The Journey of Artificial Intelligence in Food Authentication: From Label Attribute to Fraud Detection
Abstract
:1. Introduction
2. A General Overview of AI in Food Authenticity Assessment
3. AI as an Effective Tool for Food Classification
3.1. Honey
3.2. Oils
3.3. Fruit Juices
3.4. Dairy Products
3.5. Meat
4. Application of AI in Food Adulteration Detection
4.1. Honey
4.2. Oils
4.3. Fruit Juices
4.4. Dairy Products
4.5. Meat
5. Image Processing
5.1. Honey
5.2. Oils
5.3. Dairy Products
5.4. Meat
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Meenu, M.; Kurade, C.; Neelapu, B.C.; Kalra, S.; Ramaswamy, H.S.; Yu, Y. A concise review on food quality assessment using digital image processing. Trends Food Sci. Technol. 2021, 118, 106–124. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.; He, Y. Application of deep learning in food: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar] [CrossRef]
- Majcher, M.A.; Kaczmarek, A.; Klensporf-Pawlik, D.; Pikul, J.; Jeleń, H.H. SPME-MS-based electronic nose as a tool for determination of authenticity of PDO cheese, Oscypek. Food Anal. Methods 2015, 8, 2211–2217. [Google Scholar] [CrossRef]
- Gao, X.; Fan, D.; Li, W.; Zhang, X.; Ye, Z.; Meng, Y.; Liu, T.C.Y. Rapid quantification of the adulteration of pomegranate juices by Raman spectroscopy and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 302, 123014. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Barea-Sepúlveda, M.; Ruiz-Rodríguez, A.; Álvarez, J.Á.; Ferreiro-González, M.; Palma, M. Rapid Detection and quantification of adulterants in fruit juices using machine learning tools and spectroscopy data. Sensors. 2022, 22, 3852. [Google Scholar] [CrossRef]
- Berghian-Grosan, C.; Magdas, D.A. Raman spectroscopy and machine-learning for edible oils evaluation. Talanta 2020, 218, 121176. [Google Scholar] [CrossRef]
- Tata, A.; Massaro, A.; Damiani, T.; Piro, R.; Dall’Asta, C.; Suman, M. Detection of soft-refined oils in extra virgin olive oil using data fusion approaches for LC-MS, GC-IMS and FGC-Enose techniques: The winning synergy of GC-IMS and FGC-Enose. Food Control 2022, 133, 108645. [Google Scholar] [CrossRef]
- Berghian-Grosan, C.; Hategan, A.R.; David, M.; Magdas, D.A. Untargeted metabolomic analysis of honey mixtures: Discrimination opportunities based on ATR-FTIR data and machine learning algorithms. Microchem. J. 2023, 188, 108458. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Z.; Tian, R.; Shang, Z.; Liu, H. Identification and quantification of counterfeit sesame oil by 3D fluorescence spectroscopy and convolutional neural network. Food Chem. 2020, 311, 125882. [Google Scholar] [CrossRef]
- Loddo, A.; Di Ruberto, C.; Armano, G.; Manconi, A. Automatic Monitoring Cheese Ripeness Using Computer Vision and Artificial Intelligence. IEEE Access 2022, 10, 122612–122626. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [Google Scholar] [CrossRef]
- European Parliament. Report on the Food Crisis, Fraud in the Food Chain and the Control Thereof. A7-0434/2013, PE519.759v03-00. Available online: https://www.europarl.europa.eu/doceo/document/A-7-2013-0434_EN.html (accessed on 13 April 2025).
- Das, P.; Altemimi, A.B.; Nath, P.C.; Katyal, M.; Kesavan, R.K.; Rustagi, S.; Panda, J.; Avula, S.K.; Nayak, P.K.; Mohanta, Y.K. Recent advances on artificial intelligence-based approaches for food adulteration and fraud detection in the food industry: Challenges and opportunities. Food Chem. 2024, 468, 142439. [Google Scholar] [CrossRef]
- Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Biancolillo, A.; Cropotova, J.; Galanakis, C.M.; Jambrak, A.R.; et al. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Crit. Rev. Food Sci. Nutr. 2023, 63, 6547–6563. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence—A Modern Approach; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Stanimirova, I.; Daszykowski, M. Exploratory analysis of metabolomic data. In Comprehensive Analytical Chemistry; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 227–264. [Google Scholar]
- Deng, Z.; Wang, T.; Zheng, Y.; Zhang, W.; Yun, Y.-H. Deep Learning in Food Authenticity: Recent Advances and Future Trends. Trends Food Sci. Technol. 2024, 144, 104344. [Google Scholar] [CrossRef]
- Nayak, J.; Vakula, K.; Dinesh, P.; Naik, B.; Pelusi, D. Intelligent food processing: Journey from artificial neural network to deep learning. Comput. Sci. Rev. 2020, 38, 100297. [Google Scholar] [CrossRef]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chapter Ten-Chemometric Methods for Classification and Feature Selection. In Comprehensive Analytical Chemistry; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 265–299. [Google Scholar] [CrossRef]
- Rainio, O.; Teuho, J.; Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 2024, 14, 6086. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.K. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Jiménez-Carvelo, A.M.; González-Casado, A.; Bagur-González, M.G.; Cuadros-Rodríguez, L. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity—A review. Food Res. Int. 2019, 122, 25–39. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, T.; Zhou, J.; Chen, L. Application of stable isotopic and elemental composition combined with random forest algorithm for the botanical classification of Chinese honey. J. Food Compos. Anal. 2022, 110, 104565. [Google Scholar] [CrossRef]
- Gok, S.; Severcan, M.; Goormaghtigh, E.; Kandemir, I.; Severcan, F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 2015, 170, 234–240. [Google Scholar] [CrossRef]
- Bisutti, V.; Merlanti, R.; Serva, L.; Lucatello, L.; Mirisola, M.; Balzan, S.; Tenti, S.; Fontana, F.; Trevisan, G.; Montanucci, L.; et al. Multivariate and machine learning approaches for honey botanical origin authentication using near infrared spectroscopy. J. Near Infrared Spectrosc. 2019, 27, 65–74. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Berghian-Grosan, C.; Molnar, C.M. Challenges and a step forward in honey classification based on Raman spectroscopy. Food Control 2021, 123, 107769. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Sun, X.; Wang, X.; Xu, B.; Wang, X.; Ma, F.; Zhang, Q.; Ding, X. Classification and Adulteration Detection of Vegetable Oils Based on Fatty Acid Profiles. J. Agric. Food Chem. 2014, 62, 8745–8751. [Google Scholar] [CrossRef]
- dos Santos, V.R.; Goncalves, V.; Deng, P.; Ribeiro, A.C.; Teigao, M.M.; Dias, B.; Pinto, I.M.; Gallo, J.; Peng, W.K. Novel time-domain NMR-based traits for rapid, label-free olive oils profiling. npj Sci. Food 2022, 6, 59. [Google Scholar] [CrossRef]
- Skiada, V.; Katsaris, P.; Kambouris, M.E.; Gkisakis, V.; Manoussopoulos, Y. Classification of olive cultivars by machine learning based on olive oil chemical composition. Food Chem. 2023, 429, 136793. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of sugar and organic acid of fruit juices: A comparative study and implication for authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Tewari, J.C.; Dixit, V.; Cho, B.K.; Malik, K.A. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 71, 1119–1127. [Google Scholar] [CrossRef]
- Wang, Y.T.; Ren, H.B.; Liang, W.Y.; Jin, X.; Yuan, Q.; Liu, Z.R.; Chen, D.M.; Zhang, Y.H. A novel approach to temperature-dependent thermal processing authentication for milk by infrared spectroscopy coupled with machine learning. J. Food Eng. 2021, 311, 110740. [Google Scholar] [CrossRef]
- de Andrade, B.M.; Margalho, L.P.; Batista, D.B.; Lucena, I.O.; Kamimura, B.A.; Balthazar, C.F.; de Gois, J.S. Chemometric classification of Brazilian artisanal cheeses from different regions according to major and trace elements by ICP-OES. J. Food Compos. Anal. 2022, 109, 104519. [Google Scholar] [CrossRef]
- He, Q.; Yang, M.; Chen, X.; Yan, X.; Li, Y.; He, M.; Liu, T.; Chen, F.; Zhang, F. Differentiation between fresh and frozen–thawed meat using rapid evaporative ionization mass spectrometry: The case of beef muscle. J. Agric. Food Chem. 2021, 69, 5709–5724. [Google Scholar] [CrossRef]
- Cristea, G.; Voica, C.; Feher, I.; Puscas, R.; Magdas, D.A. Isotopic and elemental characterization of Romanian pork meat in corroboration with advanced chemometric methods: A first exploratory study. Meat Sci. 2022, 189, 108825. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef]
- Schellenberg, A.; Chmielus, S.; Schlicht, C.; Camin, F.; Perini, M.; Bontempo, L.; Horacek, M. Multielement stable isotope ratios (H, C, N, S) of honey from different European regions. Food Chem. 2010, 121, 770–777. [Google Scholar] [CrossRef]
- Magdas, D.A.; Guyon, F.; Puscas, R.; Vigouroux, A.; Gaillard, L.; Dehelean, A.; Feher, I.; Cristea, G. Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chem. 2021, 334, 127599. [Google Scholar] [CrossRef]
- Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and elemental composition of selected types of Italian honey. Measurement 2017, 98, 283–289. [Google Scholar] [CrossRef]
- Chudzinska, M.; Baralkiewicz, D. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food Chem. Toxicol. 2011, 49, 2741–2749. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Salouros, H.; Prasad, S. Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci. Rep. 2018, 8, 14639. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Louppis, A.P.; Badeka, A.; Papastephanou, C.; Kontominas, M.G. Nutritional aspects and botanical origin recognition of Mediterranean honeys based on the “mineral imprint’’with the application of supervised and non-supervised statistical techniques. Eur. Food Res. Technol. 2019, 245, 1939–1949. [Google Scholar] [CrossRef]
- Chen, H.; Fan, C.; Chang, Q.; Pang, G.; Hu, X.; Lu, M.; Wang, W. Chemometric determination of the botanical origin for Chinese honeys on the basis of mineral elements determined by ICP-MS. J. Agric. Food Chem. 2014, 62, 2443–2448. [Google Scholar] [CrossRef]
- Batista, B.L.; Da Silva, L.R.; Rocha, B.A.; Rodrigues, J.L.; Berretta-Silva, A.A.; Bonates, T.O.; Gomes, V.S.; Barbosa, R.M.; Barbosa, F. Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Res. Int. 2012, 49, 209–215. [Google Scholar] [CrossRef]
- Hategan, A.R.; Puscas, R.; Cristea, G.; Dehelean, A.; Guyon, F.; Molnar, A.J.; Mirel, V.; Magdas, D.A. Opportunities and constraints in applying artificial neural networks (ANNs) in food authentication. Honey—A case study. Appl. Sci. 2021, 11, 6723. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Ye, Z.; Zhao, J.; Xue, X.; Vander Heyden, Y.; Sun, Q. Classification of Chinese honeys according to their floral origin by near infrared spectroscopy. Food Chem. 2012, 135, 338–342. [Google Scholar] [CrossRef]
- David, M.; Hategan, A.R.; Berghian-Grosan, C.; Magdas, D.A. The development of honey recognition models based on the association between ATR-IR spectroscopy and advanced statistical tools. Int. J. Mol. Sci. 2022, 23, 9977. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S. Botanical authentication of honeys based on Raman spectra. J. Food Meas. Charact. 2018, 12, 545–554. [Google Scholar] [CrossRef]
- Lenhardt, L.; Zeković, I.; Dramićanin, T.; Tešić, Ž.; Milojković-Opsenica, D.; Dramićanin, M.D. Authentication of the botanical origin of unifloral honey by infrared spectroscopy coupled with support vector machine algorithm. Phys. Scr. 2014, 2014, 014042. [Google Scholar] [CrossRef]
- Hao, S.; Li, J.; Liu, X.; Yuan, J.; Yuan, W.; Tian, Y.; Xuan, H. Authentication of acacia honey using fluorescence spectroscopy. Food Control 2021, 130, 108327. [Google Scholar] [CrossRef]
- He, C.; Liu, Y.; Liu, H.; Zheng, X.; Shen, G.; Feng, J. Compositional identification and authentication of Chinese honeys by 1H NMR combined with multivariate analysis. Food Res. Int. 2020, 130, 108936. [Google Scholar] [CrossRef]
- Spiteri, M.; Rogers, K.M.; Jamin, E.; Thomas, F.; Guyader, S.; Lees, M.; Rutledge, D.N. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem. 2017, 217, 766–772. [Google Scholar] [CrossRef]
- Maione, C.; Barbosa Jr, F.; Barbosa, R.M. Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Comput. Electron. Agric. 2019, 157, 436–446. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, L.; Liu, F.; Zhou, F.; Peng, J.; Sun, M. Fast classification of geographical origins of honey based on laser-induced breakdown spectroscopy and multivariate analysis. Sensors 2020, 20, 1878. [Google Scholar] [CrossRef]
- Minaei, S.; Shafiee, S.; Polder, G.; Moghadam-Charkari, N.; van Ruth, S.; Barzegar, M.; Kuś, P.M. VIS/NIR imaging application for honey floral origin determination. Infrared Phys. Technol. 2017, 86, 218–225. [Google Scholar] [CrossRef]
- Willenberg, I.; Matthaus, B. Authenticity of Edible Oils-Heading for New Methods. Eur. J. Lipid Sci. Technol. 2019, 121, 1900021. [Google Scholar] [CrossRef]
- Giacomelli, L.M.; Mattea, M.; Ceballos, C.D. Analysis and characterization of edible oils by chemometric methods. J. Am. Oil Chem. Soc. 2006, 83, 303–308. [Google Scholar] [CrossRef]
- Zou, M.-Q.; Zhang, X.-F.; Qi, X.-F.; Ma, H.-L.; Dong, Y.; Liu, C.-W.; Guo, X.; Wang, H. Rapid authentication of olive oil adulteration by Raman spectrometry. J. Agric. Food Chem. 2009, 57, 6001–6006. [Google Scholar] [CrossRef]
- Nunes, C.A. Vibrational spectroscopy and chemometrics to assess authenticity, adulteration and intrinsic quality parameters of edible oils and fats. Food Res. Int. 2014, 60, 255–261. [Google Scholar] [CrossRef]
- Rohman, A. The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review. Appl. Spectrosc. Rev. 2017, 52, 589–604. [Google Scholar] [CrossRef]
- Ye, Q.; Meng, X. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics. Food Chem. 2022, 385, 132661. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Sun, X.; Mao, J.; Ma, F.; Ding, X.; Zhang, Q. One-class classification based authentication of peanut oils by fatty acid profiles. RSC Adv. 2015, 5, 85046–85051. [Google Scholar] [CrossRef]
- Xing, C.; Yuan, X.; Wu, X.; Shao, X.; Yuan, J.; Yan, W. Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography. LWT—Food Sci. Technol. 2019, 108, 437–445. [Google Scholar] [CrossRef]
- Kenar, A.; Çiçek, B.; Arslan, F.N.; Akin, G.; Elmas, S.N.K.; Yilmaz, I. Electron impact–mass spectrometry fingerprinting and chemometrics for rapid assessment of authenticity of edible oils based on fatty acid profiling. Food Anal. Methods 2019, 12, 1369–1381. [Google Scholar] [CrossRef]
- Geng, D.; Chen, X.; Lu, D.; Chen, B. Discrimination of different edible vegetable oils based on GC-IMS and SIMCA. CyTA—J. Food 2023, 21, 49–56. [Google Scholar] [CrossRef]
- Tu, A.; Du, Z.; Qu, S. Rapid profiling of triacylglycerols for identifying authenticity of edible oils using supercritical fluid chromatography-quadruple time-of-flight mass spectrometry combined with chemometric tools. Anal. Methods 2016, 8, 4226–4238. [Google Scholar] [CrossRef]
- Salivo, S. Extra-Virgin Olive Oil Authentication: Triacylglycerol Profiling and Machine Learning Using the Shimadzu MALDI-8020/MALDI-8030 and eMSTAT SolutionTM. Available online: https://www.an.shimadzu.com/rs/119-VAD-470/images/food_nl_08_extra_virgin_olive_oil_authentication.pdf?utm_source=WebsiteNL (accessed on 11 April 2025).
- Zhao, H.; Zhan, Y.; Xu, Z.; Nduwamungu, J.J.; Zhou, Y.; Powers, R.; Xu, C. The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration. Food Chem. 2022, 373, 131471. [Google Scholar] [CrossRef]
- Francelin, R.A.; Gomide, F.A.C.; Lancas, F.M. Use of artificial neural networks for the classification of vegetable oils after GC analysis. Chromatographia 1993, 35, 160–166. [Google Scholar] [CrossRef]
- Hou, X.; Wang, G.; Wang, X.; Ge, X.; Fan, Y.; Nie, S. Convolutional neural network-based approach for classification of edible oils using low-field nuclear magnetic resonance. J. Food Compos. Anal. 2020, 92, 103566. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, I.; Iglesias-Otero, M.A.; Esteki, M.; Moldes, O.A.; Mejuto, J.C.; Simal-Gandara, J. A critical review on the use of artificial neural networks in olive oil production, characterization and authentication. Crit. Rev. Food Sci. Nutr. 2018, 59, 1913–1926. [Google Scholar] [CrossRef]
- Rummel, S.; Hoelzl, S.; Horn, P.; Rossmann, A.; Schlicht, C. The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices. Food Chem. 2010, 118, 890–900. [Google Scholar] [CrossRef]
- Magdas, D.A.; Dehelean, A.; Puscas, R. Isotopic and elemental determination in some Romanian apple fruit juices. Sci. World J. 2012, 2012, 878242. [Google Scholar] [CrossRef]
- Wistaff, E.A.; Beller, S.; Schmid, A.; Neville, J.J.; Nietner, T. Chemometric analysis of amino acid profiles for detection of fruit juice adulterations–Application to verify authenticity of blood orange juice. Food Chem. 2021, 343, 128452. [Google Scholar] [CrossRef]
- Brendel, R.; Schwolow, S.; Rohn, S.; Weller, P. Volatilomic profiling of citrus juices by dual-detection HS-GC-MS-IMS and machine learning—An alternative authentication approach. J. Agric. Food Chem. 2021, 69, 1727–1738. [Google Scholar] [CrossRef]
- Ruggiero, L.; Fontanella, M.C.; Amalfitano, C.; Beone, G.M.; Adamo, P. Provenance discrimination of Sorrento lemon with Protected Geographical Indication (PGI) by multi-elemental fingerprinting. Food Chem. 2021, 362, 130168. [Google Scholar] [CrossRef]
- Dehelean, A.; Magdas, D.A. Analysis of mineral and heavy metal content of some commercial fruit juices by inductively coupled plasma mass spectrometry. Sci. World J. 2013, 2013, 215423. [Google Scholar] [CrossRef]
- Bian, H.; Sheng, L.; Yao, H.; Ji, R.; Yu, Y.; Chen, R.; Wei, D.; Han, Y. Application of fluorescence spectroscopy in classifying apple juice according to the variety. Optik 2021, 231, 166361. [Google Scholar] [CrossRef]
- Duarte, I.F.; Barros, A.; Delgadillo, I.; Almeida, C.; Gil, A.M. Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening. J. Agric. Food Chem. 2002, 50, 3104–3111. [Google Scholar] [CrossRef]
- Gestal, M.; Gómez-Carracedo, M.P.; Andrade, J.M.; Dorado, J.; Fernández, E.; Prada, D.; Pazos, A. Classification of apple beverages using artificial neural networks with previous variable selection. Anal. Chim. Acta 2004, 524, 225–234. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, J.; Gao, L. Discrimination and characterization of strawberry juice based on electronic nose and tongue: Comparison of different juice processing approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62, 6426–6434. [Google Scholar] [CrossRef]
- Ciosek, P.; Brzózka, Z.; Wróblewski, W.; Martinelli, E.; Di Natale, C.; D’Amico, A. Direct and two-stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue—Effect of supervised feature extraction. Talanta 2005, 67, 590–596. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Guéguen, L.; Palacios, C.; Shearer, M.J.; Weaver, C.M. Minerals and vitamins in bone health: The potential value of dietary enhancement. Br. J. Nutr. 2009, 101, 1581–1596. [Google Scholar] [CrossRef]
- Rozenberg, S.; Body, J.J.; Bruyere, O.; Bergmann, P.; Brandi, M.L.; Cooper, C.; Devogelaer, J.P.; Gielen, E.; Goemaere, S.; Kaufman, J.M.; et al. Effects of dairy products consumption on health: Benefits and beliefs—A commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2015, 98, 1–17. [Google Scholar] [CrossRef]
- Cattaneo, S.; Masotti, F.; Pellegrino, L. Effects of overprocessing on heat damage of UHT milk. Eur. Food Res. Technol. 2008, 226, 1099–1106. [Google Scholar] [CrossRef]
- Yazgan, N.N.; Genis, H.E.; Bulat, T.; Topcu, A.; Durna, S.; Yetisemiyen, A.; Boyaci, I.H. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. J. Sci. Food Agric. 2020, 100, 4756–4765. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Hu, Q.; Wang, Z.; Chen, X. Discrimination of thermal treated bovine milk using MALDI-TOF MS coupled with machine learning. Food Control 2022, 142, 109224. [Google Scholar] [CrossRef]
- dos Santos Pereira, E.V.; de Sousa Fernandes, D.D.; de Araújo, M.C.U.; Diniz, P.H.G.D.; Maciel, M.I.S. Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms. LWT 2020, 127, 109427. [Google Scholar] [CrossRef]
- Tsakalidou, E.; Papadimitriou, K. Non-Bovine Milk and Milk Products, 1st ed.; Elsevier Academic Press: London, UK, 2016. [Google Scholar] [CrossRef]
- Trimboli, F.; Costanzo, N.; Lopreiato, V.; Ceniti, C.; Morittu, V.M.; Spina, A.; Britti, D. Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis. J. Dairy Sci. 2019, 102, 5962–5970. [Google Scholar] [CrossRef]
- Zhang, H.; Abdallah, M.F.; Zhang, J.; Yu, Y.; Zhao, Q.; Tang, C.; Zhang, J. Comprehensive quantitation of multi-signature peptides originating from casein for the discrimination of milk from eight different animal species using LC-HRMS with stable isotope labeled peptides. Food Chem. 2022, 390, 133126. [Google Scholar] [CrossRef]
- Pappas, C.S.; Tarantilis, P.A.; Moschopoulou, E.; Moatsou, G.; Kandarakis, I.; Polissiou, M.G. Identification and differentiation of goat and sheep milk based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) using cluster analysis. Food Chem. 2008, 106, 1271–1277. [Google Scholar] [CrossRef]
- Sen, S.; Dundar, Z.; Uncu, O.; Ozen, B. Potential of Fourier-transform infrared spectroscopy in adulteration detection and quality assessment in buffalo and goat milks. Microchem. J. 2021, 166, 106207. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Kokkinofta, R.; Theocharis, C.R. Chemometric analysis combined with FTIR spectroscopy of milk and Halloumi cheese samples according to species’ origin. Food Sci. Nutr. 2020, 8, 3262–3273. [Google Scholar] [CrossRef]
- Nanou, E.; Pliatsika, N.; Stefas, D.; Couris, S. Identification of the animal origin of milk via Laser-Induced Breakdown Spectroscopy. Food Control 2023, 154, 110007. [Google Scholar] [CrossRef]
- European Commission 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022PC0134R(01) (accessed on 11 April 2025).
- Karoui, R.; DeBaerdemaeker, J. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
- Di Donato, F.; Biancolillo, A.; Mazzulli, D.; Rossi, L.; D’Archivio, A.A. HS-SPME/GC–MS volatile fraction determination and chemometrics for the discrimination of typical Italian Pecorino cheeses. Microchem. J. 2021, 165, 106133. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.T.; Bachmann, H.P.; Schmidt, R.S. Classification of cheese varieties from Switzerland using machine learning methods: Free volatile carboxylic acids. LWT 2023, 184, 115095. [Google Scholar] [CrossRef]
- Barile, D.; Coisson, J.D.; Arlorio, M.; Rinaldi, M.J.F.C. Identification of production area of Ossolano Italian cheese with chemometric complex approach. Food Control 2006, 17, 197–206. [Google Scholar] [CrossRef]
- Boerrigter-Eenling, R.; Alewijn, M.; Weesepoel, Y.; van Ruth, S. New approaches towards discrimination of fresh/chilled and frozen/thawed chicken breasts by HADH activity determination: Customized slope fitting and chemometrics. Meat Sci. 2017, 126, 43–49. [Google Scholar] [CrossRef]
- Bellete, B.; Flori, P.; Hafid, J.; Raberin, H.; Sung, R.T.M. Influence of the quantity of nonspecific DNA and repeated freezing and thawing of samples on the quantification of DNA by the Light Cycler®®. J. Microbiol. Methods 2003, 55, 213–219. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W.; Xie, Y.; Ozaki, Y. Non-destructive prediction of texture of frozen/thaw raw beef by Raman spectroscopy. J. Food Eng. 2020, 266, 109693. [Google Scholar] [CrossRef]
- Velioğlu, H.M.; Temiz, H.T.; Boyaci, I.H. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis. Food Chem. 2015, 172, 283–290. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Mafra, I.; Beatriz, M.; Oliveira, P.P. Quantitative detection of poultry meat adulteration with pork by a duplex PCR assay. Meat Sci. 2010, 85, 531–536. [Google Scholar] [CrossRef]
- Mamani-Linares, L.W.; Gallo, C.; Alomar, D. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Sci. 2012, 90, 378–385. [Google Scholar] [CrossRef] [PubMed]
- NolascoPerez, I.M.; Badaró, A.T.; Barbon Jr, S.; Barbon, A.P.A.; Pollonio, M.A.R.; Barbin, D.F. Classification of chicken parts using a portable near-infrared (NIR) spectrophotometer and machine learning. Appl. Spectrosc. 2018, 72, 1774–1780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tu, T.; Tang, X.; Zhao, S.; Qie, M.; Chen, A.; Yang, S. Authentication of organic pork and identification of geographical origins of pork in four regions of China by combined analysis of stable isotopes and multi-elements. Meat Sci. 2020, 165, 108129. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zeng, J.; Lin, L.; Zhang, J.; Zhu, J.; Yao, L.; Wang, S.; Du, J.; Wu, Z. Mid-infrared spectra feature extraction and visualization by convolutional neural network for sugar adulteration identification of honey and real-world application. LWT—Food Sci. Technol. 2021, 140, 110856. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Niu, Y.; Gao, S.; Liu, H.; Zhang, Y. Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 274, 121133. [Google Scholar] [CrossRef]
- Rachineni, K.; Kakita, V.M.R.; Awasthi, N.P.; Shirke, V.S.; Hosur, R.V.; Shukla, S.C. Identifying type of sugar adulterants in honey: Combined application of NMR spectroscopy and supervised machine learning classification. Curr. Res. Food Sci. 2022, 5, 272–277. [Google Scholar] [CrossRef]
- Magdas, D.A.; Berghian-Grosan, C. Botanical honey recognition and quantitative mixture detection based on Raman spectroscopy and machine learning. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122433. [Google Scholar] [CrossRef]
- Lu, C.-H.; Li, B.-Q.; Jing, Q.; Pei, D.; Huang, X.-Y. A classification and identification model of extra virgin olive oil adulterated with other edible oils based on pigment compositions and support vector machine. Food Chem. 2023, 420, 136161. [Google Scholar] [CrossRef]
- Lim, K.; Pan, K.; Yu, Z.; Xiao, R.H. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures. Nat. Commun. 2020, 11, 5353. [Google Scholar] [CrossRef]
- Lyu, W.; Yuan, B.; Liu, S.; Simon, J.E.; Wu, Q. Assessment of lemon juice adulteration by targeted screening using LC-UV-MS and untargeted screening using UHPLC-QTOF/MS with machine learning. Food Chem. 2022, 373, 131424. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Punta-Sánchez, I.; González-de-Peredo, A.V.; Ruiz-Rodríguez, A.; Ferreiro-González, M.; Palma, M. Rapid and automated method for detecting and quantifying adulterations in high-quality honey using Vis-NIRs in combination with machine learning. Foods 2023, 12, 2491. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.; Melgani, F.; Bazi, Y. One-dimensional convolutional neural networks for spectroscopic signal regression. J. Chemom. 2018, 32, e2977. [Google Scholar] [CrossRef]
- AlHichri, H.; Bazi, Y.; Alajlan, N.; Melgani, F.; Malek, S.; Yager, R.R. A novel fusion approach based on induced ordered weighted averaging operators for chemometric data analysis. J. Chemom. 2013, 27, 447–456. [Google Scholar] [CrossRef]
- Lima, J.S.; Ribeiro, D.C.; Neto, H.A.; Campos, S.V.; Leite, M.O.; Fortini, M.E.D.R.; Fonseca, L.M. A machine learning proposal method to detect milk tainted with cheese whey. J. Dairy Sci. 2022, 105, 9496–9508. [Google Scholar] [CrossRef]
- Balabin, R.M.; Smirnov, S.V. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta 2011, 85, 562–568. [Google Scholar] [CrossRef]
- Cui, Y.; Lu, W.; Xue, J.; Ge, L.; Yin, X.; Jian, S.; Shen, Q. Machine learning-guided REIMS pattern recognition of non-dairy cream, milk fat cream and whipping cream for fraudulence identification. Food Chem. 2023, 429, 136986. [Google Scholar] [CrossRef]
- Pu, K.; Qiu, J.; Tong, Y.; Liu, B.; Cheng, Z.; Chen, S.; Ni, W.X.; Lin, Y.; Ng, K.M. Integration of non-targeted proteomics mass spectrometry with machine learning for screening cooked beef adulterated samples. J. Agric. Food Chem. 2023, 71, 2173–2182. [Google Scholar] [CrossRef]
- Brar, D.S.; Pant, K.; Krishnan, R.; Kaur, S.; Rasane, P.; Nanda, V.; Saxena, S.; Gautam, S. A comprehensive review on unethical honey: Validation by emerging techniques. Food Control 2023, 145, 109482. [Google Scholar] [CrossRef]
- Hu, S.; Li, H.; Chen, C.; Chen, C.; Zhao, D.; Dong, B.; Lv, X.; Kai, Z.; Xie, Y. Raman spectroscopy combined with machine learning algorithms to detect adulterated Suichang native honey. Sci. Rep. 2022, 12, 3456. [Google Scholar] [CrossRef]
- Cert, A.; Moreda, W.; Perez-Camino, M.C. Chromatographic analysis of minor constituents in vegetable oils. J. Chromatogr. A 2000, 881, 131–148. [Google Scholar] [CrossRef]
- Abbas, O.; Baeten, V. Advances in the Identification of Adulterated Vegetable Oils. In Advances in Food Authenticity Testing; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2016; pp. 519–542. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Application of the E-nose machine system to detect adulterations in mixed edible oils using chemometrics methods. J. Food Process. Preserv. 2020, 44, e14696. [Google Scholar] [CrossRef]
- Firouz, M.S.; Rashvand, M.; Omid, M. Rapid identification and quantification of sesame oils adulteration using low frequency dielectric spectroscopy combined with chemometrics. LWT—Food Sci. Technol. 2021, 140, 110736. [Google Scholar] [CrossRef]
- de Santana, F.B.; Neto, W.B.; Poppi, R.J. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection. Food Chem. 2019, 293, 323–332. [Google Scholar] [CrossRef]
- Jha, S.N.; Jaiswal, P.; Grewal, M.K.; Gupta, M.; Bhardwaj, R. Detection of adulterants and contaminants in liquid foods—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1662–1684. [Google Scholar] [CrossRef]
- Wang, Z.; Jablonski, J.E. Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics. Food Addit. Contam. Part A 2016, 33, 560–573. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products: A review. Trends Food Sci. Technol. 2015, 46, 27–48. [Google Scholar] [CrossRef]
- Singh, P.; Gandhi, N. Milk preservatives and adulterants: Processing, regulatory and safety issues. Food Rev. Int. 2015, 31, 236–261. [Google Scholar] [CrossRef]
- Neto, H.A.; Tavares, W.L.; Ribeiro, D.C.; Alves, R.C.; Fonseca, L.M.; Campos, S.V. On the utilization of deep and ensemble learning to detect milk adulteration. BioData Min. 2019, 12, 13. [Google Scholar] [CrossRef]
- Farah, J.S.; Cavalcanti, R.N.; Guimarães, J.T.; Balthazar, C.F.; Coimbra, P.T.; Pimentel, T.C.; Cruz, A.G. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. Food Control 2021, 121, 107585. [Google Scholar] [CrossRef]
- Ayari, F.; Mirzaee-Ghaleh, E.; Rabbani, H.; Heidarbeigi, K. Detection of the adulteration in pure cow ghee by electronic nose method (case study: Sunflower oil and cow body fat). Int. J. Food Prop. 2018, 21, 1670–1679. [Google Scholar] [CrossRef]
- Tripathy, S.; Reddy, M.S.; Vanjari, S.R.K.; Jana, S.; Singh, S.G. A step towards miniaturized milk adulteration detection system: Smartphone-based accurate pH sensing using electrospun halochromic nanofibers. Food Anal. Methods 2019, 12, 612–624. [Google Scholar] [CrossRef]
- Sowmya, N.; Ponnusamy, V. Development of spectroscopic sensor system for an IoT application of adulteration identification on milk using machine learning. IEEE Access 2021, 9, 53979–53995. [Google Scholar] [CrossRef]
- Górska-Horczyczak, E.; Horczyczak, M.; Guzek, D.; Wojtasik-Kalinowska, I.; Wierzbicka, A. Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork. Food Control 2017, 73, 237–244. [Google Scholar] [CrossRef]
- Meza-Márquez, O.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Sci. 2010, 86, 511–519. [Google Scholar] [CrossRef]
- Kim, G.D.; Seo, J.K.; Yum, H.W.; Jeong, J.Y.; Yang, H.S. Protein markers for discrimination of meat species in raw beef, pork and poultry and their mixtures. Food Chem. 2017, 217, 163–170. [Google Scholar] [CrossRef]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT—Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Uysal, R.S.; Temiz, T.; Shendi, E.G.; Yadegari, R.J.; Rishkan, M.M.; Velioglu, H.M.; Tamer, U.; Ozay, D.S.; Vural, H. A rapid method for determination of the origin of meat and meat products based on the extracted fat spectra by using of Raman spectroscopy and chemometric method. Eur. Food Res. Technol. 2014, 238, 845–852. [Google Scholar] [CrossRef]
- Izquierdo, M.; Lastra-Mejías, M.; González-Flores, E.; Cancilla, J.C.; Perez, M.; Torrecilla, J.S. Convolutional decoding of thermographic images to locate and quantify honey adulterations. Talanta 2020, 209, 120500. [Google Scholar] [CrossRef]
- Pradana-Lopez, S.; Perez-Calabuig, A.M.; Cancilla, J.C.; Garcia-Rodriguez, Y.; Torrecilla, J.S. Convolutional capture of the expansion of extra virgin olive oil droplets to quantify adulteration. Food Chem. 2022, 368, 130765. [Google Scholar] [CrossRef]
- Izquierdo, M.; Lastra-Mejías, M.; González-Flores, E.; Cancilla, J.C.; Aroca-Santos, R.; Torrecilla, J.S. Deep thermal imaging to compute the adulteration state of extra virgin olive oil. Comput. Electron. Agric. 2020, 171, 105290. [Google Scholar] [CrossRef]
- Vega-Márquez, B.; Carminati, A.; Jurado-Campos, N.; Martín-Gómez, A.; Arce-Jiménez, L.; Rubio-Escudero, C.; Nepomuceno-Chamorro, I.A. Convolutional neural networks for olive oil classification. In From Bioinspired Systems and Biomedical Applications to Machine Learning; Vicente, J.M.F., Álvarez-Sánchez, J.R., De la Paz López, F., Moreo, J.T., Adeli, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–145. [Google Scholar]
- Visconti, L.G.; Vargas, S.M.; Rodríguez, M.S.; Di Anibal, C.V.; Delrieux, C. Determination of grated hard cheese adulteration by digital image analysis and multivariate analysis. Int. Dairy J. 2023, 138, 105539. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.; Yan, W.Q.; Klette, R. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images. J. Imaging 2018, 4, 63. [Google Scholar] [CrossRef]
- Rady, A.M.; Adedeji, A.; Watson, N.J. Feasibility of utilizing color imaging and machine learning for adulteration detection in minced meat. J. Agric. Food Res. 2021, 6, 100251. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat. Food Control 2020, 117, 107332. [Google Scholar] [CrossRef]
- Ayaz, H.; Ahmad, M.; Mazzara, M.; Sohaib, A. Hyperspectral imaging for minced meat classification using nonlinear deep features. Appl. Sci. 2020, 10, 7783. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.R. Floral markers in honey of various botanical and geographic origins: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 620–634. [Google Scholar] [CrossRef]
- Sevillano, V.; Aznarte, J.L. Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. PLoS ONE 2018, 13, e0201807. [Google Scholar] [CrossRef]
- Valiente, J.M.; Juan-Borrás, M.; López-García, F.; Escriche, I. Automatic pollen recognition using convolutional neural networks: The case of the main pollens present in Spanish citrus and rosemary honey. J. Food Compos. Anal. 2023, 123, 105605. [Google Scholar] [CrossRef]
- Vega-Márquez, B.; Nepomuceno-Chamorro, I.; Jurado-Campos, N.; Rubio-Escudero, C. Deep learning techniques to improve the performance of olive oil classification. Front. Chem. 2020, 7, 929. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y.; Oshita, S.; Martín, J.F.G. Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control 2018, 84, 165–176. [Google Scholar] [CrossRef]
- Dixit, Y.; Al-Sarayreh, M.; Craigie, C.R.; Reis, M.M. A global calibration model for prediction of intramuscular fat and pH in red meat using hyperspectral imaging. Meat Sci. 2021, 181, 108405. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ma, J.; Sun, D.W.; Pu, H.; Gao, W.; Qu, J.; Zeng, X.A. Prediction of color and pH of salted porcine meats using visible and near-infrared hyperspectral imaging. Food Bioprocess Technol. 2014, 7, 3100–3108. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging. Food Chem. 2013, 141, 389–396. [Google Scholar] [CrossRef]
- Velásquez, L.; Cruz-Tirado, J.P.; Siche, R.; Quevedo, R. An application based on the decision tree to classify the marbling of beef by hyperspectral imaging. Meat Sci. 2017, 133, 43–50. [Google Scholar] [CrossRef]
- Qiao, J.; Ngadi, M.O.; Wang, N.; Gariépy, C.; Prasher, S.O. Pork quality and marbling level assessment using a hyperspectral imaging system. J. Food Eng. 2007, 83, 10–16. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 2016, 170, 8–15. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, W.; Zhuang, H.; Yoon, S.C.; Yang, Y.; Zhao, X. Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef. Food Anal. Methods 2019, 12, 2205–2215. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.; Cheng, J.; Fu, L.; Wang, S.; Xu, M. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Ropodi, A.I.; Pavlidis, D.E.; Mohareb, F.; Panagou, E.Z.; Nychas, G.J. Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. Food Res. Int. 2015, 67, 12–18. [Google Scholar] [CrossRef]
- Naganathan, G.K.; Cluff, K.; Samal, A.; Calkins, C.R.; Jones, D.D.; Lorenzen, C.L.; Subbiah, J. Hyperspectral imaging of ribeye muscle on hanging beef carcasses for tenderness assessment. Comput. Electron. Agric. 2015, 116, 55–64. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, D.W.; Pu, H.; Wei, Q. Characterization of myofibrils cold structural deformation degrees of frozen pork using hyperspectral imaging coupled with spectral angle mapping algorithm. Food Chem. 2018, 239, 1001–1008. [Google Scholar] [CrossRef]
Product | Aim | Experimental Data | Processing Method(s) | Performance | Ref. |
---|---|---|---|---|---|
Honey | Classifying six varieties of Chinese honey (linden, sunflower, vetch, rape, acacia, and jujube) | IRMS, ICP-MS | RF, SVM, LDA, CART | The prediction accuracy of the RF model (96.5%) was better than SVM (91.5%), LDA (88.8%), and CART (82.1%) | [26] |
Discriminating the botanical origin of Anatolian honey samples | ATR-FTIR | PCA, HC | Sample discrimination was achieved successfully | [27] | |
Botanical origin prediction of honey samples | NIR | PLS-DA, SVM | PLS-DA: around 80% accuracy, SVM: above 90% accuracy for honey classification | [28] | |
Honey authenticity control with respect to its geographical and botanical origin | Raman spectroscopy | SIMCA, SVM | SIMCA model provided a better classification of honeys | [29] | |
Oil | Authenticity detection of five edible oils | GC-MS | PCA, HCA, RF | RF correctly classified the five types of edible oils | [30] |
Classifying olive oils samples and indicating the origin regions | multi-parametric time-domain NMR relaxometry | kNN, LR, NB, NN, RF | Classification of olive oils: AUC = 0.95; tracing the regions of origin: mean AUC = 0.71 | [31] | |
Development of classification models capable of identifying cultivar origin (Greek or Italian) | GC-MS | XGboost | Sensitivity values for Coratina, Favolosa, Koroneiki, and Lianolia were 0.78, 0.67, 0.71, 0.93, and 1, respectively Specificity values were 0.93, 0.91, 0.95, 1, and 0.98, respectively | [32] | |
Fruit juices | Discrimination between apple, pear, peach, grape, sweet cherry, strawberry, and blueberry fruit juices | HPLC | PCA, LDA | Discrimination based on sugar content: LDA: 98% CV accuracy; based on organic acid content: above 94% CV accuracy; based on both: 100% CV accuracy | [33] |
Assessment of the origin of citrus fruits | fiber optic NIR spectroscopy | PLS, ANN, GA, CA | ANN and cluster analysis showed great classification power according to the variety and origin, with an R2 value greater than 0.996 | [34] | |
Milk | Discriminating the degree of heat treatment applied to milk | FTIR spectroscopy | PCA, kNN, SVM, RF, LDA | Model accuracies: 0.97 RF; above 0.9 SVM, kNN; and 0.84 LDA | [35] |
Cheese | Classifying the Brazilian artisanal cheese (BAC) according to the type and producing region | ICP-OES | ANN, kNN, RF, SVM, LVQ | For the cheese type classification, 0.82 accuracy obtained for the RF and SVM model; for production region discrimination, all classifiers obtained perfect accuracy | [36] |
Meat | Fresh and frozen–thawed beef muscle differentiation | REIMS | PCA−LDA, OPLS-DA | The discrimination of fresh and frozen−thawed meat was achieved in real-time in an above 92% accuracy | [37] |
Geographical origin, and animal diet differentiation | IRMS, ICPMS | LDA, ANN | assessment of the geographical origin of tenderloin meat samples: LDA 91.4% accuracy; ANN above 94%; feeding regime differentiation: ANN above 97% accuracy | [38] |
Product | Aim | Experimental Data | Processing Method(s) | Performance | Ref. |
---|---|---|---|---|---|
Honey | Identification of sugar addition in honey | MIR | PLS-DA, LS-SVM, CNN | Overall improved average accuracy of the CNN model (97%), over LS-SVM (91%), and PLS-DA (79%) | [112] |
Identification and quantification of honey samples adulterated with high-fructose corn, rice, maltose, and blended syrup | Raman spectroscopy | PLS-DA, PCA-LDA, kNN, CNN | CNN led to a better performance compared with chemometrics (classification by adulteration concentration with a 97% accuracy and a 94.79% accuracy for simultaneously detecting honey adulterated with any type of syrup) | [113] | |
Adulteration detection of three major sugar adulterants: brown rice, corn, and jaggery syrup | NMR | LR, DNN, LGBN | 99.8%, 99.3%, and 98.7% accuracies for the LR, DNN, and LGBM classifiers, respectively | [114] | |
Recognition and quantitative mixture detection | IR or Raman spectroscopy | PCA, PLS-DA, SVM | The acacia–colza mixture detection model allowed an accuracy of 88.6% (kNN); the mixture of colza–acacia obtained an accuracy of 94.4% (LDA); the linden–sunflower honey blend obtained a 90.7% (LDA) accuracy | [9,115] | |
Oil | Detection and quantification of several edible oil adulterated with sunflower oil | Raman spectroscopy | ML algorithms | Best oil adulteration model accuracy of 88.9% on the kNN model | [7] |
Adulteration identification of extra virgin olive oil (EVOO) mixed with rapeseed and corn oil | HPLC | SVM | Identification and classification of different types of edible oils model had an overall accuracy of 94.44%; SVM model can achieve accurate classification of oil binary blends with a 1% adulteration level | [116] | |
Oil fatty acid composition determination and mixture adulteration detection | GC-FID | GMM | The supervised DL model could predict a purity between 91 and 99.5% | [117] | |
Fruit Juice | To distinguish between authentic and adulterated lemon juices | HPLC/UV–Vis /MS, UPLC-QTOF/MS methods | PCA, LDA, PLS-DA, SVM, RF, NB, LR | LDA: 66.7%, LR 93%, NB: 83%, RF: 84%, and SVM: 96.7% on the CV set (SVM and RF: 100% accuracy for both the training and testing set) | [118] |
Detection and quantification of juice-to-juice adulteration (apple, pineapple, and orange juices adulterated with grape juice) | FTIR | LDA, SVM, RF | Detection of adulteration with good results for all tested methods (accuracies above 97%) | [119] | |
Determination of the concentration of saccharose in orange juice samples | NIR | 1D and 2D CNN | The PLSR method achieved a better result (NMSE: 0.1626) compared to GPR and SVR; 1D-CNN model NMRSE value of 0.1569 | [120,121] | |
Milk | Detection and quantification of cheese whey adulteration in milk | FTIR | CART, MPNN | Best CART model obtained a high performance with an accuracy of 0.962 and precision, sensitivity, and specificity of 0.965, 0.943, and 0.975 | [122] |
Melamine detection in complex dairy matrixes (infant formula, milk powder, and liquid milk) | FTIR | Poly-PLS, ANN, LS-SVM | Limit of detection below 1 ppm could be reached with a multivariate algorithm; the Poly-PLS method was only effective for low concentrations of melamine in milk samples | [123] | |
Fat Cream | Detection of non-dairy cream in milk fat cream adulteration | REIMS | PCA, OPLS-DA, NN, DT, SVM | OPLS-DA limited in accurately determining or quantitatively analyzing traces of non-dairy cream adulteration; ML algorithms obtained accuracies above 99.0% | [124] |
Meat | Detection of beef adulterated with chicken, duck, or pork | MALDI-TOFMS | PLS-DA, XGBoost | Reliable and robust XGBoost classification models with a mean accuracy of 97.4% | [125] |
Product | Aim | Experimental Data | AI Method(s) | Performance | Ref. |
---|---|---|---|---|---|
Honey | Detect commonly elusive rice syrup in honey in concentrations as low as 1% in weight as well as quantify it | Infrared images from a thermographic camera | CNN | 95% accuracy for adulteration detection (testing); 92% accuracy for quantification (testing) | [147] |
Oil | EVOOs classification, detection, and quantification of adulterated samples for each individual EVOO; a global version of the previous models combining all EVOOs into a single quantifying CNN | Images from optical microscope | CNN | 98.3% accuracy on test set 96.8% accuracy on test set 96.7% accuracy on test set | [148] |
Identification and quantification of counterfeit sesame oil | 3D fluorescence spectrum | CNN (feature extraction), SVM (classification), PLS (quantification) | 100% accuracy (SVM); RMSEP between 0.99% and 2.20% (PLSR) on test sets | [10] | |
Identification and quantification of adulterated EVOO containing refined olive oil, olive pomace oil, or sunflower oil | Thermographic images | CNN | 97–100% accuracy score on test sets | [149] | |
Discriminate among EVOO, VOO, and LOO samples | Images acquired through GC-IMS | CNN | 82.8% accuracy on an independent test set | [150] | |
Cheese | Cheese-ripening monitoring | Images acquired by a photo camera | CNN, SVM, kNN, RF, DT, ANN | 98% accuracy by associating CNN (feature extraction) and SVM (classification) | [11] |
Adulteration identification in grated cheese with higher levels of additives | Digital images | SVM, RF, LR, DT, kNN | 81.7% accuracy score (SVM) | [151] | |
Meat | Detecting adulteration in red-meat products | Line-scanning images of lamb, beef, or pork muscles (HSI) | SVM, CNNs | 94.44% accuracy (CNN) | [152] |
Detection of plant and animal adulterants in minced meat | RGB color imaging | CV, SVM | 100% accuracy in detecting meat adulteration; 76.1% accuracy in identifying the type of adulteration; 98% r-value for quantifying it | [153] | |
Red-meat classification (i.e., lamb, beef, and pork) | HSI | 3D-CNN | Overall accuracy of 96.9% and 97.1% for NIR and Vis snapshot HSI, respectively | [154] | |
Differentiating distinct minced meat types (beef, mutton, and chicken). | HSI | CNN | 94% accuracy | [155] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magdas, D.A.; Hategan, A.R.; David, M.; Berghian-Grosan, C. The Journey of Artificial Intelligence in Food Authentication: From Label Attribute to Fraud Detection. Foods 2025, 14, 1808. https://doi.org/10.3390/foods14101808
Magdas DA, Hategan AR, David M, Berghian-Grosan C. The Journey of Artificial Intelligence in Food Authentication: From Label Attribute to Fraud Detection. Foods. 2025; 14(10):1808. https://doi.org/10.3390/foods14101808
Chicago/Turabian StyleMagdas, Dana Alina, Ariana Raluca Hategan, Maria David, and Camelia Berghian-Grosan. 2025. "The Journey of Artificial Intelligence in Food Authentication: From Label Attribute to Fraud Detection" Foods 14, no. 10: 1808. https://doi.org/10.3390/foods14101808
APA StyleMagdas, D. A., Hategan, A. R., David, M., & Berghian-Grosan, C. (2025). The Journey of Artificial Intelligence in Food Authentication: From Label Attribute to Fraud Detection. Foods, 14(10), 1808. https://doi.org/10.3390/foods14101808