossRef]
Treatment Symbol | CCO2 (%) | CNaAc (g/L) | Time for Starch Characterization |
---|---|---|---|
Air-Ac-0 | ~0.04 | 0 | day 5 |
Air-Ac-2.5 | ~0.04 | 2.5 | - |
Air-Ac-5 | ~0.04 | 5 | day 5 |
Air-Ac-10 | ~0.04 | 10 | day 5 |
CO2-Ac-0 | 2 | 0 | day 3 |
CO2-Ac-2.5 | 2 | 2.5 | day 3 |
CO2-Ac-5 | 2 | 5 | day 3 |
CO2-Ac-10 | 2 | 10 | - |
Treatment | Starch Productivity (g/L/day) | Am/Ap | ||
---|---|---|---|---|
Day 3 | Day 5 | Day 3 | Day 5 | |
Air-Ac-0 | 0.14 ± 0.0 ab | 0.17 ± 0.02 bc | 0.55 ± 0.01 b | 0.49 ± 0.05 b |
Air-Ac-2.5 | 0.20 ± 0.02 bc | 0.20 ± 0.02 cd | 0.53 ± 0.01 b | 0.56 ± 0.02 bcd |
Air-Ac-5 | 0.25 ± 0.02 c | 0.24 ± 0.02 d | 0.55 ± 0.02 b | 0.63 ± 0.03 cd |
Air-Ac-10 | 0.25 ± 0.01 c | 0.23 ± 0.02 d | 0.60 ± 0.02 b | 0.64 ± 0.01 d |
CO2-Ac-0 | 0.39 ± 0.01 d | 0.15 ± 0.00 b | 0.81 ± 0.02 c | 0.55 ± 0.03 bc |
CO2-Ac-2.5 | 0.71 ± 0.03 f | 0.36 ± 0.00 e | 0.74 ± 0.01 d | 0.57 ± 0.01 bcd |
CO2-Ac-5 | 0.59 ± 0.01 e | 0.32 ± 0.01 e | 0.73 ± 0.02 d | 0.50 ± 0.02 b |
CO2-Ac-10 | 0.08 ± 0.05 a | 0.06 ± 0.03 a | 0.45 ± 0.05 a | 0.31 ± 0.03 a |
Treatment | Am/Ap | Particle Size (μm) | R1047/1022 | RC (%) |
---|---|---|---|---|
Air-Ac-0 | 0.59 ± 0.04 a | 1.30 ± 0.32 a | 1.24 ± 0.05 ab | 26.8 ± 1.1 bc |
Air-Ac-5 | 0.65 ± 0.02 ab | 1.51 ± 0.33 b | 1.31 ± 0.02 b | 29.0 ± 1.4 c |
Air-Ac-10 | 0.70 ± 0.05 ab | 1.55 ± 0.48 b | 1.29 ± 0.01 ab | 27.3 ± 0.3 bc |
CO2-Ac-0 | 0.75 ± 0.06 b | 1.54 ± 0.35 b | 1.26 ± 0.04 ab | 25.9 ± 0.9 abc |
CO2-Ac-2.5 | 0.72 ± 0.04 ab | 1.76 ± 0.33 c | 1.24 ± 0.03 ab | 24.7 ± 1.4 ab |
CO2-Ac-5 | 0.62 ± 0.01 ab | 1.57 ± 0.33 b | 1.21 ± 0.07 a | 22.9 ± 0.6 a |
Species | Carbon Source | Nitrogen Source | RS Content (%TS) | RS Content (%DW) | RS Yield (g/L) | References |
---|---|---|---|---|---|---|
Tetraselmis subcordiformis | Air (0.04% CO2) | -N | 14.5 ± 2.0 | 6.3 ± 0.9 | 0.12 ± 0.02 | This study |
Air (0.04% CO2) + 5 g/L NaAc | -N | 19.4 ± 0.3 | 9.1 ± 0.3 | 0.24 ± 0.02 | ||
Air (0.04% CO2) + 10 g/L NaAc | -N | 22.4 ± 1.3 | 10.4 ± 0.8 | 0.26 ± 0.02 | ||
2% CO2 | -N | 11.3 ± 0.7 | 5.9 ± 0.9 | 0.13 ± 0.01 | ||
2% CO2 + 2.5 g/L NaAc | -N | 16.8 ± 1.0 | 11.1 ± 1.4 | 0.36 ± 0.04 | ||
2% CO2 + 5 g/L NaAc | -N | 22.4 ± 1.2 | 13.7 ± 0.8 | 0.40 ± 0.02 | ||
2% CO2 + 12 mM NaHCO3 | 100 mg/L NH4+-N | 55.6 | ~12.1 | 0.46 | [10] | |
Chlorella sp. MBFJNU-17 | 40 g/L glucose | 4.5 g/L urea | 13.0 ± 1.2 | ~3.4 | / | [26] |
15 g/L glucose | -N | 15.8 ± 1.4 | ~8.8 | / | [26] | |
4 g/L glucose | 3 g/L urea | 16.4 ± 1.0 | ~3.4 | / | [26] | |
40 g/L glucose | 1 g/L urea | 8.5 ± 1.4 | 4.7 | / | [25] | |
Chlorella vulgaris | 1.22 g/L NaAc | 0.4 g/L NH4Cl | 7% | 1.1 | 0.0058 | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Shen, Y.; Liu, Y.; Ran, X.; Zhang, Y.; Chen, J.; Yao, C. Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis. Foods 2025, 14, 2004. https://doi.org/10.3390/foods14112004
Zhang H, Shen Y, Liu Y, Ran X, Zhang Y, Chen J, Yao C. Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis. Foods. 2025; 14(11):2004. https://doi.org/10.3390/foods14112004
Chicago/Turabian StyleZhang, Haoyu, Yuhan Shen, Yufei Liu, Xiuyuan Ran, Yongkui Zhang, Jing Chen, and Changhong Yao. 2025. "Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis" Foods 14, no. 11: 2004. https://doi.org/10.3390/foods14112004
APA StyleZhang, H., Shen, Y., Liu, Y., Ran, X., Zhang, Y., Chen, J., & Yao, C. (2025). Acetate Combined with CO2 as Effective Carbon Sources for the Production of Resistant Starch in a Marine Microalga Tetraselmis subcordiformis. Foods, 14(11), 2004. https://doi.org/10.3390/foods14112004