Development and Functional Characterization of Monoclonal Antibodies for Botulinum Neurotoxin Serotype A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Expression and Purification of BoNT Recombinant Proteins
2.2. Animal Immunization and Single-B-Cell Isolation via Flow Cytometry
2.3. Amplification and Expression of Rabbit Monoclonal Antibodies Against BoNT/A
2.4. Biolayer Interferometry Analysis of Monoclonal Antibody Binding Kinetics
2.5. Preparation of Time-Resolved Fluorescence Microsphere-Labeled Antibodies
2.6. Preparation of Time-Resolved Fluoroimmunoassay Strips
2.7. Time-Resolved Fluoroimmunoassay Test Procedure
2.8. Evaluation of Time-Resolved Fluoroimmunoassay
2.9. Preparation of Simulated Samples
2.10. Statistical Analysis
3. Results
3.1. Design of Nested PCR Primers for Amplifying the Variable Regions of Rabbit Antibodies
3.2. Expression of Recombinant BoNT/A Protein, Single-B-Cell Isolation, and Antibody Variable Region Amplification
3.3. Purification and Screening of High-Affinity Rabbit Monoclonal Antibodies Against BoNT/A
3.4. Screening of Paired Antibodies Using TRFIA
3.5. Sensitivity, Specificity, and Reproducibility of TRFIA
3.6. Detection of Simulated Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wheeler, A.; Smith, H.S. Botulinum Toxins: Mechanisms of Action, Antinociception and Clinical Applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef] [PubMed]
- Miroslav, P. Botulinum Toxin as a Biological Warfare Agent: Poisoning, Diagnosis and Countermeasures. Mini Rev. Med. Chem. 2020, 20, 865–874. [Google Scholar]
- Simpson, L.L. Identification of the Major Steps in Botulinum Toxin Action. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 167–193. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Popoff, M.R. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins 2019, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Miroslav, P. Immunosensors for Assay of Toxic Biological Warfare Agents. Biosensors 2023, 13, 402. [Google Scholar] [CrossRef]
- Yu, Y.-Z.; Zhang, S.-M.; Wang, W.-B.; Du, Y.; Zhu, H.-Q.; Wang, R.-L.; Zhou, X.-W.; Lin, J.-B.; Wang, S.; Yu, W.-Y.; et al. Development and Preclinical Evaluation of a New F(Ab’) 2 Antitoxin against Botulinum Neurotoxin Serotype A. Biochimie 2010, 92, 1315–1320. [Google Scholar] [CrossRef]
- Janik, E.; Ceremuga, M.; Saluk-Bijak, J.; Bijak, M. Biological Toxins as the Potential Tools for Bioterrorism. Int. J. Mol. Sci. 2019, 20, 1181. [Google Scholar] [CrossRef]
- Barash, J.R.; Arnon, S.S. A Novel Strain of Clostridium Botulinum That Produces Type B and Type H Botulinum Toxins. J. Infect. Dis. 2014, 209, 183–191. [Google Scholar] [CrossRef]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum Toxin as a Biological Weapon: Medical and Public Health Management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef]
- Austin, J.W.; Dodds, K.L.; Blanchfield, B.; Farber, J.M. Growth and Toxin Production by Clostridium Botulinum on Inoculated Fresh-Cut Packaged Vegetables. J. Food Prot. 1998, 61, 324–328. [Google Scholar] [CrossRef]
- Riikka, K.-T.; Miia, L.; Eero, P.; Markku, N.; Hannu, K. Inhibition of Toxigenesis of Group Ii (Nonproteolytic) Clostridium Botulinum Type B in Meat Products by Using a Reduced Level of Nitrite. J. Food Prot. 2012, 75, 1346–1349. [Google Scholar]
- Altalag, A.H.; Badawee, M.A.; Hassan, S.A.; Habiballa, N.A.; Alotaibi, N.M.; Ahmed, E.A.; Aljuaid, M.N.; Almalki, M.A.; Alahmari, A.A.; Alshehri, A.A. Foodborne Botulism Outbreak with Potential New Management Options. Saudi Med. J. 2024, 45, 626–632. [Google Scholar] [CrossRef]
- Singh, A.K.; Stanker, L.H.; Sharma, S.K. Botulinum Neurotoxin: Where Are We with Detection Technologies? Crit. Rev. Microbiol. 2013, 39, 43–56. [Google Scholar] [CrossRef]
- Nepal, M.R.; Jeong, T.C. Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives. Biomol. Ther. 2020, 28, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Kohler, G.; Milstein, C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Pamela, H.; Katja, H. Generation of Murine Monoclonal Antibodies by Hybridoma Technology. J. Vis. Exp. JoVE 2017, e54832. [Google Scholar] [CrossRef]
- Alfaleh, M.A.; Alsaab, H.O.; Mahmoud, A.B.; Alkayyal, A.A.; Jones, M.L.; Mahler, S.M.; Hashem, A.M. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front. Immunol. 2020, 11, 1986. [Google Scholar] [CrossRef]
- Alessandro, P.; Annette, O. Single B Cell Technologies for Monoclonal Antibody Discovery. Trends Immunol. 2021, 42, 1143–1158. [Google Scholar]
- Wang, J.; Gao, S.; Zhang, Q.; Kang, L.; Liu, Y. Avian Eyelid Assay, a New Diagnostic Method for Detecting Botulinum Neurotoxin Serotypes a, B and E. Toxicon 2007, 49, 1019–1025. [Google Scholar] [CrossRef]
- Chen, C.R.; Su, Y.C.; Chen, H.C.; Lin, Y.C. Botulinum Toxin for Drooling in Adults with Diseases of the Central Nervous System: A Meta-Analysis. Healthcare 2023, 11, 1956. [Google Scholar] [CrossRef]
- Denys, P.; Normand, L.L.; Ghout, I.; Costa, P.; Chartier-Kastler, E.; Grise, P.; Hermieu, J.-F.; Amarenco, G.; Karsenty, G.; Saussine, C.; et al. Efficacy and Safety of Low Doses of OnabotulinumtoxinA for the Treatment of Refractory Idiopathic Overactive Bladder: A Multicentre, Double-Blind, Randomised, Placebo-Controlled Dose-Ranging Study. Eur. Urol. 2012, 61, 520–529. [Google Scholar] [CrossRef]
- Andrew, U.; Kanwarpreet, T.; Kinchit, S.; Alicia, A. Endoscopic Botox Injections in Therapy of Refractory Gastroparesis. World J. Gastrointest. Endosc. 2015, 7, 790–798. [Google Scholar]
- Svetanoff, W.J.; Lim-Beutal, I.I.P.; Wood, R.J.; Levitt, M.A.; Rentea, R.M. The Utilization of Botulinum Toxin for Hirschsprung Disease. Semin. Pediatr. Surg. 2022, 31, 151161. [Google Scholar] [CrossRef]
- Zhuang, J.; Jiang, L.; Zhou, Y.; Wang, C.; Chen, Y.; Su, X.; Wei, Q.; Zhang, Z.; Hu, J. Botulinum Toxin Injection Technique for Reducing the Masseter Size and Enhancing the Jawline. Aesthetic Surg. J. 2024, 44, NP567–NP573. [Google Scholar] [CrossRef] [PubMed]
- Komang, S.B. Botulinum Toxin (Botox) a for Reducing the Appearance of Facial Wrinkles: A Literature Review of Clinical Use and Pharmacological Aspect. Clin. Cosmet. Investig. Dermatol. 2019, 12, 223–228. [Google Scholar]
- Hobbs, R.J.; Thomas, C.A.; Halliwell, J.; Gwenin, C.D. Rapid Detection of Botulinum Neurotoxins—A Review. Toxins 2019, 11, 418. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Popoff, M.R. Recent Developments in Botulinum Neurotoxins Detection. Microorganisms 2022, 10, 1001. [Google Scholar] [CrossRef]
- Frank, G.; Sibylle, P.-W.; Marc-André, A.; Helge, B. Evaluation of Lateral Flow Assays for the Detection of Botulinum Neurotoxin Type a and Their Application in Laboratory Diagnosis of Botulism. Diagn. Microbiol. Infect. Dis. 2007, 57, 243–249. [Google Scholar]
- Chen, J.; Chen, L.; Zhang, Y.; Xiang, S.; Zhang, R.; Shen, Y.; Liao, J.; Xie, H.; Yang, J. Development of a Time-Resolved Fluorescent Microsphere Test Strip for Rapid, On-Site, and Sensitive Detection of Picoxystrobin in Vegetables. Foods 2024, 13, 423. [Google Scholar] [CrossRef]
- Babrak, L.; Lin, A.; Stanker, L.H.; McGarvey, J.; Hnasko, R. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins 2016, 8, 13. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Hua, D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. Micromachines 2024, 15, 893. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xu, X.; Wang, L.; Liu, L.; Kuang, H.; Xu, C. Rapid, on-Site Quantitative Determination of Higenamine in Functional Food Using a Time-Resolved Fluorescence Microsphere Test Strip. Food Chem. 2022, 387, 132859. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Yin, Y.; Lu, L.; Ding, H.; Wang, L.; Yu, T.; Zhu, J.J.; Zheng, X.D.; Zhang, Y.Z. Preparation of High-Affinity Rabbit Monoclonal Antibodies for Ciprofloxacin and Development of an Indirect Competitive Elisa for Residues in Milk. J. Zhejiang Univ. Sci. B 2010, 11, 812–818. [Google Scholar] [CrossRef]
- Liang, L.L.; Long, J.Y.; Zhang, X.T.; Gong, M.D.; Xu, W.B.; Wang, X.Q.; Liu, Z.Y. Preparation of Rabbit Monoclonal Antibody against T-2 Toxin and Development of Enzyme-Linked Immunosorbent Assay in Milk, Feed and Pork Samples. Microchem. J. 2024, 207, 111977. [Google Scholar] [CrossRef]
Immunizing Time (Day) | Immunizing Dose (mg) | Immunizing Mode | Immunoadjuvant |
---|---|---|---|
1 | 0.25 | Subcutaneous immunity | Complete Freund’s adjuvant |
14 | 0.5 | Muscle immunity | Incomplete Freund’s adjuvant |
28 | 1 | Muscle immunity | Incomplete Freund’s adjuvant |
42 | 1.5 | Muscle immunity | Incomplete Freund’s adjuvant |
Primer | Nucleotide Sequence (5′→3′) | |
---|---|---|
VL-F1 | ATGGACACSAGGGCCCCCACTC (S = C or G) | First PCR |
VL-R1 | GTRCTGCTGAGGTTGTAGGTA (R = A or G) | |
VH-F1 | GACTGGGCTGCGCTGGCTTCTCCT | |
VH-R1 | CATTGGTGAGGGTGCCCGAGT | |
VL-F2 | CTGCTGGGGCTCCTGCT | Second PCR |
VL-R2 | ATCCACCTYCCAGGTGACGG (Y = C or T) | |
VH-F2 | GGTCGCTGTGCTCAAAGGT | |
VH-R2 | ARGTCACGGTCACTGGCTC (R = A or G) |
Monoclonal Antibodies | Koff (1/s) | Kon (1/Ms) | KD (M) |
---|---|---|---|
2A10 | Undetectable | 5.25 × 105 | <1 × 10−12 |
1G9 | 4.69 × 10−6 | 6.64 × 105 | 7.07 × 10−12 |
2F7 | 2.40 × 10−5 | 3.80 × 105 | 6.32 × 10−11 |
1E12 | 2.97 × 10−5 | 5.32 × 105 | 5.58 × 10−11 |
1F11 | 4.62 × 10−4 | 6.37 × 105 | 7.26 × 10−10 |
2F3 | 3.13 × 10−4 | 4.50 × 105 | 6.96 × 10−10 |
2C12 | 4.63 × 10−5 | 4.14 × 105 | 1.12 × 10−10 |
2A5 | 2.99 × 10−3 | 3.92 × 105 | 7.63 × 10−9 |
2E10 | 4.89 × 10−4 | 1.52 × 105 | 3.21 × 10−9 |
2G3 | 2.84 × 10−4 | 1.86 × 105 | 1.53 × 10−9 |
Concentration (ng/mL) | Mean ± SD (n = 12) | Coefficient of Variation (CV%) |
---|---|---|
10 | 4.57 ± 0.41 | 9.02 |
1 | 0.51 ± 0.05 | 9.86 |
0.1 | 0.05 ± 0.00 | 7.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Lv, Q.; Huang, W.; Jiang, H.; Gao, S.; Li, Q.; Kong, D.; Zhao, G.; Liu, P.; Jiang, Y. Development and Functional Characterization of Monoclonal Antibodies for Botulinum Neurotoxin Serotype A. Foods 2025, 14, 1743. https://doi.org/10.3390/foods14101743
Kang J, Lv Q, Huang W, Jiang H, Gao S, Li Q, Kong D, Zhao G, Liu P, Jiang Y. Development and Functional Characterization of Monoclonal Antibodies for Botulinum Neurotoxin Serotype A. Foods. 2025; 14(10):1743. https://doi.org/10.3390/foods14101743
Chicago/Turabian StyleKang, Jingmei, Qingyu Lv, Wenhua Huang, Hua Jiang, Shan Gao, Qian Li, Decong Kong, Guofen Zhao, Peng Liu, and Yongqiang Jiang. 2025. "Development and Functional Characterization of Monoclonal Antibodies for Botulinum Neurotoxin Serotype A" Foods 14, no. 10: 1743. https://doi.org/10.3390/foods14101743
APA StyleKang, J., Lv, Q., Huang, W., Jiang, H., Gao, S., Li, Q., Kong, D., Zhao, G., Liu, P., & Jiang, Y. (2025). Development and Functional Characterization of Monoclonal Antibodies for Botulinum Neurotoxin Serotype A. Foods, 14(10), 1743. https://doi.org/10.3390/foods14101743