Evaluation of Chronic Dietary Risk of Trifloxystrobin and Bupirimate in Cucumber Based on Supervised Residue Test
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Field Experiments and Sampling
2.3. Extraction and Cleanup of Samples
2.4. Instrument Analysis
2.5. Method Validation and Quality Control
2.6. Chronic (Long-Term) Intake Risk Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Validation of Analytical Methods
3.2. Terminal Residues of Trifloxystrobin in Cucumbers
3.3. Chronic Dietary Intake Rrisk Assessment
3.4. Limitations and Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javid, H.; Fatima, U.; Rukhsar, A.; Hussain, S.; Bibi, S.; Bodlah, M.A.; Shahzad, H.H.; Dilshad, M.; Waqas, M.; Sharif, A. Phytochemical, Nutritional and Medicinal Profile of Cucumis sativus L. (Cucumber). Food Sci. Eng. 2024, 5, 358–377. [Google Scholar] [CrossRef]
- Abbey, B.; Nwachoko, N.; Ikiroma, G. Nutritional Value of Cucumber Cultivated in Three Selected States of Nigeria. Biochem. Anal. Biochem. 2017, 6, 328. [Google Scholar]
- Trecate, L.; Sedláková, B.; Mieslerová, B.; Manstretta, V.; Rossi, V.; Lebeda, A. Effect of Temperature on Infection and Development of Powdery Mildew on Cucumber. Plant Pathol. 2019, 68, 1165–1178. [Google Scholar] [CrossRef]
- Cerkauskas, R.F.; Ferguson, G. Management of Powdery Mildew (Podosphaera xanthii) on Greenhouse Cucumber in Ontario. Can. J. Plant Pathol. 2014, 36, 22–37. [Google Scholar] [CrossRef]
- Chen, J.; Loo, B.; Ray, C. Determination of Trifloxystrobin and Its Metabolites in Hawaii Soils by Ase−Lc-Ms/Ms. J. Agric. Food Chem. 2008, 56, 1829–1837. [Google Scholar] [CrossRef]
- Fitzpatrick, L.J.; Dean, J.R. Pressurised Fluid Extraction of Bupirimate and Ethirimol from Aged Soils. J. Chromatogr. A 2001, 918, 429–433. [Google Scholar] [CrossRef]
- Authority, E.F.S.; Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G.; Brancato, A.; Brocca, D.; Bura, L.; Byers, H.; Chiusolo, A. Peer Review of the Pesticide Risk Assessment of the Active Substance Trifloxystrobin. Efsa J. 2017, 15, e04989. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. National Food Safety Standard-Maximum Residue Limits for Pesticides in Food; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2021.
- Cui, K.; Guan, S.; Liang, J.; Fang, L.P.; Ding, R.Y.; Wang, J.; Li, T.; Dong, Z.; Wu, X.H.; Zheng, Y.Q. Dissipation, Metabolism, Accumulation, Processing and Risk Assessment of Fluopyram and Trifloxystrobin in Cucumbers and Cowpeas from Cultivation to Consumption. Foods 2023, 12, 2082. [Google Scholar] [CrossRef]
- Wang, C.; Wu, J.X.; Zhang, Y.; Wang, K.; Zhang, H.Y. Field Dissipation of Trifloxystrobin and Its Metabolite Trifloxystrobin Acid in Soil and Apples. Environ. Monit. Assess. 2015, 187, 4100. [Google Scholar] [CrossRef]
- Camara, M.A.; Cermeno, S.; Martinez, G.; Oliva, J. Removal Residues of Pesticides in Apricot, Peach and Orange Processed and Dietary Exposure Assessment. Food Chem. 2020, 325, 126936. [Google Scholar] [CrossRef]
- Dedola, F.; Cabizza, M.; Satta, M. Determination of 28 Pesticides Applied on Two Tomato Cultivars with a Different Surface/Weight Ratio of the Berries, Using a Multiresidue Gc-Ms/Ms Method. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2014, 49, 671–678. [Google Scholar] [CrossRef]
- Sharma, K.K.; Tripathy, V.; Rao, C.S.; Bhushan, V.S.; Reddy, K.N.; Jyot, G.; Sahoo, S.K.; Singh, B.; Mandal, K.; Banerjee, H.; et al. Persistence, Dissipation, and Risk Assessment of a Combination Formulation of Trifloxystrobin and Tebuconazole Fungicides in/on Tomato. Regul. Toxicol. Pharmacol. 2019, 108, 104471. [Google Scholar] [CrossRef] [PubMed]
- Mandal, K.; Singh, R.; Sharma, S.; Kataria, D. Dissipation and Kinetic Studies of Fluopyram and Trifloxystrobin in Chilli. J. Food Compos. Anal. 2023, 115, 105008. [Google Scholar] [CrossRef]
- Aktas, S.; Aminzai, M.T.; Tegin, I.; Yabalak, E.; Acar, O. Determination of Pesticide Residues in Varieties of Pepper Sold at Different Periods and Provinces in Turkey and Investigation of Their Adverse Effects on Human Health and the Environment. Int. J. Environ. Health Res. 2024, 34, 2491–2503. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.S.; Qin, X.X.; Liu, Z.Y.; Chen, D.; Yu, W.W.; Zhang, K.K.; Hu, D.Y. Determination, Residue and Risk Assessment of Trifloxystrobin, Trifloxystrobin Acid and Tebuconazole in Chinese Rice Consumption. Biomed. Chromatogr. 2020, 34, e4694. [Google Scholar] [CrossRef]
- Kang, D.; Zhang, H.Z.; Chen, Y.L.; Wang, F.; Shi, L.H.; Hu, D.; Zhang, K.K. Simultaneous Determination of Difenocona-zole, Trifloxystrobin and Its Metabolite Trifloxystrobin Acid Residues in Watermelon under Field Conditions by Gc-Ms/Ms. Biomed. Chromatogr. 2017, 31, e3987. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Qi, X.X.; Wang, X.Y.; Liang, L.; Zuo, B.J. Residue Dissipation and Dietary Risk Assessment of Trifloxystrobin, Trifloxystrobin Acid, and Tebuconazole in Wheat under Field Conditions. Int. J. Environ. Anal. Chem. 2022, 102, 1598–1612. [Google Scholar] [CrossRef]
- Kaur, S.; Takkar, R.; Bhardwaj, U.; Kumar, R.; Battu, R.S.; Singh, B. Dissipation Kinetics of Trifloxystrobin and Tebucon-azole on Wheat Leaves and Their Harvest Time Residues in Wheat Grains and Soil. Bull. Environ. Contam. Toxicol. 2012, 89, 606–610. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, D.L.; Wu, Y.M.; Wang, L.; Fan, W.D.; Gao, Y.; Wang, W.L.; Su, L.; Li, B.X.; Mu, W.; et al. Determination of the Dissipation Dynamics and Terminal Residue of Bupirimate and Its Metabolites in Cucumber by Quechers-Based Uplc-Ms/Ms. ACS Omega 2023, 8, 23975–23981. [Google Scholar] [CrossRef]
- Bi, Y.Y.; Han, L.J.; Qin, F.Y.; Song, S.Y.; Lv, X.R.; Dong, Q.; Qiao, C.K.; Ren, B. Method Validation, Residue Analysis and Dietary Risk Assessment of Trifloxystrobin and Trifloxystrobin Acid in Milk, Eggs and Pork. Biomed. Chromatogr. 2022, 36, e5342. [Google Scholar] [CrossRef]
- Litoriya, N.S.; Patel, J.H.; Thakor, P.M.; Chauhan, N.R.; Chawla, S.; Shah, P.G. Behavior of Trifloxystrobin and Propineb as Combination Product in Tomato (Solanum lycopersicum) and Their Risk Assessment for Human Health. Biomed. Chromatogr. 2023, 37, e5660. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guideline for the Testing of Pesticide Residues in Crops; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2018.
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. 2021. Available online: https://eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 29 December 2024).
- Xiao, J.; Xu, X.; Wang, F.; Ma, J.; Liao, M.; Shi, Y.; Fang, Q.; Cao, H. Analysis of Exposure to Pesticide Residues from Traditional Chinese Medicine. J. Hazard. Mater. 2019, 365, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, W.; Jian, Q.; Song, W.; Zheng, Z.; Wang, D.; Liu, X. Residues and Dissipation Kinetics of Triazole Fungicides Difenoconazole and Propiconazole in Wheat and Soil in Chinese Fields. Food Chem. 2015, 168, 396–403. [Google Scholar] [CrossRef]
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An Overview of Matrix Effects in Liquid Chromatography–Mass Spectrometry. Mass Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and Comprehensive Strategy for Reducing Matrix Effects in Lc/Ms/Ms Analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef]
- Paramasivam, M.; Selvi, C.; Deepa, M.; Jayaprakash, S.A.; Chandrasekaran, S. Simultaneous Determination of Tebucon-azole, Trifloxystrobin, and Its Metabolite Trifloxystrobin Acid Residues in Gherkin under Field Conditions. J. Sep. Sci. 2015, 38, 958–964. [Google Scholar] [CrossRef]
- Qiao, X.W. A Critical Review of Dietary Risk Assessment of Pesticide Residues in Foods. Chin. J. Pestic. Sci. 2023, 25, 12–22. [Google Scholar]
- Li, K.; Chen, W.; Deng, P.; Luo, X.; Xiong, Z.; Li, Z.; Ning, Y.; Liu, Y.; Chen, A. Dissipation, Residues and Risk Assessment of Lufenuron during Kumquat Growing and Processing. J. Food Compos. Anal. 2022, 112, 104643. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, J. Residue Levels of Chlorantraniliprole and Clothianidin in Rice and Sugar Cane and Chronic Dietary Risk Assessment for Different Populations. Microchem. J. 2022, 183, 107936. [Google Scholar] [CrossRef]
- Zhang, B.; Pan, X.; Yang, Y.; Dong, F.; Xu, J.; Wu, X.; Zheng, Y. Dissipation Dynamics and Comparative Dietary Exposure Assessment of Mefentrifluconazole in Rice. Ecotoxicol. Environ. Saf. 2023, 250, 114482. [Google Scholar] [CrossRef]
Location (Province) | Cultivation | Soil Properties | Climate | |||
---|---|---|---|---|---|---|
pH | OMC (%) | CEC (cmol/kg) | Average Temperature (°C) | Rainfall (mm) | ||
Shenyang (Liaoning province) | Greenhouse | 6.9 | 3.1 | 19 | 24.2 | 0 |
Huhehaote (Neimeng province) | Greenhouse | 8.0 | 3.9 | 12.5 | 20.5 | 0 |
Jinzhong (Shanxi province) | Field | 8.4 | 1.7 | 21.2 | 25.82 | 23.6 |
Beijing | Greenhouse | 7.9 | 1.2 | 13.8 | / | 0 |
Qingdao (Shandong Province) | Greenhouse | 6.5 | 1.2 | 17 | 20.7 | 98 |
Taian (Shandong province) | Field | 6.9 | 0.98 | 9.3 | 27.4 | / |
Xinxiang (Henan province) | Field | 7.9 | 1.3 | 7.7 | / | / |
Nanjing (Jiangsu province) | Greenhouse | 6.4 | 1.92 | 14.9 | 21.8 | 0.9 |
Lichuan (Hubei province) | Field | 5.4 | / | / | / | / |
Kunming (Yunnan province) | Greenhouse | 5.5 | 4.5 | 26.3 | 20.8 | 39 |
Chongqing | Field | 6.5 | 2.3 | 18.5 | 20.9 | 41.5 |
Foshan (Guangdong province) | Field | 5.9 | 1.02 | 3.9 | 28.5 | 131.2 |
Compound | Structural Formula | Matrix | Calibration Equation | Coefficient of Determination (R2) | Matrix Effects (ME, %) |
---|---|---|---|---|---|
Trifloxystrobin | Solvent | y = 1.139 × 108x + 7.02 × 105 | 0.9900 | - | |
Cucumber | y = 8.414 × 107x + 8.46 × 104 | 0.9998 | −26.11% | ||
Trifloxystrobin acid | Solvent | y = 1.968 × 106x + 3918 | 0.9977 | - | |
Cucumber | y = 1.192 × 106x − 2521 | 0.9948 | −39.46% | ||
Bupirimate | Solvent | y = 3.637 × 107x − 23,820 | 0.9957 | - | |
Cucumber | y = 2.554 × 107x − 7.19 × 104 | 0.9909 | −29.77% | ||
Ethirimol | Solvent | y = 3.587 × 107x − 7.24 × 104 | 0.9939 | - | |
Cucumber | y = 2.777 × 107x − 8.51 × 104 | 0.9905 | −22.57% |
Pesticides | 0.01 mg/kg | 0.1 mg/kg | 0.3 mg/kg | 1 mg/kg | ||||
---|---|---|---|---|---|---|---|---|
Recoveries (%) | RSD (%) | Recoveries (%) | RSD (%) | Recoveries (%) | RSD (%) | Recoveries (%) | RSD (%) | |
Trifloxystrobin | 101 | 1.2 | 97 | 1.3 | 100 | 1.6 | 103 | 4.0 |
Trifloxystrobin acid | 85 | 4.7 | 91 | 2.3 | 86 | 2.6 | 97 | 4.8 |
Bupirimate | 101 | 1.1 | 96 | 1.7 | 98 | 1.8 | 103 | 3.6 |
Ethirimol | 102 | 3.2 | 93 | 2.3 | 97 | 2.9 | 98 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Wang, W.; Ren, P.; Qin, S.; Li, J.; Cao, J. Evaluation of Chronic Dietary Risk of Trifloxystrobin and Bupirimate in Cucumber Based on Supervised Residue Test. Foods 2025, 14, 1745. https://doi.org/10.3390/foods14101745
Qi Y, Wang W, Ren P, Qin S, Li J, Cao J. Evaluation of Chronic Dietary Risk of Trifloxystrobin and Bupirimate in Cucumber Based on Supervised Residue Test. Foods. 2025; 14(10):1745. https://doi.org/10.3390/foods14101745
Chicago/Turabian StyleQi, Yanli, Weirong Wang, Pengcheng Ren, Shu Qin, Jindong Li, and Junli Cao. 2025. "Evaluation of Chronic Dietary Risk of Trifloxystrobin and Bupirimate in Cucumber Based on Supervised Residue Test" Foods 14, no. 10: 1745. https://doi.org/10.3390/foods14101745
APA StyleQi, Y., Wang, W., Ren, P., Qin, S., Li, J., & Cao, J. (2025). Evaluation of Chronic Dietary Risk of Trifloxystrobin and Bupirimate in Cucumber Based on Supervised Residue Test. Foods, 14(10), 1745. https://doi.org/10.3390/foods14101745