Two-Year Mediterranean Diet Intervention Improves Hepatic Health in MASLD Patients
Abstract
:1. Introduction
2. Methods
2.1. Participants and Study Design
- AASLD Diet (AAD) Group: Participants in this group adhered to dietary guidelines established by the American Association for the Study of Liver Diseases (AASLD), which emphasize caloric restriction to support weight loss. The target was a 3–5% reduction in body weight to alleviate hepatic steatosis, while a 7–10% reduction was recommended to improve histopathological characteristics associated with nonalcoholic steatohepatitis (NASH). The diet followed the nutritional framework outlined by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture. The composition of the diet in this intervention followed the Mediterranean diet pattern, adhering to the following guidelines: consume fresh fruits and vegetables daily, increase fiber intake through whole grains (oats, brown rice, quinoa, whole-grain bread, etc.), use vegetable oils instead of solid fats (almond oil, olive oil, flaxseed oil), limit foods and beverages containing added sugars, eliminate cakes and sweets, choose low-fat dairy products, limit salt intake, prefer skinless white meats, limit the consumption of processed meats (ham, sausages, cold cuts, etc.), and eat fish at least twice a week. The participants ate five meals throughout the day, with macronutrient proportions set at 20–35% fat, 10–35% protein, and 45–65% carbohydrates.
- Mediterranean Diet with High Meal Frequency (MD-HMF) Group: This group followed a Mediterranean dietary pattern with a structured macronutrient intake: 40–45% carbohydrates, with the majority (50–70%) derived from fiber-rich, low-glycemic sources, 30–35% fat, and 25% protein. The group adhered to the following guidelines: consume seasonal fruits and fresh vegetables daily, eat only whole grains (oats, brown rice, quinoa, whole-grain bread, etc.), use extra-virgin olive oil, limit foods and beverages containing added sugars, eliminate cakes and sweets, choose low-fat dairy products, limit salt intake, prefer skinless white meats, limit the consumption of processed meats (ham, sausages, cold cuts, etc.), consume legumes at least 4 days per week, eat oily fish 2 days per week, and consume nuts every day. Additionally, to optimize energy metabolism, participants consumed seven smaller meals per day, with the highest caloric intake concentrated in the morning hours.
- Mediterranean Diet with Physical Activity (MD-PA) Group: Participants in this group followed a calorie-controlled Mediterranean diet, with four to five meals per day, including snacks. The dietary composition was the following: 35–40% fat, distributed as 8–10% saturated fats, more than 20% monounsaturated fats, and over 10% polyunsaturated fats, while keeping cholesterol intake below 300 mg/day; approximately 20% protein; 40–45% carbohydrates, primarily sourced from low-glycemic index foods; sodium chloride intake limited to a maximum of 6 g/day (equivalent to 2.4 g of sodium); and dietary fiber intake set at a minimum of 30–35 g/day. Specifically, the guidelines followed in this group were like the previous ones: consume seasonal fruits and fresh vegetables daily, prefer whole grains (oats, brown rice, quinoa, whole-grain bread, etc.), use extra-virgin olive oil, limit foods and beverages containing added sugars, eliminate cakes and sweets, choose low-fat dairy products, limit salt intake, prefer skinless white meats, limit the consumption of processed meats (ham, sausages, cold cuts, etc.), and consume nuts every day.
2.2. Adherence to Mediterranean Diet and Diet Inflammatory Index Measurements
2.3. Anthropometrics Measurements and Chester Step Test
2.4. Blood Collection and Biochemical Parameters
2.5. Hepatic Parameters
2.6. Statistics
3. Results
3.1. Characteristics of Participants
3.2. Liver Enzyme Levels
3.3. Hepatic Health Parameters
3.4. Impact of COVID-19 on Adherence and Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitrovic, B.; Gluvic, Z.M.; Obradovic, M.; Radunovic, M.; Rizzo, M.; Banach, M.; Isenovic, E.R. Non-Alcoholic Fatty Liver Disease, Metabolic Syndrome, and Type 2 Diabetes Mellitus: Where Do We Stand Today? Arch. Med. Sci. 2022, 19, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Le, M.H.; Le, D.M.; Baez, T.C.; Wu, Y.; Ito, T.; Lee, E.Y.; Lee, K.S.; Stave, C.D.; Henry, L.; Barnett, S.D.; et al. Global Incidence of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of 63 Studies and 1,201,807 Persons. J. Hepatol. 2023, 79, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, P.; Wang, Y.; Zhu, Z. Association between Type 2 Diabetes Status and Prevalence of Liver Steatosis and Fibrosis among Adults Aged ≥40 Years. BMC Endocr. Disord. 2022, 22, 128–137. [Google Scholar] [CrossRef]
- Francque, S.M.; Procopet, B. The New Nomenclature for Fatty Liver Disease. J. Gastrointestin. Liver Dis. 2024, 33, 149–151. [Google Scholar] [CrossRef]
- Corrao, S.; Calvo, L.; Granà, W.; Scibetta, S.; Mirarchi, L.; Amodeo, S.; Falcone, F.; Argano, C. Metabolic Dysfunction-Associated Steatotic Liver Disease: A Pathophysiology and Clinical Framework to Face the Present and the Future. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103702. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Zheng, H.; Sechi, L.A.; Navarese, E.P.; Casu, G.; Vidili, G. Metabolic Dysfunction-Associated Steatotic Liver Disease and Cardiovascular Risk: A Comprehensive Review. Cardiovasc. Diabetol. 2024, 23, 346–366. [Google Scholar] [CrossRef]
- Bouzas, C.; Bibiloni, M.D.M.; Julibert, A.; Ruiz-canela, M.; Salas-salvadó, J.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Alonso-gómez, Á.M.; et al. Adherence to the Mediterranean Lifestyle and Desired Body Weight Loss in a Mediterranean Adult Population with Overweight: A PREDIMED-Plus Study. Nutrients 2020, 12, 2114. [Google Scholar] [CrossRef]
- Hassani Zadeh, S.; Mansoori, A.; Hosseinzadeh, M. Relationship between Dietary Patterns and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J. Gastroenterol. Hepatol. 2021, 36, 1470–1478. [Google Scholar] [CrossRef]
- Abassi, W.; Ouerghi, N.; Hammai, M.B.; Jebabli, N.; Feki, N.; Bouassoda, A.; Weiss, K.; Knechtle, B. Training Reduces Liver Enzyme Levels and Improves MASLD-Related Biomarkers in Overweight/Obese Girls. Nutrients 2025, 17, 164–177. [Google Scholar] [CrossRef]
- Kawanaka, M.; Kamada, Y.; Takahashi, H.; Iwaki, M.; Nishino, K.; Zhao, W.; Seko, Y.; Yoneda, M.; Kubotsu, Y.; Fujii, H.; et al. Serum Cytokeratin 18 Fragment Is an Indicator for Treating Metabolic Dysfunction-Associated Steatotic Liver Disease. Gastro. Hep. Adv. 2024, 14, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Mascaró, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Llompart, I.; Ugarriza, L.; Borràs, P.A.; Martínez, J.A.; Tur, J.A. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith Jr, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Bouzas, C.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Llompart, I.; Gámez, J.M.; Tejada, S.; Martínez, J.A.; et al. A Greater Improvement of Intrahepatic Fat Contents after 6 Months of Lifestyle Intervention Is Related to a Better Oxidative Stress and Inflammatory Status in Non-Alcoholic Fatty Liver Disease. Antioxidants 2022, 11, 1266–1282. [Google Scholar] [CrossRef]
- Clinical Trials. Gov. US National Library of Medicine. Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 25 July 2023).
- de la Iglesia, R.; Lopez-Legarrea, P.; Abete, I.; Bondia-Pons, I.; Navas-Carretero, S.; Forga, L.; Martinez, J.A.; Zulet, M.A. A new dietary strategy for long-term treatment of the metabolic syndrome is compared with the American Heart Association (AHA) guidelines: The MEtabolic Syndrome REduction in NAvarra (RESMENA) project. Br. J. Nutr. 2014, 111, 643–652. [Google Scholar] [CrossRef]
- Montemayor, S.; Bouzas, C.; Mascaró, C.M.; Casares, M.; Llompart, I.; Abete, I.; Angullo-Martinez, E.; Zulet, M.Á.; Martínez, J.A.; Tur, J.A. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 2223. [Google Scholar] [CrossRef]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Bouzas, C.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Llompart, I.; Ugarriza, L.; Martínez, J.A.; Tur, J.A.; et al. Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2022, 11, 1440–1456. [Google Scholar] [CrossRef]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Llompart, I.; Mateos, D.; Casares, M.; Ugarriza, L.; Martínez, J.A.; Tur, J.A.; Sureda, A. Mediterranean Diet Improves Plasma Biomarkers Related to Oxidative Stress and Inflammatory Process in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2023, 12, 833–850. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and Developing a Literature-Derived, Population-Based Dietary Inflammatory Index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Arellano, A.; Martínez-González, M.A.; Ramallal, R.; Salas-Salvadó, J.; Hébert, J.R.; Corella, D.; Shivappa, N.; Forga, L.; Schröder, H.; Muñoz-Bravo, C.; et al. Dietary Inflammatory Index and All-Cause Mortality in Large Cohorts: The SUN and PREDIMED Studies. Clin. Nutr. 2019, 38, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Sim, J.; Eston, R.G.; Hession, R.; Fox, R. Reliability and Validity of Measures Taken during the Chester Step Test to Predict Aerobic Power and to Prescribe Aerobic Exercise. Br. J. Sports Med. 2004, 38, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Reeder, S.B.; Sirlin, C.B. Quantification of Liver Fat with Magnetic Resonance Imaging. Magn. Reson. Imaging Clin. N. Am. 2010, 18, 337–357. [Google Scholar] [CrossRef]
- Jäger, S.; Jacobs, S.; Kröger, J.; Stefan, N.; Fritsche, A.; Weikert, C.; Boeing, H.; Schulze, M.B. Association between the Fatty Liver Index and Risk of Type 2 Diabetes in the EPIC-Potsdam Study. PLoS ONE 2015, 10, e0124749. [Google Scholar] [CrossRef]
- Segala, A.; Vezzoli, M.; Vetturi, A.; Garrafa, E.; Zanini, B.; Bottani, E.; Marullo, M.; Marconi, S.; Ricci, C.; Valerio, A. A Mediterranean Diet-Oriented Intervention Rescues Impaired Blood Cell Bioenergetics in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease. Diagnostics 2024, 14, 2041. [Google Scholar] [CrossRef]
- Zanini, B.; Benini, F.; Marullo, M.; Simonetto, A.; Rossi, A.; Cavagnoli, P.; Bonalumi, A.; Marconi, S.; Pigozzi, M.G.; Gilioli, G.; et al. Mediterranean-Oriented Dietary Intervention Is Effective to Reduce Liver Steatosis in Patients with Nonalcoholic Fatty Liver Disease: Results from an Italian Clinical Trial. Int. J. Clin. Pract. 2024, 25, 8861126. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean Diet in the Management and Prevention of Obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef]
- Pintó, X.; Fanlo-Maresma, M.; Corbella, E.; Corbella, X.; Mitjavila, M.T.; Moreno, J.J.; Casas, R.; Estruch, R.; Corella, D.; Bulló, M.; et al. A Mediterranean Diet Rich in Extra-Virgin Olive Oil Is Associated with a Reduced Prevalence of Nonalcoholic Fatty Liver Disease in Older Individuals at High Cardiovascular Risk. J. Nutr. 2019, 149, 1920–1929. [Google Scholar] [CrossRef]
- Haigh, L.; Kirk, C.; El Gendy, K.; Gallacher, J.; Errington, L.; Mathers, J.C.; Anstee, Q.M. The Effectiveness and Acceptability of Mediterranean Diet and Calorie Restriction in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis. Clin. Nutr. 2022, 41, 1913–1931. [Google Scholar] [CrossRef]
- Florkowski, M.; Abiona, E.; Frank, K.M.; Brichacek, A.L. Obesity-Associated Inflammation Countered by a Mediterranean Diet: The Role of Gut-Derived Metabolites. Front. Nutr. 2024, 11, 1392666. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wei, J.; Wang, S.; Chen, L.; Zhang, J.; Wang, N.; Tan, X. Dietary pattern modifies the risk of MASLD through metabolic signature. JHEP Rep. 2024, 6, 101133. [Google Scholar] [CrossRef]
- Currenti, W.; Losavio, F.; Quiete, S.; Alanazi, A.M.; Messina, G.; Polito, R.; Ciolli, F.; Zappalà, R.S.; Galvano, F.; Cincione, R.I. Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study. Nutrients 2023, 16, 95–109. [Google Scholar] [CrossRef]
- Zhao, Q.; Deng, Y.; Gong, R.; Chen, T.; Yang, L. Association between Dietary Inflammatory Index and Risk of Fatty Liver Disease: A Systematic Review and Meta-Analysis. Dig. Liver Dis. 2024, 56, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Medina-Remón, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventos, R.M.; Estruch, R. Polyphenol Intake from a Mediterranean Diet Decreases Inflammatory Biomarkers Related to Atherosclerosis: A Substudy of the PREDIMED Trial. Br. J. Clin. Pharmacol. 2016, 83, 114–128. [Google Scholar] [CrossRef]
- Sangouni, A.A.; Hassani Zadeh, S.; Mozaffari-Khosravi, H.; Hosseinzadeh, M. Effect of Mediterranean diet on liver enzymes; a systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2022, 128, 1231–1239. [Google Scholar] [CrossRef]
- Jamil, A.; Chivese, T.; Elshaikh, U.; Sendall, M. Efficacy of the Mediterranean diet in treating metabolic dysfunction-associated steatotic liver disease (MASLD) in children and adolescents: A systematic review and meta-analysis. BMC Public Health 2024, 24, 2701. [Google Scholar] [CrossRef]
- Katsiki, N.; Stoain, A.P.; Rizzo, M. Dietary patterns in non-alcoholic fatty liver disease (NAFLD): Stay on the straight and narrow path! Clin. Investig. Arterioscler. 2022, 34, S24–S31. [Google Scholar] [CrossRef]
- Sualeheen, A.; Tan, S.Y.; Georgousopoulou, E.; Daly, R.M.; Tierney, A.C.; Roberts, S.K.; George, E.S. Mediterranean Diet for the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease in Non-Mediterranean, Western Countries: What’s Known and What’s Needed? Nutr. Bull. 2024, 49, 444–462. [Google Scholar] [CrossRef]
- Yurtdaş, G.; Akbulut, G.; Baran, M.; Yılmaz, C. The Effects of Mediterranean Diet on Hepatic Steatosis, Oxidative Stress, and Inflammation in Adolescents with Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Pediatr. Obes. 2022, 17, e12872. [Google Scholar] [CrossRef] [PubMed]
- Houttu, V.; Boulund, U.; Troelstra, M.; Csader, S.; Stols-Gonçalves, D.; Mak, A.L.; van Dijk, A.M.; Bouts, J.; Winkelmeijer, M.; Verdoes, X.; et al. Deep phenotyping of patients with MASLD upon high-intensity interval training. JHEP Rep. 2025, 7, 101289. [Google Scholar] [CrossRef] [PubMed]
- Simancas-Racines, D.; Annunziata, G.; Verde, L.; Fascì-Spurio, F.; Reytor-González, C.; Muscogiuri, G.; Frias-Toral, E.; Barrea, L. Nutritional Strategies for Battling Obesity-Linked Liver Disease: The Role of Medical Nutritional Therapy in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Management. Curr. Obes. Rep. 2025, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.H.; Kim, J.K.; Kim, J.H.; Lee, Y.J. Fatty Liver Index as a Simple and Useful Predictor for 10-Year Cardiovascular Disease Risks Determined by Framingham Risk Score in the General Korean Population. J. Gastrointestin. Liver Dis. 2021, 30, 221–226. [Google Scholar] [CrossRef]
- Crudele, L.; De Matteis, C.; Novielli, F.; Di Buduo, E.; Petruzzelli, S.; De Giorgi, A.; Antonica, G.; Berardi, E.; Moschetta, A. Fatty Liver Index (FLI) Is the Best Score to Predict MASLD with 50% Lower Cut-off Value in Women than in Men. Biol. Sex. Differ. 2024, 15, 43–56. [Google Scholar] [CrossRef]
- Leone, A.; Bertoli, S.; Bedogni, G.; Vignati, L.; Pellizzari, M.; Battezzati, A. Association between Mediterranean Diet and Fatty Liver in Women with Overweight and Obesity. Nutrients 2022, 14, 3771–3784. [Google Scholar] [CrossRef]
- Feldstein, A.E.; Weickowska, A.; Lopez, A.R.; Liu, Y.C.; Zein, N.M.; McCullough, A.J. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: A multicenter validation study. Hepatology 2009, 50, 1072–1078. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 5, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Vanni, E.; Bugianesi, E.; Clemente, A.; Svegliati-Baroni, G.; Bugianesi, E.; Craxì, A. The combination of liver stiffness and CK-18 fragments improves the noninvasive diagnosis of severe liver fibrosis in patients with NAFLD. Liver Int. 2015, 10, 1573–1581. [Google Scholar] [CrossRef]
- Zeng, J.; Fan, J.G.; Francque, S.M. Therapeutic management of metabolic dysfunction associated steatotic liver disease. United Eur. Gastroenterol. J. 2024, 2, 177–186. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044–1067. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.A.; Bawden, S.J.; Malaikah, S.; Sargeant, J.A.; Stensel, D.J.; Aithal, G.P.; King, J.A. The role of hepatic lipid composition in obesity-related metabolic disease. Liver Int. 2021, 12, 2819–2835. [Google Scholar] [CrossRef] [PubMed]
Low-Adherent (<50%) | Highly Adherent (≥50%) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference Values | Baseline (n = 31) | 6 Months (n = 31) | 12 Months (n = 31) | 24 Months (n = 31) | Baseline (n = 31) | 6 Months (n = 31) | 12 Months (n = 31) | 24 Months (n = 31) | ||
Sex (women, n[%]) | 15 (48%) | 16 (52%) | 0.793 | |||||||
Age (years) | 54.3 (6.5) | 50.6 (6.6) | 0.051 | |||||||
Weight (kg) | 96.1 (14.4) | 93.1 (15.0) | 93.4 (15.1) | 93.8 (18.6) | 92.4 (13.7) | 87.89 (12.3) | 88.6 (12.7) | 89.5 (13.0) | 0.443 | |
BMI (kg/m2) | 33.7 (3.31) | 32.6 (3.31) | 32.7 (3.49) | 33.5 (3.5) | 33.4 (4.44) | 31.7 (3.89) | 31.9 (4.09) | 32.1 (3.79) | <0.001 | |
Glucose (mg/dL) | 70–110 | 110.1 (22.0) | 107.9 (36.0) | 107.5 (26.6) | 108.4 (21.6) | 108.8 (19.1) | 103.1 (18.2) | 102.4 (18.4) | 105.9 (23.8) | 0.278 |
Triglycerides (mg/dL) | <149 | 178 (63) | 186 (98) | 173 (68) | 166 (45) | 201 (79) | 172 (97) | 179 (78) | 170 (47) | 0.884 |
Bilirubin (mg/dL) | 0.2–1.2 | 0.71 (0.39) | 0.77 (0.53) | 0.76 (0.34) | 0.70 (0.33) | 0.74 (0.38) | 0.77 (0.32) | 0.74 (0.26) | 0.74 (0.26) | 0.944 |
ADM | 9.5 (2.4) | 11.8 (2.5) a | 11.0 (2.6) b | 10.9 (2.6) c | 6.9 (2.4) * | 12.2 (2.9) * | 12.5 (2.2) b,* | 12.6 (2.0) c,* | <0.001 | |
DII | 0.4 (2.2) | 0.2 (2.4) a | 0.2 (2.2) a | 0.3 (2.2) a | 0.5 (2.4) * | −0.13 (2.0) a | −0.3 (2.2) a | −0.52 (1.9) a,* | <0.001 | |
Chester step test (VO2max) | 32.8 (7.9) | 34.0 (6.1) | 35.7 (7.8) | 34.6 (6.1) | 34.4 (8.8) | 34.6 (9.4) | 37.1 (8.3) | 37.3 (10.8) | 0.449 |
Low-Adherent (<50%) | Highly Adherent (≥50%) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference Values | Baseline (n = 31) | 6 Months (n = 31) | 12 Months (n = 31) | 24 Months (n = 31) | Baseline (n = 31) | 6 Months (n = 31) | 12 Months (n = 31) | 24 Months (n = 31) | ||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |||
AST (U/L) | 5–34 | 21.8 (6.0) | 20.8 (6.7) | 20.0 (5.7) | 24.0 (8.2) b | 29.7 (17.7) * | 24.2 (8.1) a,* | 24.9 (9.1) * | 25.8 (10.4) | 0.036 |
ALT (U/L) | 0–55 | 33.9 (19.0) | 26.5 (14.8) | 25.5 (11.3) | 31.3 (17.2) | 43.5 (28.9) | 30.4 (11.8) | 33.2 (18.6) | 35.8 (18.3) | 0.104 |
GGT (U/L) | 12–64 | 42.5 (23.5) | 35.9 (22.0) | 37.8 (21.8) | 43.7 (33.9) | 50.2 (49.6) | 34.3 (19.1) | 35.3 (15.2) | 35.6 (15.4) | 0.055 |
Low-Adherent (<50%) | Highly Adherent (≥50%) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline (n = 31) | 6 Months (n = 31) | 12 Months (n = 31) | 24 Months (n = 31) | Baseline (n = 31) | 6 Months (n = 31) | 12 Months (n = 31) | 24 Months (n = 31) | ||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
IFC (%) | 13.7 (8.08) | 10.2 (7.26) | 12.1 (8.05) | 13.5 (8.54) b | 18.4 (13.4) | 12.0 (7.09) a | 12.7 (7.62) | 12.5 (5.8) c | 0.038 |
FLI | 88.3 (11.3) | 85 (11.5) | 84.5 (10.4) | 87.9 (9.1) | 89.8 (10.1) | 79.1 (18.2) a | 80.2 (16.4) a | 82.3 (13.1) a,* | 0.002 |
CK-18 (U/L) | 52.6 (28.1) | 44.6 (30) | 65.6 (35.7) b | 52.6 (45.2) | 75.7 (47.0) * | 45.1 (26.7) a | 45.8 (23.9) a,* | 31.6 (16.7) a,* | <0.001 |
Hepatic Health Parameter | r | p-Value |
---|---|---|
IFC | −0.422 | <0.001 |
FLI | −0.393 | 0.005 |
CK-18 | −0.444 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monserrat-Mesquida, M.; Bouzas, C.; García, S.; Mateos, D.; Casares, M.; Ugarriza, L.; Gómez, C.; Sureda, A.; Tur, J.A. Two-Year Mediterranean Diet Intervention Improves Hepatic Health in MASLD Patients. Foods 2025, 14, 1736. https://doi.org/10.3390/foods14101736
Monserrat-Mesquida M, Bouzas C, García S, Mateos D, Casares M, Ugarriza L, Gómez C, Sureda A, Tur JA. Two-Year Mediterranean Diet Intervention Improves Hepatic Health in MASLD Patients. Foods. 2025; 14(10):1736. https://doi.org/10.3390/foods14101736
Chicago/Turabian StyleMonserrat-Mesquida, Margalida, Cristina Bouzas, Silvia García, David Mateos, Miguel Casares, Lucía Ugarriza, Cristina Gómez, Antoni Sureda, and Josep A. Tur. 2025. "Two-Year Mediterranean Diet Intervention Improves Hepatic Health in MASLD Patients" Foods 14, no. 10: 1736. https://doi.org/10.3390/foods14101736
APA StyleMonserrat-Mesquida, M., Bouzas, C., García, S., Mateos, D., Casares, M., Ugarriza, L., Gómez, C., Sureda, A., & Tur, J. A. (2025). Two-Year Mediterranean Diet Intervention Improves Hepatic Health in MASLD Patients. Foods, 14(10), 1736. https://doi.org/10.3390/foods14101736