Mineral Profiles Characteristics in Milk from Dairy Cows in Xinjiang, China, and Production Plan for Season-Dependent High-Calcium Milk Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dairy Cows and Milk Sample Collection
2.2. Selection of Valid Samples
2.3. Prediction of Mineral Content in Milk Samples
2.4. Calibration of Predicted Mineral Content Values
2.5. Correlation Analysis of Conventional Milk Composition, Mineral Profiles, and Their Interrelationships
2.6. Economic Effect Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mineral Content of Milk in Xinjiang Region Measured Using National Standard Methods
3.2. Prediction of Mineral Profiles and Characteristics in Large-Scale Milk Samples Using the Model
3.3. Correlation Between Conventional Milk Components, Mineral Content, and Their Interrelationships
3.4. Mineral Profiles Characteristics in Milk
3.5. Production Plan for High-Calcium Milk from Season-Dependent Mineral Sources
3.6. Economic Benefit Analysis of Dairy Products Enriched with Minerals (Ca)
3.7. Prospects and Limitation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caroli, A.; Poli, A.; Ricotta, D.; Banfi, G.; Cocchi, D. Invited review: Dairy intake and bone health: A viewpoint from the state of the art. J. Dairy Sci. 2011, 94, 5249–5262. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Bastin, C.; Théron, L.; Lainé, A.; Gengler, N. On the role of mid-infrared predicted phenotypes in fertility and health dairy breeding programs. J. Dairy Sci. 2016, 99, 4080–4094. [Google Scholar] [CrossRef] [PubMed]
- Menta, P.R.; Fernandes, L.; Poit, D.; Celestino, M.L.; Machado, V.S.; Ballou, M.A.; Neves, R.C. Association of blood calcium concentration in the first 3 days after parturition and energy balance metabolites at day 3 in milk with disease and production outcomes in multiparous Jersey cows. J. Dairy Sci. 2021, 104, 5854–5866. [Google Scholar] [CrossRef]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef]
- Denholm, S.J.; Sneddon, A.A.; McNeilly, T.N.; Bashir, S.; Mitchell, M.C.; Wall, E. Phenotypic and genetic analysis of milk and serum element concentrations in dairy cows. J. Dairy Sci. 2019, 102, 11180–11192. [Google Scholar] [CrossRef]
- DeGaris, P.J.; Lean, I.J. Milk fever in dairy cows: A review of pathophysiology and control principles. Vet. J. 2008, 176, 58–69. [Google Scholar] [CrossRef]
- Neves, R.C.; Leno, B.M.; Curler, M.D.; Thomas, M.J.; Overton, T.R.; McArt, J.A.A. Association of immediate postpartum plasma calcium concentration with early-lactation clinical diseases, culling, reproduction, and milk production in Holstein cows. J. Dairy Sci. 2018, 101, 547–555. [Google Scholar] [CrossRef]
- Gaucheron, F. The minerals of milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef]
- Malacarne, M.; Franceschi, P.; Formaggioni, P.; Sandri, S.; Mariani, P.; Summer, A. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk. J. Dairy Res. 2014, 81, 129–136. [Google Scholar] [CrossRef]
- Jensen, H.B.; Poulsen, N.A.; Andersen, K.K.; Hammershøj, M.; Poulsen, H.D.; Larsen, L.B. Distinct composition of bovine milk from Jersey and Holstein-Friesian cows with good, poor, or noncoagulation properties as reflected in protein genetic variants and isoforms. J. Dairy Sci. 2012, 95, 6905–6917. [Google Scholar] [CrossRef] [PubMed]
- Amalfitano, N.; Patel, N.; Haddi, M.L.; Benabid, H.; Pazzola, M.; Vacca, G.M.; Tagliapietra, F.; Schiavon, S.; Bittante, G. Detailed mineral profile of milk, whey, and cheese from cows, buffaloes, goats, ewes, and dromedary camels, and efficiency of recovery of minerals in their cheese. J. Dairy Sci. 2024, 107, 8887–8907. [Google Scholar] [CrossRef]
- Gulati, A.; Galvin, N.; Lewis, E.; Hennessy, D.; O’Donovan, M.; McManus, J.J.; Fenelon, M.A.; Guinee, T.P. Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation. J. Dairy Sci. 2018, 101, 2710–2723. [Google Scholar] [CrossRef]
- Martinez, N.; Sinedino, L.D.; Bisinotto, R.S.; Ribeiro, E.S.; Gomes, G.C.; Lima, F.S.; Greco, L.F.; Risco, C.A.; Galvão, K.N.; Taylor-Rodriguez, D.; et al. Effect of induced subclinical hypocalcemia on physiological responses and neutrophil function in dairy cows. J. Dairy Sci. 2014, 97, 874–887. [Google Scholar] [CrossRef]
- Zhang, L.; Gengler, N.; Dehareng, F.; Colinet, F.; Froidmont, E.; Soyeurt, H. Can We Observe Expected Behaviors at Large and Individual Scales for Feed Efficiency-Related Traits Predicted Partly from Milk Mid-Infrared Spectra? Animals 2020, 10, 873. [Google Scholar] [CrossRef]
- Premi, M.; Mezzetti, M.; Ferronato, G.; Barbato, M.; Piccioli Cappelli, F.; Minuti, A.; Trevisi, E. Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals 2021, 11, 1714. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, A.; Thakur, M.S.; Khare, V.; Jain, A.; Tiwari, S.P. Genetic analysis of milk minerals in dairy cattle: A review. J. Appl. Genet. 2024, 65, 375–381. [Google Scholar] [CrossRef]
- Soyeurt, H.; Bruwier, D.; Romnee, J.M.; Gengler, N.; Bertozzi, C.; Veselko, D.; Dardenne, P. Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2009, 92, 2444–2454. [Google Scholar] [CrossRef]
- Bonfatti, V.; Degano, L.; Menegoz, A.; Carnier, P. Short communication: Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental. J. Dairy Sci. 2016, 99, 8216–8221. [Google Scholar] [CrossRef]
- Soyeurt, H.; Dehareng, F.; Gengler, N.; McParland, S.; Wall, E.; Berry, D.P.; Coffey, M.; Dardenne, P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 2011, 94, 1657–1667. [Google Scholar] [CrossRef]
- Goi, A.; De Marchi, M.; Costa, A. Minerals and essential amino acids of bovine colostrum: Phenotypic variability and predictive ability of mid- and near-infrared spectroscopy. J. Dairy Sci. 2023, 106, 8341–8356. [Google Scholar] [CrossRef] [PubMed]
- Visentin, G.; Penasa, M.; Gottardo, P.; Cassandro, M.; De Marchi, M. Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm. J. Dairy Sci. 2016, 99, 8137–8145. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 2014, 97, 1171–1186. [Google Scholar] [CrossRef]
- Shadpour, S.; Chud, T.C.S.; Hailemariam, D.; Oliveira, H.R.; Plastow, G.; Stothard, P.; Lassen, J.; Baldwin, R.; Miglior, F.; Baes, C.F.; et al. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. J. Dairy Sci. 2022, 105, 8257–8271. [Google Scholar] [CrossRef]
- Zaalberg, R.M.; Poulsen, N.A.; Bovenhuis, H.; Sehested, J.; Larsen, L.B.; Buitenhuis, A.J. Genetic analysis on infrared-predicted milk minerals for Danish dairy cattle. J. Dairy Sci. 2021, 104, 8947–8958. [Google Scholar] [CrossRef]
- Bisutti, V.; Mota, L.F.M.; Giannuzzi, D.; Toscano, A.; Amalfitano, N.; Schiavon, S.; Pegolo, S.; Cecchinato, A. Infrared spectroscopy coupled with machine learning algorithms for predicting the detailed milk mineral profile in dairy cattle. Food Chem. 2024, 461, 140800. [Google Scholar] [CrossRef]
- Toffanin, V.; Penasa, M.; McParland, S.; Berry, D.P.; Cassandro, M.; De Marchi, M. Genetic parameters for milk mineral content and acidity predicted by mid-infrared spectroscopy in Holstein-Friesian cows. Animal 2015, 9, 775–780. [Google Scholar] [CrossRef]
- Soyeurt, H.; Grelet, C.; McParland, S.; Calmels, M.; Coffey, M.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N. A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra. J. Dairy Sci. 2020, 103, 11585–11596. [Google Scholar] [CrossRef]
- Christophe, O.S.; Grelet, C.; Bertozzi, C.; Veselko, D.; Lecomte, C.; Höeckels, P.; Werner, A.; Auer, F.J.; Gengler, N.; Dehareng, F.; et al. Multiple Breeds and Countries’ Predictions of Mineral Contents in Milk from Milk Mid-Infrared Spectrometry. Foods. 2021, 10, 2235. [Google Scholar] [CrossRef]
- Yikai FZhuo, Y.; Guochang, Y.; Chunfang, L.; Xiaoli, R.; Chu, C.; Tingting, L.; Gang, L.; Wenjuan, B.; Heming, S.; Shujun, Z. Research on a new standardization method for milk FT-MIRS on different instruments based on agglomerative clustering and application strategies. Comput. Electron. Agric. 2024, 226, 109422. [Google Scholar]
- Malacarne, M.; Visentin, G.; Summer, A.; Cassandro, M.; Penasa, M.; Bolzoni, G.; Zanardi, G.; De Marchi, M. Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of bulk milk. J. Dairy Res. 2018, 85, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; Shook, G.E. A lactation measure of somatic cell count. J. Dairy Sci. 1987, 70, 2666–2672. [Google Scholar] [CrossRef]
- Toscano, A.; Giannuzzi, D.; Pegolo, S.; Vanzin, A.; Bisutti, V.; Gallo, L.; Trevisi, E.; Cecchinato, A.; Schiavon, S. Associations between the detailed milk mineral profile, milk composition, and metabolic status in Holstein cows. J. Dairy Sci. 2023, 106, 6577–6591. [Google Scholar] [CrossRef]
- Ghavi Hossein-Zadeh, N. A meta-analysis of genetic parameter estimates for milk and serum minerals in dairy cows. J Dairy Res. 2022, 89, 19–28. [Google Scholar] [CrossRef]
- Stocco, G.; Summer, A.; Malacarne, M.; Cecchinato, A.; Bittante, G. Detailed macro- and micromineral profile of milk: Effects of herd productivity, parity, and stage of lactation of cows of 6 dairy and dual-purpose breeds. J. Dairy Sci. 2019, 102, 9727–9739. [Google Scholar] [CrossRef]
- Nogalska, A.; Momot, M.; Nogalski, Z. The Mineral Composition of Milk from High-Yielding Dairy Cows Depending on the Month of Lactation and Udder Health. Appl. Sci. 2020, 10, 4803. [Google Scholar] [CrossRef]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle, 8th ed.; National Academies Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Visentin, G.; Penasa, M.; Niero, G.; Cassandro, M.; De Marchi, M. Phenotypic characterisation of major mineral composition predicted by mid-infrared spectroscopy in cow milk. Ital. J. Anim. Sci. 2017, 17, 549–556. [Google Scholar] [CrossRef]
- Giannuzzi, D.; Vanzin, A.; Pegolo, S.; Toscano, A.; Bisutti, V.; Gallo, L.; Schiavon, S.; Cecchinato, A. Novel insights into the associations between immune cell population distribution in mammary glands and milk minerals in Holstein cows. J. Dairy Sci. 2024, 107, 593–606. [Google Scholar] [CrossRef]
- Gaignon, P.; Gelé, M.; Hurtaud, C.; Boudon, A. Characterization of the nongenetic causes of variation in the calcium content of bovine milk on French farms. J. Dairy Sci. 2018, 101, 4554–4569. [Google Scholar] [CrossRef]
- Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; Pétursdóttir, Á.; Newton, E.E.; Angelidis, A.; Givens, I.; Juniper, D.; et al. Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chem. 2021, 359, 129865. [Google Scholar] [CrossRef]
- Franzoi, M.; Niero, G.; Penasa, M.; Cassandro, M.; De Marchi, M. Technical note: Development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk. J. Dairy Sci. 2018, 101, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Buitenhuis, B.; Poulsen, N.A.; Larsen, L.B.; Sehested, J. Estimation of genetic parameters and detection of quantitative trait loci for minerals in Danish Holstein and Danish Jersey milk. BMC Genet. 2015, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Soyeurt, H.; Wu, X.L.; Grelet, C.; van Pelt, M.L.; Gengler, N.; Dehareng, F.; Bertozzi, C.; Burchard, J. Imputation of missing milk Fourier transform mid-infrared spectra using existing milk spectral databases: A strategy to improve the reliability of breeding values and predictive models. J. Dairy Sci. 2023, 106, 9095–9104. [Google Scholar] [CrossRef] [PubMed]
Validation | ||||
---|---|---|---|---|
Mineral | LVs | R2p | RMSEp | RPDp |
Ca | 20 | 0.957 | 37.87 | 4.85 |
K | 9 | 0.571 | 189.69 | 1.53 |
Mg | 17 | 0.497 | 11.91 | 1.41 |
Na | 12 | 0.660 | 67.97 | 1.71 |
P | 16 | 0.745 | 67.91 | 1.98 |
Sr | 11 | 0.663 | 0.14 | 1.72 |
Zn | 11 | 0.529 | 0.77 | 1.46 |
Item | Xinjiang | Region A | Region B |
---|---|---|---|
Minerals, mg/kg | |||
Ca | 1329.84 ± 193.37 a | 1208.49 ± 140.74 b | 1206.94 ± 125.49 b |
Mg | 111.36 ± 17.59 a | 104.12 ± 11.31 a | 105.20 ± 10.25 a |
P | 1031.31 ± 142.87 a | 1010.88 ± 119.34 a | 1017.65 ± 129.33 a |
K | 1709.91 ± 484.93 a | 1285.22 ± 179.43 b | 1490.52 ± 142.71 b |
Na | 531.06 ± 153.47 a | 311.15 ± 52.58 b | 470.93 ± 120.59 a |
Zn | 5.28 ± 1.97 a | 3.83 ± 0.68 b | 5.86 ± 2.31 a |
Sr | 0.85 ± 0.26 a | 0.51 ± 0.09 b | 0.92 ± 0.21 a |
Item | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
Milk composition, % | |||||
Fat | 53,956 | 4.11 | 1.08 | 1.50 | 9.00 |
Protein | 53,956 | 3.51 | 0.43 | 1.81 | 5.97 |
Lactose | 53,956 | 5.17 | 0.27 | 2.88 | 5.93 |
Health | |||||
SCC, 103 mL−1 | 53,956 | 251.96 | 853 | 1 | 9974 |
SCS 1, score | 53,956 | 1.93 | 1.76 | −2 | 5 |
Macrominerals, mg/kg milk | |||||
Ca | 53,956 | 1213.78 | 177.32 | 704.00 | 1957.92 |
Mg | 53,956 | 116.63 | 18.24 | 55.95 | 170.10 |
P | 53,956 | 1077.25 | 159.20 | 554.03 | 1521.42 |
K | 53,956 | 1674.38 | 264.27 | 784.93 | 3101.79 |
Na | 53,956 | 530.78 | 122.14 | 125.24 | 1392.37 |
Trace minerals, mg/kg milk | |||||
Zn | 53,956 | 5.19 | 1.02 | 2.13 | 10.93 |
Sr | 53,956 | 0.90 | 0.19 | 0.12 | 1.85 |
Item | Parity | DIM | Calving Season | Sample Season | SCS |
---|---|---|---|---|---|
Milk yield, kg/d | 232.74 *** | 515.29 *** | 8.83 *** | 770.89 *** | 40.48 *** |
Milk composition, % | |||||
Fat | 5.87 ** | 83.15 *** | 48.93 *** | 26.28 *** | 88.28 *** |
Protein | 14.98 *** | 370.69 *** | 21.67 *** | 1517.53 *** | 191.30 *** |
Lactose | 236.06 *** | 83.48 *** | 2.86 * | 903.67 *** | 801.70 *** |
Minerals, mg/kg | |||||
Ca | 34.12 *** | 51.34 *** | 76.65 *** | 39,680.59 *** | 90.71 *** |
Mg | 67.08 *** | 58.20 *** | 19.11 *** | 2374.79 *** | 40.68 *** |
P | 136.59 *** | 49.63 *** | 30.84 *** | 2195.95 *** | 32.72 *** |
K | 26.35 *** | 28.74 *** | 11.26 *** | 4486.39 *** | 8.54 *** |
Na | 103.71 *** | 87.60 *** | 5.99 *** | 300.49 *** | 895.34 *** |
Trace minerals, mg/kg | |||||
Zn | 27.63 *** | 124.88 *** | 29.25 *** | 4998.77 *** | 24.46 *** |
Sr | 55.81 *** | 245.83 *** | 31.14 *** | 3431.94 *** | 1.84 |
Parity | Sample Season | Calving Season | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Trait | 1 | 2 | ≥3 | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter |
Ca | 1246.52 c | 1249.48 b | 1255.62 a | 1390.89 a | 1059.68 d | 1185.68 c | 1365.91 b | 1247.98 b | 1242.97 c | 1250.53 b | 1260.68 a |
P | 1073.09 a | 1045.71 b | 1046.40 b | 1056.45 c | 958.71 d | 1068.67 b | 1136.44 a | 1051.66 b | 1051.57 b | 1066.41 a | 1050.63 b |
K | 1711.78 a | 1691.76 b | 1694.94 b | 1753.95 b | 1613.82 c | 1570.78 d | 1859.40 a | 1703.46 a | 1692.76 b | 1706.63 a | 1695.10 b |
Na | 583.62 c | 593.01 b | 602.75 a | 599.70 b | 573.61 d | 612.54 a | 586.66 c | 589.51 b | 594.56 a | 594.37 a | 594.06 a |
Mg | 118.05 a | 115.74 b | 116.22 b | 114.42 c | 106.46 d | 118.96 b | 126.82 a | 116.21 b | 116.67 b | 117.66 a | 116.13 b |
Zn | 5.21 a | 5.13 c | 5.16 b | 4.87 c | 4.89 c | 5.92 a | 5.00 b | 5.15 b | 5.23 a | 5.15 b | 5.15 b |
Sr | 0.89 c | 0.90 b | 0.91 a | 0.83 d | 0.84 c | 1.02 a | 0.93 b | 0.89 c | 0.92 a | 0.91 b | 0.90 b |
Item | Ca | Fat | Pro | TS | MY |
---|---|---|---|---|---|
mg/kg | % | % | % | kg | |
All herd average | 1213.78 ± 177.32 | 4.11 ± 1.08 | 3.51 ± 0.43 | 13.27. ± 1.3 | 30.44 ± 14.13 |
Parity ≥ 3 | 1224.22 ± 185.97 c | 4.04 ± 1.11 e | 3.46 ± 0.42 b | 13.11 ± 1.32 d | 29.42 ± 16.18 c |
Calving season = winter | 1249.85 ± 191.50 b | 4.14 ± 1.07 c | 3.46 ± 0.43 b | 13.25 ± 1.26 b c | 28.23 ± 13.07 d |
DIM ≤ 35 | 1226.25 ± 190.37 c | 4.40 ± 1.18 a | 3.43 ± 0.44 c | 13.51 ± 1.38 a | 32.11 ± 14.78 a |
Sample season = spring | 1376.61 ± 143.84 a | 4.26 ± 1.01 b | 3.36 ± 0.37 d | 13.24 ± 1.17 c | 26.97 ± 12.61 e |
SCS < 4 | 1209.99 ± 174.09 d | 4.09 ± 1.06 d | 3.50 ± 0.42 a | 13.27 ± 1.28 b | 30.732 ± 14.13 b |
Item | Ca < 1200 (Fresh Milk Group) | 1200 ≤ Ca < 1300 (High-Calcium Fresh Milk Group) | 1300 ≤ Ca (High-End Fresh Milk Group) |
---|---|---|---|
n = 28,140 | n = 6816 | n = 19,580 | |
Minerals, mg/kg | |||
Ca | 1065.01 ± 66.37 c | 1249.96 ± 29.66 b | 1415.00 ± 90.45 a |
K | 1555.86 ± 192.51 c | 1732.81 ± 294.18 b | 1824.38 ± 259.35 a |
Na | 528.00 ± 94.98 b | 521.60 ± 107.81 c | 537.97 ± 156.36 a |
Mg | 113.77 ± 15.76 c | 114.36 ± 21.96 b | 121.52 ± 19.09 a |
P | 1055.64 ± 157.39 c | 1076.15 ± 179.36 b | 1108.68 ± 148.80 a |
Zn | 5.56 ± 0.84 a | 4.91 ± 1.12 b | 4.75 ± 1.01 c |
Sr | 0.95 ± 0.18 a | 0.86 ± 0.18 b | 0.85 ± 0.19 c |
Milk composition, % | |||
Fat | 4.06 ± 1.05 c | 4.14 ± 1.09 b | 4.17 ± 1.13 a |
Pro | 3.46 ± 0.49 b | 3.47 ± 0.38 b | 3.51 ± 0.43 a |
TS | 13.23 ± 1.28 b | 13.30 ± 1.44 a | 13.31 ± 2.57 a |
Milk yield, kg/d | 33.21 ± 13.72 a | 28.23 ± 13.64 b | 27.24 ± 14.07 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yang, Z.; Li, Y.; Fan, Y.; Chu, C.; Wang, H.; Amantuer, A.; Cao, L.; Hu, B.; Abula, Z.; et al. Mineral Profiles Characteristics in Milk from Dairy Cows in Xinjiang, China, and Production Plan for Season-Dependent High-Calcium Milk Sources. Foods 2025, 14, 1841. https://doi.org/10.3390/foods14111841
Liu L, Yang Z, Li Y, Fan Y, Chu C, Wang H, Amantuer A, Cao L, Hu B, Abula Z, et al. Mineral Profiles Characteristics in Milk from Dairy Cows in Xinjiang, China, and Production Plan for Season-Dependent High-Calcium Milk Sources. Foods. 2025; 14(11):1841. https://doi.org/10.3390/foods14111841
Chicago/Turabian StyleLiu, Li, Zhuo Yang, Yongqing Li, Yikai Fan, Chu Chu, Haitong Wang, Ayihumaer Amantuer, Lijun Cao, Bo Hu, Zunongjiang Abula, and et al. 2025. "Mineral Profiles Characteristics in Milk from Dairy Cows in Xinjiang, China, and Production Plan for Season-Dependent High-Calcium Milk Sources" Foods 14, no. 11: 1841. https://doi.org/10.3390/foods14111841
APA StyleLiu, L., Yang, Z., Li, Y., Fan, Y., Chu, C., Wang, H., Amantuer, A., Cao, L., Hu, B., Abula, Z., Zuo, B., Huang, J., & Zhang, S. (2025). Mineral Profiles Characteristics in Milk from Dairy Cows in Xinjiang, China, and Production Plan for Season-Dependent High-Calcium Milk Sources. Foods, 14(11), 1841. https://doi.org/10.3390/foods14111841