Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid
Abstract
:1. Introduction
2. Classification and Distribution
2.1. Types of Chlorogenic Acids
Type | Classification | Name | Name |
---|---|---|---|
Caffeoylquinic acid (CQA) | Monocaffeoylquinic acid (monoCQA) | 1-O-caffeoylquinic acid (1-CQA) | Pseudo chlorogenic acid |
3-O-caffeoylquinic acid (3-CQA) | New chlorogenic acid | ||
4-O-caffeoylquinic acid (4-CQA) | Cryptochlorogenic acid | ||
5-O-caffeoylquinic acid (5-CQA) | Chlorogenic acid | ||
Dicaffeoylquinic acid (diCQA) | 1,3-dicaffeoylquinic acid | Cynarin | |
1,5-dicaffeoylquinic acid | |||
3,5-dicaffeoylquinic acid | Isochlorogenic acid A | ||
3,4-dicaffeoylquinic acid | Isochlorogenic acid B | ||
4,5-dicaffeoylquinic acid | Isochlorogenic acid C | ||
Tricaffeoylquinic acid (triCQA) | 1,3,5-tricaffeoylquinic acid | ||
3,4,5-tricaffeoylquinic acid | |||
Feruloylquinic acid (FQA) | 3-Feruloylquinic acid | ||
4-Feruloylquinic acid | |||
5-Feruloylquinic acid | |||
p-Coumaroylquinic acid (p-CoQA) | 3-p-Coumarinic acid | ||
4-p-Coumarinic acid | |||
5-p-Coumarinic acid |
2.2. Distribution of CGA in Plants
3. Synthesis of CGA
3.1. Synthesis Pathways
3.2. Structural Genes
Gene | Enzymes Encoded by Genes | Plant Source | Verification Method | Reference |
---|---|---|---|---|
PAL | Phenylalanine ammonia-lyase | Nicotiana tabacum Dioscorea esculenta | Gene expression Over-expression | Chen et al., 2023 [52] Liao et al., 2020 [53] |
C4H | Cinnamate-4- hydroxylase | Nicotiana tabacum Solanum tuberosum | Gene expression Over-expression Transcription levels Expression patterns | Chen et al., 2023 [52] Valiñas et al., 2015 [38] |
4CL | 4-Coumarate:coenzyme A ligase | Nicotiana tabacum | Over-expression | Chen et al., 2023 [52] |
HCT | Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase | Nicotiana tabacum Dioscorea esculenta Pyrus Citrus reticulata | Gene expression Over-expression In vitro enzyme activity Transcriptome analysis Gene silencing | Chen et al., 2023 [52] D’Orso et al., 2023 [54] Hoffmann et al., 2003 [55] Liao et al., 2020 [53] Wen et al., 2022 [8] Xiao et al., 2024 [11] |
C3′H | Coumarate 3-hydroxylas | Nicotiana tabacum Solanum tuberosum Lonicera japonica Pyrus | Over-expression In vitro enzyme activity Expression pattern Heterologous expression Transcriptome analysis | Chen et al., 2023 [52] Knollenberg et al., 2018 [46] Qi et al., 2017 [56] Pu et al., 2013 [57] Wen et al., 2022 [8] |
HQT | Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase | Nicotiana tabacum Solanum lycopersicum Solanum tuberosum Dioscorea esculenta Lonicera japonica | Gene expression Over-expression Gene silencing RNA interference Knockout | Niggeweg et al., 2004 [7] Payyavula et al., 2015 [35] Cardenas et al., 2021 [58] D’Orso et al., 2023 [54] Medison et al., 2023 [59] |
UGCT | Cinnamate glucosyl transferase | Dioscorea esculenta | In vitro enzyme activity | Villegas et al., 1986 [50] |
HCGQT | Quinate hydroxycinnamoyl transferase | Dioscorea esculenta | In vitro enzyme activity | Villegas et al., 1986 [50] |
3.3. Regulated Genes
Transcription Factor | Genetic Family Members | Plant Source | Regulation Method | Verification Method | Reference |
---|---|---|---|---|---|
MYB | StMtf1 | Solanum tuberosum | Positive regulation | Inducing overexpression of the StHqt gene | Rommens et al., 2008 [63] |
StAN1 | Solanum tuberosum | Positive regulation | Promote the increase in PAL enzyme activity | Payyavula et al., 2013 [64] | |
ATMYB12 | Arabidopsis thaliana | Positive regulation | Activate and upregulate the expression of important CGA synthesis genes such as SlPAL, SlC4H, Sl4CL, SlC3H, SlHCT, and SlHQT in tomatoes | Ding et al., 2022 [51] | |
AtMYB11 | Arabidopsis thaliana | Positive regulation | Promote upregulation of NtPAL expression in tobacco | Pandey et al., 2015 [66] | |
AtMYB111 | Arabidopsis thaliana | Positive regulation | Promote upregulation of NtPAL expression in tobacco | Pandey et al., 2014 [65] | |
CmMYB3 | C. morifolium | Positive regulation | Directly regulate the expression of structural genes CmPAL1/2, CmHQT, and CmHCT | Lu et al., 2024 [40] | |
LmMYB15 | L. macranthoides | Positive regulation | LmMYB15 may directly bind to the promoters of 4CL, MYB3, and MYB4 | Tang et al., 2021 [67] | |
IbGLK1 | Ipomoea batatas | Positive regulation | Combining and activating the IbHCT, IbHQT, IbC4H, and IbUGCT promoters | Luo et al., 2024 [62] | |
WRKY | NtWRKY33a | Nicotiana tabacum | Positive regulation | Binding to the NtHCT promoter and activating its transcription | Wang et al., 2023 [70] |
NtWRKY41a | Nicotiana tabacum | Positive regulation | Wang et al., 2022 [72] | ||
ERF | NtWIN1 | Nicotiana tabacum | Positive regulation | Indirectly acting on Nt4CL | He et al., 2024 [68] |
NtERF4a | Nicotiana tabacum | Positive regulation | Binding to the NtPAL promoter and activating its transcription | He et al., 2023 [69] | |
NtERF13a | Nicotiana tabacum | Positive regulation | Binding to the NtHCT promoter and activating its transcription | Wang et al., 2023 [71] | |
CmERF/PTI6 | C. morifolium | Positive regulation | Regulating downstream CmMYB3 and CmbHLH143 to affect the expression of CmPAL1/2, CmHQT, and CmHCT | Lu et al., 2024 [40] | |
bHLH | StbHLH1 | Solanum tuberosum | Positive regulation | Payyavula et al., 2013 [64] | |
CmbHLH143 | C. morifolium | Positive regulation | Directly regulate the expression of structural genes CmPAL1/2, CmHQT, and CmHCT | Lu et al., 2024 [40] | |
CsMYC2 | Cucumis sativus | Positive regulation | Regulating the expression of downstream CsPAL | Wang et al., 2023 [73] | |
MADS- box | CmCMD77 | C. morifolium | Positive regulation | Regulating downstream CmMYB3 and CmbHLH143 to affect the expression of CmPAL1/2, CmHQT, and CmHCT | Lu et al., 2024 [40] |
4. Function and Application of CGA
4.1. Antioxidant
4.2. Antimetabolic Diseases
4.3. Antiinflammatory
4.4. Antibacterial
4.5. Neuroprotective Effects
4.6. Anticancer
4.7. Functions in Plant Production
4.8. Functions in Animal Production
4.9. Fortification of Food with CGA
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1-CQA | neochlorogenic acid |
2-CQA | pseudochlorogenic acid |
4CL | 4-coumarate:CoA ligase |
4-CQA | cryptochlorogenic acid (4-O-caffeoylquinic acid) |
5-CQA | 5-O-caffeoylquinic acid |
AD | Alzheimer’s disease |
AKR1B10 | aldehyde ketone reductase family 1 member B10 |
AMP | Adenosine Monophosphate |
bHLH | basic helix-loop-helix |
BIECs-21 | Bovine Intestinal Epithelial Cell Lines-21 |
C3′H | coumarate 3-hydroxylase |
C4H | cinnamate 4-hydroxylase |
CAM | 3-O-caffeoylquinic acid methyl ester |
CGA | chlorogenic acid |
CQA | caffeoylquinic acid |
CSE | caffeoyl shikimate esterase |
CYP450 | cytochrome P450 enzyme |
diCQA | di-caffeoylquinic acid |
ERF | Ethylene-Responsive Factor |
FQA | feruloylquinic acid |
GDSL | Glycine-Aspartic acid-Serine-Leucine |
GLK | GOLDEN2-LIKE |
GPX | Glutathione Peroxidase |
GWAS | genome-wide association analysis |
HCGQT | quinate hydroxycinnamoyl transferase |
HCT | hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase |
HFD | high-fat diet |
HQT | hydroxycinnamoyl-CoA quinate hydroxycinnamoyl-transferase |
ICH | intracerebral hemorrhage |
MAPK | mitogen-activated protein kinase |
MCQA | 1,5-O-dicaffeoyl-3-O-[4-malic acid methyl ester]-quinic acid |
MD | malondialdehyde |
monoCQA | mono-caffeoylquinic acid |
MYB | Myeloblastosis |
NAFLD | non-alcoholic fatty liver disease |
NF-κB | nuclear factor κB |
PAL | phenylalanine ammonia-lyase |
p-CoQA | p-coumaroylquinic acid |
p-coumaric acid | trans-4-coumaric acid |
PD | Parkinson’s disease |
ROS | reactive oxygen species |
RvD1 | resolvin D1 |
SCPL | serine carboxypeptidase-like |
T2DM | type 2 diabetes mellitus |
TF | Transcription factor |
TNF-α | Tumor Necrosis Factor-alpha |
triCQA | tri-caffeoylquinic acid |
UGCT | cinnamate glucosyl transferase |
WRKY | WRKY domain-containing protein |
References
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Claude, S.J.; Park, S.; Park, S.J. Transcriptome-Wide Identification and Quantification of Caffeoylquinic Acid Biosynthesis Pathway and Prediction of Its Putative BAHDs Gene Complex in A. spathulifolius. Int. J. Mol. Sci. 2021, 22, 6333. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Martínez, E.; Bovy, A.; Plazas, M.; Tikunov, Y.; Prohens, J.; Pereira-Dias, L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. Front. Plant Sci. 2023, 14, 1135237. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; García-Martínez, M.D.; Adalid-Martínez, A.M.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Raigón, M.D.; Plazas, M.; Soler, S.; et al. Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions. Food Res. Int. 2021, 147, 110531. [Google Scholar] [CrossRef] [PubMed]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef]
- Niggeweg, R.; Michael, A.J.; Martin, C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 2004, 22, 746–754. [Google Scholar] [CrossRef]
- Wen, H.; Jiang, X.; Wang, W.; Wu, M.; Bai, H.; Wu, C.; Shen, L. Comparative transcriptome analysis of candidate genes involved in chlorogenic acid biosynthesis during fruit development in three pear varieties of Xinjiang Uygur Autonomous Region. J. Zhejiang Univ.-Sci. B 2022, 23, 345–351. [Google Scholar] [CrossRef]
- Kai, K.; Wang, R.; Bi, W.; Ma, Z.; Shi, W.; Ye, Y.; Zhang, D. Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato. World J. Microbiol. Biotechnol. 2021, 37, 93. [Google Scholar] [CrossRef]
- Kundu, A.; Vadassery, J.; Pineda, A. Chlorogenic acid-mediated chemical defence of plants against insect herbivores. Plant Biol. 2019, 21, 185–189. [Google Scholar] [CrossRef]
- Xiao, P.; Qu, J.; Wang, Y.; Fang, T.; Xiao, W.; Wang, Y.; Zhang, Y.; Khan, M.; Chen, Q.; Xu, X.; et al. Transcriptome and metabolome atlas reveals contributions of sphingosine and chlorogenic acid to cold tolerance in Citrus. Plant Physiol. 2024, 196, 634–650. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Li, X.; Wang, X.; Cao, J.; Jiang, W. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway. Food Chem. 2018, 260, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Wang, H.; Shu, C.; Chen, L.; Cao, J.; Jiang, W. The combination treatment of chlorogenic acid and sodium alginate coating could accelerate the wound healing of pear fruit by promoting the metabolic pathway of phenylpropane. Food Chem. 2023, 414, 135689. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Iqbal, M.S.; Srivastava, J.K. Therapeutic Promises of Chlorogenic Acid with Special Emphasis on its Anti-Obesity Property. Curr. Mol. Pharmacol. 2020, 13, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Mohan Rao, L.J. An Outlook on Chlorogenic Acids—Occurrence, Chemistry, Technology, and Biological Activities. Crit. Rev. Food Sci. Nutr. 2013, 53, 968–984. [Google Scholar] [CrossRef]
- Lu, J.; An, Y.; Wang, X.; Zhang, C.; Guo, S.; Ma, Y.; Qiu, Y.; Wang, S. Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells. J. Vet. Med. Sci. 2024, 86, 1016–1026. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, D.; Xu, X.; Dai, J.; Lao, G.; Zhang, S.; Xu, X.; Dinnyés, A.; Xiong, Y.; Sun, Q. Myofibrillar protein-chlorogenic acid complexes ameliorate glucose metabolism via modulating gut microbiota in a type 2 diabetic rat model. Food Chem. 2023, 409, 135195. [Google Scholar] [CrossRef]
- Changizi, Z.; Moslehi, A.; Rohani, A.H.; Eidi, A. Chlorogenic acid induces 4T1 breast cancer tumor’s apoptosis via p53, Bax, Bcl-2, and caspase-3 signaling pathways in BALB/c mice. J. Biochem. Mol. Toxicol. 2021, 35, e22642. [Google Scholar] [CrossRef]
- Li, R.; Zhan, Y.; Ding, X.; Cui, J.; Han, Y.; Zhang, J.; Zhang, J.; Li, W.; Wang, L.; Jiang, J. Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 Antibody. Int. J. Biol. Sci. 2024, 20, 61–77. [Google Scholar] [CrossRef]
- He, S.; Chen, Y.; Wang, H.; Li, S.; Wei, Y.; Zhang, H.; Gao, Q.; Wang, F.; Zhang, R. Neuroprotective effects of chlorogenic acid: Modulation of Akt/Erk1/2 signaling to prevent neuronal apoptosis in Parkinson’s disease. Free Radic. Biol. Med. 2024, 222, 275–287. [Google Scholar] [CrossRef]
- Sultana, T.; Islam, S.; Azad, M.A.K.; Akanda, M.J.H.; Rahman, A.; Rahman, M.S. Phytochemical Profiling and Antimicrobial Properties of Various Sweet Potato (Ipomoea batatas L.) Leaves Assessed by RP-HPLC-DAD. Foods 2024, 13, 2787. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, Y.; Liu, Y.; Xu, M.; Yao, Z.; Zhang, X.; Sun, Y.; Zhou, T.; Shen, M. Effects of chlorogenic acid on antimicrobial, antivirulence, and anti-quorum sensing of carbapenem-resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 997310. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Yang, T.; Feng, G.; Tan, H.; Piao, X.; Chen, D.; Zhang, Y.; Jiao, W.; Chen, Y.; et al. Chlorogenic Acid Alleviates Chronic Stress-Induced Intestinal Damage by Inhibiting the P38MAPK/NF-κB Pathway. J. Agric. Food Chem. 2023, 71, 9381–9390. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Hao, Z.; Qi, W.; Jiang, F.; Liu, K.; Shi, X. Aerobic exercise combined with chlorogenic acid exerts neuroprotective effects and reverses cognitive decline in Alzheimer’s disease model mice (APP/PS1) via the SIRT1//PGC-1α/PPARγ signaling pathway. Front. Aging Neurosci. 2023, 15, 1269952. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Li, Z.; Mu, Y.; Yong, V.W.; Xue, M. Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer. Biomolecules 2022, 12, 1020. [Google Scholar] [CrossRef]
- Song, L.; Wu, T.; Zhang, L.; Wan, J.; Ruan, Z. Chlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathways. Food Funct. 2022, 13, 4562–4575. [Google Scholar] [CrossRef]
- Ling, X.; Yan, W.; Yang, F.; Jiang, S.; Chen, F.; Li, N. Research progress of chlorogenic acid in improving inflammatory diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2023, 48, 1611–1620. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.-L.; Xue, N.-N.; Li, C.; Guo, H.-H.; Ren, T.-K.; Zhan, Y.; Li, W.-B.; Zhang, J.; Chen, X.-G.; et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation. Theranostics 2019, 9, 6745–6763. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- Stalmach, A.; Steiling, H.; Williamson, G.; Crozier, A. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch. Biochem. Biophys. 2010, 501, 98–105. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiao, F.; Zeng, D.; Yu, X.; Zhou, Y.; Xue, J.; Yang, W.; Guo, J. Synergistic Effects of Pyrrosia lingua Caffeoylquinic Acid Compounds with Levofloxacin Against Uropathogenic Escherichia coli: Insights from Molecular Dynamics Simulations, Antibiofilm, and Antimicrobial Assessments. Molecules 2024, 29, 5679. [Google Scholar] [CrossRef]
- Tian, X.; Gao, L.; An, L.; Jiang, X.; Bai, J.; Huang, J.; Meng, W.; Zhao, Q. Pretreatment of MQA, a caffeoylquinic acid derivative compound, protects against H2O2-induced oxidative stress in SH-SY5Y cells. Neurol. Res. 2016, 38, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Payyavula, R.S.; Shakya, R.; Sengoda, V.G.; Munyaneza, J.E.; Swamy, P.; Navarre, D.A. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines. Plant Biotechnol. J. 2015, 13, 551–564. [Google Scholar] [CrossRef]
- Schütz, K.; Kammerer, D.; Carle, R.; Schieber, A. Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC-DAD-ESI/MS(n). J. Agric. Food Chem. 2004, 52, 4090–4096. [Google Scholar] [CrossRef]
- Bellumori, M.; Chasquibol Silva, N.A.; Vilca, L.; Andrenelli, L.; Cecchi, L.; Innocenti, M.; Balli, D.; Mulinacci, N. A Study on the Biodiversity of Pigmented Andean Potatoes: Nutritional Profile and Phenolic Composition. Molecules 2020, 25, 3169. [Google Scholar] [CrossRef] [PubMed]
- Valiñas, M.A.; Lanteri, M.L.; ten Have, A.; Andreu, A.B. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum). J. Agric. Food Chem. 2015, 63, 4902–4913. [Google Scholar] [CrossRef]
- Ilie, E.I.; Popescu, L.; Luță, E.A.; Biță, A.; Corbu, A.R.; Mihai, D.P.; Pogan, A.C.; Balaci, T.D.; Mincă, A.; Duțu, L.E.; et al. Phytochemical Characterization and Antioxidant Activity Evaluation for Some Plant Extracts in Conjunction with Pharmacological Mechanism Prediction: Insights into Potential Therapeutic Applications in Dyslipidemia and Obesity. Biomedicines 2024, 12, 1431. [Google Scholar] [CrossRef]
- Lu, C.; Yan, X.; Zhang, H.; Zhong, T.; Gui, A.; Liu, Y.; Pan, L.; Shao, Q. Integrated metabolomic and transcriptomic analysis reveals biosynthesis mechanism of flavone and caffeoylquinic acid in chrysanthemum. BMC Genom. 2024, 25, 759. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Bai, M.; He, H.; Wang, H.; Wu, H. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers. Hortic. Res. 2019, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- MacLean, D.D.; Murr, D.P.; DeEll, J.R.; Mackay, A.B.; Kupferman, E.M. Inhibition of PAL, CHS, and ERS1 in ‘Red d’Anjou’ Pear (Pyrus communis L.) by 1-MCP. Postharvest Biol. Technol. 2007, 45, 46–55. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Knollenberg, B.J.; Liu, J.; Yu, S.; Lin, H.; Tian, L. Cloning and functional characterization of a p-coumaroyl quinate/shikimate 3′-hydroxylase from potato (Solanum tuberosum). Biochem. Biophys. Res. Commun. 2018, 496, 462–467. [Google Scholar] [CrossRef]
- Vanholme, R.; Cesarino, I.; Rataj, K.; Xiao, Y.; Sundin, L.; Goeminne, G.; Kim, H.; Cross, J.; Morreel, K.; Araujo, P.; et al. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science 2013, 341, 1103–1106. [Google Scholar] [CrossRef]
- Volpi, E.S.N.; Mazzafera, P.; Cesarino, I. Should I stay or should I go: Are chlorogenic acids mobilized towards lignin biosynthesis? Phytochemistry 2019, 166, 112063. [Google Scholar] [CrossRef]
- Ha, C.M.; Escamilla-Trevino, L.; Yarce, J.C.; Kim, H.; Ralph, J.; Chen, F.; Dixon, R.A. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J. 2016, 86, 363–375. [Google Scholar] [CrossRef]
- Villegas, R.J.; Kojima, M. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. J. Biol. Chem. 1986, 261, 8729–8733. [Google Scholar] [CrossRef]
- Ding, X.; Yin, Z.; Wang, S.; Liu, H.; Chu, X.; Liu, J.; Zhao, H.; Wang, X.; Li, Y.; Ding, X. Different Fruit-Specific Promoters Drive AtMYB12 Expression to Improve Phenylpropanoid Accumulation in Tomato. Molecules 2022, 27, 317. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xiao, M.; Liu, B.; Wang, M.; Tan, C.; Zhang, Y.; Quan, H.; Ruan, Y.; Huang, Y. Full-length transcriptome sequencing and transgenic tobacco revealed the key genes in the chlorogenic acid synthesis pathway of Sambucus chinensis L. Physiol. Plant 2023, 175, e13944. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zeng, L.; Rao, S.; Gu, D.; Liu, X.; Wang, Y.; Zhu, H.; Hou, X.; Yang, Z. Induced biosynthesis of chlorogenic acid in sweetpotato leaves confers the resistance against sweetpotato weevil attack. J. Adv. Res. 2020, 24, 513–522. [Google Scholar] [CrossRef]
- D’Orso, F.; Hill, L.; Appelhagen, I.; Lawrenson, T.; Possenti, M.; Li, J.; Harwood, W.; Morelli, G.; Martin, C. Exploring the metabolic and physiological roles of HQT in S. lycopersicum by gene editing. Front. Plant Sci. 2023, 14, 1124959. [Google Scholar] [CrossRef]
- Hoffmann, L.; Maury, S.; Martz, F.; Geoffroy, P.; Legrand, M. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 2003, 278, 95–103. [Google Scholar] [CrossRef]
- Qi, X.; Yu, X.; Xu, D.; Fang, H.; Dong, K.; Li, W.; Liang, C. Identification and analysis of CYP450 genes from transcriptome of Lonicera japonica and expression analysis of chlorogenic acid biosynthesis related CYP450s. PeerJ 2017, 5, e3781. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Wang, P.; Zhou, B.; Liu, Z.; Xiang, F. Cloning and characterization of Lonicera japonica p-coumaroyl ester 3-hydroxylase which is involved in the biosynthesis of chlorogenic acid. Biosci. Biotechnol. Biochem. 2013, 77, 1403–1409. [Google Scholar] [CrossRef]
- Cardenas, C.L.; Costa, M.A.; Laskar, D.D.; Moinuddin, S.G.A.; Lee, C.; Davin, L.B.; Lewis, N.G. RNAi Modulation of Chlorogenic Acid and Lignin Deposition in Nicotiana tabacum and Insufficient Compensatory Metabolic Cross-Talk. J. Nat. Prod. 2021, 84, 694–706. [Google Scholar] [CrossRef]
- Medison, M.B.; Pan, R.; Peng, Y.; Medison, R.G.; Shalmani, A.; Yang, X.; Zhang, W. Identification of HQT gene family and their potential function in CGA synthesis and abiotic stresses tolerance in vegetable sweet potato. Physiol. Mol. Biol. Plants 2023, 29, 361–376. [Google Scholar] [CrossRef]
- Lallemand, L.A.; Zubieta, C.; Lee, S.G.; Wang, Y.; Acajjaoui, S.; Timmins, J.; McSweeney, S.; Jez, J.M.; McCarthy, J.G.; McCarthy, A.A. A structural basis for the biosynthesis of the major chlorogenic acids found in coffee. Plant Physiol. 2012, 160, 249–260. [Google Scholar] [CrossRef]
- Liu, J.; Osbourn, A.; Ma, P. MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Chen, P.; Zong, J.; Gao, J.; Qin, R.; Wu, C.; Lv, Q.; Xu, Y.; Zhao, T.; Fu, Y. Integrated transcriptomic and CGAs analysis revealed IbGLK1 is a key transcription factor for chlorogenic acid accumulation in sweetpotato (Ipomoea batatas [L.] Lam.) blades. Int. J. Biol. Macromol. 2024, 266, 131045. [Google Scholar] [CrossRef] [PubMed]
- Rommens, C.M.; Richael, C.M.; Yan, H.; Navarre, D.A.; Ye, J.; Krucker, M.; Swords, K. Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnol. J. 2008, 6, 870–886. [Google Scholar] [CrossRef]
- Payyavula, R.S.; Singh, R.K.; Navarre, D.A. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. J. Exp. Bot. 2013, 64, 5115–5131. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Misra, P.; Bhambhani, S.; Bhatia, C.; Trivedi, P.K. Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci. Rep. 2014, 4, 5018. [Google Scholar] [CrossRef]
- Pandey, A.; Misra, P.; Trivedi, P.K. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep. 2015, 34, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Cao, Z.; Yang, C.; Ran, D.; Wu, P.; Gao, H.; He, N.; Liu, G.; Chen, Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Sci. 2021, 308, 110924. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Gao, J.; Li, B.; Luo, Z.; Liu, P.; Xu, X.; Wu, M.; Yang, J.; He, X.; Wang, Z. NtWIN1 regulates the biosynthesis of scopoletin and chlorogenic acid by targeting NtF6’H1 and NtCCoAMT genes in Nicotiana tabacum. Plant Physiol. Biochem. 2024, 214, 108937. [Google Scholar] [CrossRef]
- He, S.; Xu, X.; Gao, Q.; Huang, C.; Luo, Z.; Liu, P.; Wu, M.; Huang, H.; Yang, J.; Zeng, J.; et al. NtERF4 promotes the biosynthesis of chlorogenic acid and flavonoids by targeting PAL genes in Nicotiana tabacum. Planta 2023, 259, 31. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, L.; Liu, P.; Luo, Z.; Li, Z.; Wu, M.; Xu, X.; Pu, W.; Huang, P.; Yang, J. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. Plant Sci. 2023, 326, 111522. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Gao, Q.; He, S.; Xu, Y.; Luo, Z.; Liu, P.; Wu, M.; Xu, X.; Ma, L.; et al. The transcription factor NtERF13a enhances abiotic stress tolerance and phenylpropanoid compounds biosynthesis in tobacco. Plant Sci. 2023, 334, 111772. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, S.; Liu, P.; Yang, X.; He, X.; Xie, X.; Luo, Z.; Wu, M.; Wang, C.; Yang, J. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum. Plant Sci. 2022, 315, 111154. [Google Scholar] [CrossRef]
- Wang, J.; Tian, P.; Sun, J.; Li, B.; Jia, J.; Yuan, J.; Li, X.; Gu, S.; Pang, X. CsMYC2 is involved in the regulation of phenylpropanoid biosynthesis induced by trypsin in cucumber (Cucumis sativus) during storage. Plant Physiol. Biochem. 2023, 196, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Vieira, O.; Laranjinha, J.; Madeira, V.; Almeida, L. Cholesteryl ester hydroperoxide formation in myoglobin-catalyzed low density lipoprotein oxidation: Concerted antioxidant activity of caffeic and p-coumaric acids with ascorbate. Biochem. Pharmacol. 1998, 55, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Fan, P.; Deng, H.; Jia, G.; Zuo, Z.; Hu, Y.; Wang, Y.; Cai, D.; Gou, L.; Wen, Y.; et al. Effects of isochlorogenic acid A on mitochondrial dynamics imbalance and RLR damage in PAM cells induced by combined mycotoxins. Toxicology 2024, 508, 153920. [Google Scholar] [CrossRef]
- Kalinowska, M.; Bajko, E.; Matejczyk, M.; Kaczyński, P.; Łozowicka, B.; Lewandowski, W. The Study of Anti-/Pro-Oxidant, Lipophilic, Microbial and Spectroscopic Properties of New Alkali Metal Salts of 5-O-Caffeoylquinic Acid. Int. J. Mol. Sci. 2018, 19, 463. [Google Scholar] [CrossRef]
- Bagdas, D.; Gul, Z.; Meade, J.A.; Cam, B.; Cinkilic, N.; Gurun, M.S. Pharmacologic Overview of Chlorogenic Acid and its Metabolites in Chronic Pain and Inflammation. Curr. Neuropharmacol. 2020, 18, 216–228. [Google Scholar] [CrossRef]
- Aborziza, M.; Amalia, R.; Zuhrotun, A.; Ikram, N.K.K.; Novitasari, D.; Muchtaridi, M. Coffee Bean and Its Chemical Constituent Caffeine and Chlorogenic Acid as Promising Chemoprevention Agents: Updated Biological Studies against Cancer Cells. Molecules 2024, 29, 3302. [Google Scholar] [CrossRef]
- Zeng, L.; Xiang, R.; Fu, C.; Qu, Z.; Liu, C. The Regulatory effect of chlorogenic acid on gut-brain function and its mechanism: A systematic review. Biomed. Pharmacother. 2022, 149, 112831. [Google Scholar] [CrossRef]
- Ye, X.; Liu, Y.; Hu, J.; Gao, Y.; Ma, Y.; Wen, D. Chlorogenic Acid-Induced Gut Microbiota Improves Metabolic Endotoxemia. Front. Endocrinol. 2021, 12, 762691. [Google Scholar] [CrossRef]
- Zheng, C.; Zhong, Y.; Zhang, W.; Wang, Z.; Xiao, H.; Zhang, W.; Xie, J.; Peng, X.; Luo, J.; Xu, W. Chlorogenic Acid Ameliorates Post-Infectious Irritable Bowel Syndrome by Regulating Extracellular Vesicles of Gut Microbes. Adv. Sci. 2023, 10, e2302798. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xu, M.; Qiu, Y.; Liao, M.; Zhang, Q.; Yang, L.; Zheng, G. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J. Food Biochem. 2021, 45, e13795. [Google Scholar] [CrossRef]
- Martins, R.; Fernandes, F.; Valentão, P. Unearthing of the Antidiabetic Potential of Aqueous Extract of Solanum betaceum Cav. Leaves. Molecules 2023, 28, 3291. [Google Scholar] [CrossRef] [PubMed]
- Pimpley, V.; Patil, S.; Srinivasan, K.; Desai, N.; Murthy, P.S. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep. Biochem. Biotechnol. 2020, 50, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Megha, K.B.; Joseph, X.; Akhil, V.; Mohanan, P.V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine 2021, 91, 153712. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Zhang, Y.; Yang, T.; Zhao, S.; Sun, N.; Tan, H.; Zhang, H.; Wang, C.; Fan, H. Effect of Chlorogenic Acid via Upregulating Resolvin D1 Inhibiting the NF-κB Pathway on Chronic Restraint Stress-Induced Liver Inflammation. J. Agric. Food Chem. 2022, 70, 10532–10542. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Kalinowska, M.; Świsłocka, R.; Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Kozłowski, M.; Koronkiewicz, K.; Piekut, J.; Lewandowski, W. Structural characterization and evaluation of antimicrobial and cytotoxic activity of six plant phenolic acids. PLoS ONE 2024, 19, e0299372. [Google Scholar] [CrossRef]
- Yun, J.; Lee, D.G. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 585–592. [Google Scholar] [CrossRef]
- Wang, F.; Tang, Y.S.; Cao, F.; Shou, J.W.; Wong, C.K.; Shaw, P.C. 3,4,5-tri-O-caffeoylquinic acid attenuates influenza A virus induced inflammation through Toll-like receptor 3/7 activated signaling pathway. Phytomedicine 2024, 132, 155896. [Google Scholar] [CrossRef]
- Hibi, M. Potential of Polyphenols for Improving Sleep: A Preliminary Results from Review of Human Clinical Trials and Mechanistic Insights. Nutrients 2023, 15, 1257. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Crawford, A.; Aggarwal, B. Plant-based diets: Reducing cardiovascular risk by improving sleep quality? Curr. Sleep. Med. Rep. 2018, 4, 74–78. [Google Scholar] [CrossRef]
- Liang, J.; Wen, T.; Zhang, X.; Luo, X. Chlorogenic Acid as a Potential Therapeutic Agent for Cholangiocarcinoma. Pharmaceuticals 2024, 17, 794. [Google Scholar] [CrossRef]
- Chen, X.; Liu, B.; Tong, J.; Bo, J.; Feng, M.; Yin, L.; Lin, X. Chlorogenic Acid Inhibits Proliferation, Migration and Invasion of Pancreatic Cancer Cells via AKT/GSK-3β/β-catenin Signaling Pathway. Recent Pat. Anti-Cancer Drug Discov. 2024, 19, 146–153. [Google Scholar] [CrossRef]
- Changizi, Z.; Moslehi, A.; Rohani, A.H.; Eidi, A. Chlorogenic acid inhibits growth of 4T1 breast cancer cells through involvement in Bax/Bcl2 pathway. J. Cancer Res. Ther. 2020, 16, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Elliger, C.A.; Wong, Y.; Chan, B.G.; Waiss, A.C., Jr. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 1981, 7, 753–758. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Shi, S.; Zhou, Y.; Zhang, K.; Wang, Y.; Zhao, J. Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poult. Sci. 2022, 101, 102036. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Yang, M.; Liu, X.; Guo, F.; Hu, Z.; Huang, J.; Abbas, W.; Xu, T.; Liu, W.; Wang, Z. Effects of chlorogenic acid on productive and reproductive performances, egg quality, antioxidant functions, and intestinal microenvironment in aged breeder laying hens. Poult. Sci. 2024, 103, 104060. [Google Scholar] [CrossRef]
- Qu, S.Y.; Liu, Y.H.; Liu, J.T.; Li, P.F.; Liu, T.Q.; Wang, G.X.; Yu, Q.; Ling, F. Catechol compounds as dual-targeting agents for fish protection against Ichthyophthirius multifiliis infections. Fish Shellfish Immunol. 2024, 151, 109717. [Google Scholar] [CrossRef]
- Rojas-Gonzalez, A.; Figueroa-Hernandez, C.Y.; Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Gonzalez-Amaro, R.M.; Hernandez-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef]
- Meinhart, A.D.; Damin, F.M.; Caldeirão, L.; de Jesus Filho, M.; da Silva, L.C.; da Silva Constant, L.; Teixeira Filho, J.; Wagner, R.; Teixeira Godoy, H. Study of new sources of six chlorogenic acids and caffeic acid. J. Food Compos. Anal. 2019, 82, 103244. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Chen, W.; Jia, R.; Zheng, B.; Guo, Z. Insights into impact of chlorogenic acid on multi-scale structure and digestive properties of lotus seed starch under autoclaving treatment. Int. J. Biol. Macromol. 2024, 278, 134863. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, R.; Chen, W.; Zheng, B.; Guo, Z. Structural characteristics of lotus seed starch-chlorogenic acid complexes during dynamic in vitro digestion and prebiotic activities. Food Chem. 2025, 467, 142329. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Li, F.; Shi, X.; Liu, J.; Cheng, Y.; Wu, Y.; Fang, Z.; Zhu, Y.; Wang, D.; Yuan, T.; et al. Characterization of ultrasound-assisted covalent binding interaction between β-lactoglobulin and dicaffeoylquinic acid: Great potential for the curcumin delivery. Food Chem. 2024, 441, 138400. [Google Scholar] [CrossRef]
- Pan, X.; Fang, Y.; Wang, L.; Shi, Y.; Xie, M.; Xia, J.; Pei, F.; Li, P.; Xiong, W.; Shen, X.; et al. Covalent Interaction between Rice Protein Hydrolysates and Chlorogenic Acid: Improving the Stability of Oil-in-Water Emulsions. J. Agric. Food Chem. 2019, 67, 4023–4030. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Mao, S.; Zhao, Y.; Yang, J. Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid. Foods 2025, 14, 1914. https://doi.org/10.3390/foods14111914
He Y, Mao S, Zhao Y, Yang J. Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid. Foods. 2025; 14(11):1914. https://doi.org/10.3390/foods14111914
Chicago/Turabian StyleHe, Yuxin, Shengming Mao, Yingying Zhao, and Jing Yang. 2025. "Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid" Foods 14, no. 11: 1914. https://doi.org/10.3390/foods14111914
APA StyleHe, Y., Mao, S., Zhao, Y., & Yang, J. (2025). Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid. Foods, 14(11), 1914. https://doi.org/10.3390/foods14111914