A Comprehensive Review of Edible Flowers with a Focus on Microbiological, Nutritional, and Potential Health Aspects
Abstract
:1. Introduction
2. Varieties of Edible Flowers
Scientific Name | Common Names | Color | Sensory Features | Food Application | Countries of Consume | References |
---|---|---|---|---|---|---|
Allium schoenoprasum L. | Chives | Pink, purple | Onion taste, strong flavor, spicy | Dips, soup | Europe, Asia, India | [3,24] |
Begonia × tuberhybrida | Tuberous begonia | Pink, red, white, yellow | Citric and sweet flavor, crisp texture | Salads | Unknown | [25,26,28] |
Begonia × semperflorens-cultorum | Wax begonia | Red, white | Citric, sour and sweet flavor, crisp texture | Salads | Unknown | [7,25,26,27] |
Borago officinalis L. | Borage, starflower | Blue, purple, white | Similar flavor to cucumber, sweet flavor | Drinks, salads, soups, used as a spice | Denmark, Italy, Spain | [3,42,50,51] |
Bougainvillea glabra | Bougainvillea, Bougainville, glory of the garden, paper flower | Orange, pink, violet | Intense color, subtle flavor | Food colorant, infusions, lemonade, salads | Thailand | [30,34,38,45,52] |
Calendula officinalis L. | Calendula, pot marigold | Orange, yellow | Slightly bitter, similar flavor to saffron, peppery, easy chewiness | Beverages, food colorant infusions, salads | Bosnia-Herzegovina, Brazil, France, Italy | [3,25,37,42,50] |
Centaurea cyanus L. | Centaurea, cornflower, bachelor’s buttons | Blue | Spicy, vegetal flavor | Cakes, cookies, desserts, food colorant, infusions, salads | Unknown | [26,27,30] |
Chrysanthemum spp. | Chrysanthemum | Pink, purple, white, yellow | Bitter flavor | Desserts, infusions, salads, soups | China | [26,32,53] |
Cichorium intybus L. | Chicory | Blue, violet | Bitter flavor, similar flavor to endive | Salads, soups | Unknown | [3,27] |
Clitoria ternatea | Asian pigeon wings, blue bell vine, blue pea flower, butterfly pea, Darwin pea | Blue, violet | Color changes with pH | Bio-preservative, bread, cakes, chocolate, food colorant, fermented beverages, infusions, noodles, yogurt | Argentina | [14,15,17,46,47,54,55,56,57,58] |
Cucurbita pepo L. | Zucchini flower | Orange, yellow | Slightly sweet, mild aroma | Dressings, fried, salads, soup, stuffed | Italy, Mexico, Slovenia, Spain, Türkiye | [9,50,59,60,61,62] |
Dahlia mignon | Dahlia | Pink, white, yellow | N.D. | Food colorant | Mexico | [13,63] |
Hibiscus L. | Hibiscus, Jamaica tea flower | Pink, red, orange | Acid and citrus flavor | Beverages, cakes, desserts, food colorant, ice cream, jam, muesli, pickles, salads, sauces, syrup, texture agent | China, Taiwan | [3,29,30] |
Jasminum sambac | Arabian jasmine, Asian jasmine | White | Intense and floral aroma | Beverages, desserts, flavor agent, infusions, syrup | Taiwan | [12,30,41,64,65] |
Lavandula angustifolia | Lavender | Lavender, purple, violet | Highly perfumed, intense flavor | Beverages, cakes, desserts, dressings, ice-cream, jam, pastry, soups | Argentina, Italy, Spain, Taiwan | [12,30,50] |
Malva sylvestris L. | Blue Mallow, blue malva, cheese flower, common mallow | Pink, violet, white | Honey-like, sweet and floral flavor, spicy | Edible coating, food colorant, infusions, salads, soups, thickener | Boznia-Herzegovina, Spain | [30,39,50,66] |
Matricaria chamomilla | Chamomile, German chamomile | White, yellow | Floral flavor, sweet scented | Beverages, desserts, baked goods, ice cream, infusions, jam, salads | Unknown | [27,40,67] |
Nelumbo nucifera | Lotus | White | Crunchy texture, mild flavor | Infusions, fried, salads, soups | Vietnam | [27,30,34,40] |
Pelargonium hortorum | Common geranium, garden geranium, malvon | Orange, pink, red, white | Citric flavor | Beverages, desserts, salads, | Unknown | [31] |
Petunia hybrida | Petunia | Blue, pink, purple, red, white, yellow | Mild- tasting | Salads | Unknown | [30] |
Rhododendron arboreum | Rhododendron | Pink, red, white | Sweet, sour flavor, bitter | Fermented beverages, food colorant, flavor agent, jam, jellies, juices, yogurt | China | [30,68,69,70,71,72] |
Rosa spp. | Rose | Orange, red, pink, white, yellow | Astringent, highly aromatic, slightly bitter, sweet | Beverages, desserts, food colorant, ice cream, infusions, jam, liquors, muesli, preservative in meat products, syrup | Brazil, China, Taiwan, Slovenia | [2,3,12,25,26,28,29,60,73] |
Tagetes erecta | Marigol, Mexican marigold | Orange, red, white, yellow | Bitter, similar flavor to pomegranate, strong flavor | Baked goods, beverages, butter, salads, soups | Mexico, Thailand | [3,27,33,34,42] |
Taraxacum officinale Weber | Dandelion, Lion’s Tooth | Yellow | Bitter flavor | Desserts, cheese, flavor agent in sweet meals, salads, vegan honey substitute, wine | Unknown | [3,35,36] |
Tropaeolum majus L. | Empress of India, nasturtium, monks Cress, | Orange, red, white, yellow | Bitter, peppery, similar flavor to radish, spicy | Beverages, dips, salads, vinegar | Denmark, Croatia | [25,30,37,42,50,51] |
Tulip gesneriana L. | Tulip | Red, pink, yellow, | Similar flavor to pea, sweet, | Salads, stuffed, syrup | Unknown | [28,30] |
Viola tricolor L. | Heart’s ease, wild pansy | Multi-colored, pink, violet, white, yellow | Bitter | Beverages, cookies, desserts, salad, soups | Australia, Denmark, Italy | [3,27,30,50,51] |
Viola × wittrockiana | Pansy | Multi-colored, pink, violet, yellow, white | Sweet flavor | Beverages, cookies, desserts, salad, soups | Brazil | [3,26,30,60] |
3. Nutritional Composition of Edible Flowers
3.1. Carbohydrate, Sugar, and Fiber Composition
Scientific Name | CarboH (g/100 g) | Sugars (g/100 g) | Proteins (g/100 g) | Lipids (g/100 g) | Fiber (g/100 g) | Ash (g/100 g) | Minerals 1 (mg/100 g) | Vitamin C (mg/100 g) | TPC—CAR | References |
---|---|---|---|---|---|---|---|---|---|---|
Allium spp. | 3.3–18.6 | 6.6–26.2 | - | - | - | - | - | 35.4–157.8 (f.w) | TPC: 3.6–10.6 CAR: 3.0–23.4 | [84] |
- | 50.0 | 15.3 | 3.4 | CF: 6.1 | 3.8 | - | 542.1 | TPC: 1877.9 CAR: 291.1 | [76] | |
- | - | - | - | - | - | Potassium (K) Calcium (Ca), Sodium (Na), Iron (Fe), Zinc (Zn) | - | - | [85] | |
Begonia × tuberhybrida | - | - | 3.9 | - | - | - | K, Ca, Na | - | TPC: 42.3 | [25] |
Borago officinalis L. | - - | 28.8 | 9.4 | 4.3 | TDF: 40.4 | 9.3 | - | - | - | [10] |
- | 16.8 | 22.7 | 4.9 | TDF: 35.4 | 15.3 | - | - | CAR: 181.4 | [75] | |
- | 20.3 | 14.4 | - | CF: 15.3 | 14.7 | - | 196.4 | - | [77] | |
- | - | - | - | - | - | K, Na, Ca, Fe, Zn, Manganese (Mn) | - | TPC: 16.6 TF: 12.6 | [84] | |
Calendula officinalis L. | 3.6 (f.w) | 6.2 (f.w) | 4.6 (f.w) | - | CF: 1.1 (f.w) | 18.4 | Fe, Zn, Mn | 40.0 (f.w) | TPC 2: 61.0 (f.w) TF: 37.9 (f.w) | [79] |
- | - | - | - | - | - | K, Na, Ca, Fe, Zn, Mn | - | TPC: 16.3 TF: 9.4 | [86] | |
- | - | 3.9 | - | - | - | K, Ca, Na | - | TPC: 40.6 | [25] | |
- | - | 8.7 | - | TDF: 62.3 | - | - | - | - | [83] | |
- | - | - | - | - | - | - | - | TPC: 290.8 CAR: 5745.3 | [87] | |
Centaurea cyanus | - | 11.9 | 8.5 | 4.4 | TDF: 75.9 | 5.7 | - | - | - | [10] |
- | 20.6 | 6.9 | 3.4 | TDF: 67.4 | 5.2 | - | - | CAR: 5.8 | [75] | |
- | - | 6.9 | - | - | - | K, Ca, Na | - | TPC: 48.9 TF 3: 18.6 | [26] | |
- | - | 9.6 | - | TDF: 53.1 | - | - | - | - | [83] | |
Chrysanthemum frutescens | - | - | 7.2 | - | - | - | K, Ca, Na | - | TPC: 26.4 TF 3: 12.9 | [26] |
Cucurbita pepo | - | - | 21.9 | 5.0 | 10.5 | 15.9 | - | - | - | [88] |
Cucurbita máxima spp. | - | - | - | 24.8 | 41.4 | 28.1 | - | 0.4 | TPC: 498.3 TF: 304.4 | [89] |
25.1 | - | 14.8 | 17.0 | CF 20.5 | 22.0 | - | 149.2 | - | [78] | |
- | - | - | - | - | - | Ca, K, Na, Fe, Zn | - | - | [85] | |
5.3 (f.w) | 2.0 (f.w) | 2.2 (f.w) | 0.2 (f.w) | CF 4.4 (f.w) | 3.1 (f.w) | K, Ca, Na, Fe | - | - | [90] | |
Cucurbita moschata Duchesne | - | - | 14.5 | - | - | - | Ca, Mn, Fe, Zn | 10.7 | TPC: 8.4 TF: 3.8 CAR: 8.8 | [91] |
Dianthus chinensis L. | - | - | 9.7 | - | - | - | Ca, Fe, Mn, Zn | 122.1 | TPC: 10.1 | [91] |
32.6 (f.w) | 12.1 (f.w) | 19.5 (f.w) | - | CF: 1.4 (f.w) | 6.1 | Fe, Mn, Zn | 100.0 (f.w) | TPC: 52.5 (f.w) | [79] | |
- | - | - | - | - | - | K, Ca, Na, Fe, Zn | - | - | [92] | |
- | - | - | - | - | - | - | TPC: 179.6–248.6 CAR: 49.1–75.9 | [87] | ||
Fuchsia regia | - | - | 6.1 | - | - | - | Ca, Fe, Zn, Mn | 44.0 | TPC: 148.8 | [91] |
Fuchsia × hybrida | - | - | 2.8 | - | - | - | K, Ca, Na | - | TPC: 41.2 TF 3: 19.8 | [26] |
Hibiscus acetosella | 83.6 | - | - | 10.9 | - | 5.5 | - | - | - | [81] |
Lavandula angustifolia | - | - | - | - | - | - | - | - | TPC:14.8–32.8 TF:8.5–23.7 | [93] |
- | - | - | - | -- | - | - | 9.0 | TPC: 12.7 | [37] | |
10.9 | 11.5 | - | CF: 17.6 | 7.3 | - | 110.3 | - | [77] | ||
- | - | - | - | - | - | K, Ca, Na, Fe, Mn, Zn | - | TPC: 17.3 TF: 18.6 | [86] | |
Nyctanthus arbortristis | - | - | - | - | 49.7 | - | - | 0.7 | TPC: 1486.2 TF: 660.2 | [89] |
Pelargonium hortorum | 41.8 (f.w) | 5.2 (f.w) | 16.3 (f.w) | - | CF: 0.9 (f.w) | 7.4 | Fe, Zn, Mn | 42 (f.w) | TPC: 108.0 (f.w) | [79] |
Petunia hybrida | 18.4 (f.w) | 2.4 (f.w) | 15.3 (f.w) | - | CF: 2.10 (f.w) | 14.7 | Fe, Zn, Mn | 28.0 (f.w) | TPC: 50.5 (f.w) | [79] |
Rosa odorata | - | - | 2.6 | - | - | - | K, Ca, Na | - - - | TPC: 49.8 TF 3: 20.2 | [26] |
Rosa micrantha | 90.2 | 13.1 | 4.3 | 1.3 | - | 4.2 | - | 295.1 | TPC: 424.2 TF: 78.5 CAR: 46.6 | [80] |
Rosa spp. | - | - | 2.0 | - | - | - | K, Ca, Na | - | TPC: 30.9 | [25] |
- | - | - | - | - | - | K, Ca, Na, Fe, Zn, Mn | - | TPC: 9.9 TF: 2.6 | [86] | |
Syringa vulgaris L. | - | - | 12.4 | - | TDF: 25.9 | - | - | - | - | [83] |
Tagetes patula/erecta | - | - | 3.2 | - | - | - | K, Ca, Na | - | TPC: 51.2 | [25] |
- | - | 3.0 | - | - | - | K, Ca, Na | - | TPC: 47.5 TF 3: 19.6 | [26] | |
- | - | - | - | - | - | - | - | TPC: 194.8–303.6 CAR: 500.6–2057.8 | [87] | |
Taraxacum officinale | - | - | 13.2 | - | TDF: 27.0 | - | - | - | - | [83] |
Tropaeolum majus | - | - | 6.2 | - | - | - | K, Ca, Na | - | TPC: 43.8 | [25] |
- | - | 4.2 | - | - | - | K, Ca, Na | - | TPC: 29.3 TF 3: 45.4 | [26] | |
- | - | - | - | - | - | K, Ca, Na, Fe, Zn, Mn | - | TPC: 23.0 TF: 5.1 | [86] | |
Viola cornuta L. | - | - | 12.9 | - | - | - | Ca, Zn, Mn, Fe | 248.8 | TPC: 33.9 | [91] |
Viola tricolor L. | - | 10.28 | 13.3 | - | CF: 8.4 | 16.7 | - | 577.7 | - | [77] |
- | - | - | - | - | - | K, Ca, Na, Fe, Zn, Mn | - | TPC: 63.4 TF: 32.8 | [86] | |
Viola wittrockiana | 11.8 (f.w) | 8.0 (f.w) | 2.3 (f.w) | - | CF: 0.4 (f.w) | 3.2 | Fe, Zn, Mn | 32 (f.w) | TPC: 13.9 (f.w) | [79] |
- | 27.9-W 8.53-Y 10.4-R | 23.3-W 15.3-Y 9.1-R | 5.2-W 9.7-Y 4.5-R | TDF: 17.2-w TDF: 32.0-Y TDF: 25.4-R | 10.6-W 8.2-Y 6.3-R | - | - | CAR: 21.6-W 58.0-Y 109.2-R | [75] |
3.2. Protein Composition
3.3. Mineral and Vitamin Composition
3.4. Phenolic Compounds and Other Bioactive Substances
4. Health Benefits of Edible Flowers
Scientific Name | Potential Health Benefits and Risks | Sample Type | References | |
---|---|---|---|---|
Allium schoenoprasum L. | Health benefits | Anti-proliferative | Phenolic compounds obtained from methanol extraction of the flower | [110] |
Risks | N.D | |||
Borago officinalis L. | Health benefits | Anti-bacterial | Aqueous, ethanol, and methanol extracts | [111,112] |
Antioxidant | Aqueous, ethanol and methanol extracts | [20,42,111,112,113] | ||
Anti-ulcer activity | Aqueous, methanol, and organic extracts | [103] | ||
Asthma symptoms reduction | Hydroalcoholic extract | [114] | ||
Hepatoprotective | Bioactive fractions derived from ethanol extract | [113] | ||
Pain reduction | Hydroalcoholic extract | [108] | ||
Risks | Cytotoxicity | Organic extract | [103] | |
No information regarding toxic effects in humans | - | [51,115] | ||
Potential risks due to presence of alkaloids (1,2-unsaturated pyrrolizidine alkaloids) | - | [51] | ||
Bougainvillea glabra | Health benefits | Anti-carcinogenic | Aqueous and methanol extract | [34,52] |
Anti-diabetic (by inhibition of α-glucosidase) | Aqueous and methanol extracts | [34,52] | ||
Anti-obesity (by inhibition of pancreatic lipase) | Aqueous extracts | [34] | ||
Antioxidant | Dry flowers; hydrophilic and methanol extracts | [20,34,38,45,52] | ||
Cardioprotective (preventing myocardial necrosis and oxidative stress) | Methanol extract | [116] | ||
Risks | No mortality of behavioral changes were observed | Methanol extract | [116] | |
Non-toxic effects against normal cell lines | Ethanol extract of bracts | [117] | ||
Calendula officinalis L. | Health benefits | Anti-bacterial (against Klebsiella pneumonia) | Methanol extract of flowers | [118] |
Hepatoprotective | Ethanol extract | [119] | ||
Neuroprotective (by increasing locomotor activity and attenuation of hippocampal dam age) | Methanol extract of flowers | [120] | ||
Anti-spasmodic | Aqueous-ethanol extract of flowers | [109] | ||
Risks | No information regarding toxic effects in humans | - | [51] | |
Centaurea cyanus L. | Health benefits | Antioxidant | Aqueous and methanol extract | [26,121] |
Anti-bacterial (against Escerichia coli, Staphylococcus aureus and Listeria monocytogenes) | Aqueous and ethyl acetate extracts of aerial parts | [122] | ||
Anti-hypertensive (by inhibition of ngiotensin I-converting enzyme—ACE) | Flower extract | [123] | ||
Antimicrobial (low effect) | Methanol extract of flower | [124] | ||
Risks | N.D | |||
Chrysanthemum spp. | Health benefits | Anti-carcinogenic | Methylene chloride fraction of Chrysanthemum indicum L. | [125] |
Anti-inflammatory (by suppressing TNF-α, IL-6 and COX-2) | Aqueous extract of Chrysanthemum × morifolium | [104] | ||
Antioxidant | Methanol extracts of Chrysanthemum frutescens and Chrysanthemum parthenium | [26] | ||
Anti-obesity (by inhibition of adipogenesis) | Aqueous extract of Chrysanthemum morifolium flowers | [126] | ||
Gut microbiota modulation (by increasing Firmicutes content) | Aqueous extract of Chrysanthemum × morifolium | [104] | ||
Hepatoprotective (by mitigation of liver injury) | Flavonoids (luteolin and luteoin 7-O-glucoside) extracted from petals of Chrysanthemum × morifolium and aqueous extract | [127,128] | ||
Neuroprotective | Flavonone glycosides derived from Chrysanthemum morifolium flowers extract | [129] | ||
Risks | Subclinical alterations in heart tissue; No clinical toxicity observed | Homogenates of Chrysanthemum morifolium | [130] | |
No toxic effects observed | Ethanol extract of Chrysanthemum morifolium flowers | [131] | ||
Cichorium intybus L. | Health benefits | Anti-diabetic (by α-amylase and α-glucosidase inhibition) | Ethanol extract of flowers | [66] |
Anti-diarrheal effect | Infusion of flowers | [132] | ||
Antioxidant | Ethanol extract of flowers | [66] | ||
Risks | N.D | |||
Clitoria ternatea | Health benefits | Antioxidant | Aqueous, ethanol and methanol extracts | [11,47,121,133,134] |
Antidiabetic (by pancreatic regeneration potential and anti-hyperglycemic effects) | Ethanol extract of flower and other aerial parts | [134] | ||
Anti-endocrine disrupting agent | Aqueous extract | [11] | ||
Anti-hemolysis | Aqueous extract | [133] | ||
Memory deficit attenuation | Ethanol extract of flower and other aerial parts | [135] | ||
Risks | Low toxicity (no mortality, but loss of mobility occurred) | Ethanol extract of flower and other aerial parts | [134] | |
Lethargia, decreased locomotor activity and ptosis (dropping of upper eyelids) | Ethanol extract of flower and other aerial parts | [135] | ||
Cucurbita pepo L. | Health benefits | Antidiabetic (by inhibition of α-glucosidase) | Ethanol extract of flowers | [136] |
Cholesterol reduction | Ethanol extract of flowers | [136] | ||
Risks | Presence of trypsin inhibitors was detected. No alkaloids, cyanogenic glycosides or hemolytic activity were identified | Sundried commercial flowers | [88] | |
Hibiscus L. | Health benefits | Anti-inflammatory | Aqueous extract and anthocyanin isolated from Hibiscus sabdariffa L. | [137,138] |
Anti-hypertensive | Infusion of dried calyces of Hibiscus sabdariffa L. | [139,140] | ||
Anti-obesity (by inhibition of adipogenesis) | Aqueous extract of Hibiscus sabdariffa L. | [141] | ||
Antioxidant | Aqueous extract of red flowers | [20] | ||
Risks | Diarrhea, hepatotoxicity, possible death | Aqueous and ethanol extracts of Hibiscus sabdariffa L. | [142] | |
Toxic effects | Hibiscus sabdariffa Calyx extract | [143] | ||
Possible liver and heart injury when using for long periods | Methanol extract of red calyces of Hibiscus sabdariffa L. | [144] | ||
Interference with drugs (Acetaminophen) | Aqueous extract of red calyces of Hibiscus sabdariffa L. | [145] | ||
Jasminum sambac | Health benefits | Ant carcinogenic | Methanol extract | [146] |
Antimicrobial (against S. aureus, E. coli, Candida albicans) | Ethanol extract | [147] | ||
Antioxidant (low effect) | Methanol extract | [148] | ||
Risk | No toxicity | Ethanol extract | [149] | |
Lavandula angustifolia | Health benefits | Anti-aging (by inhibition of acetylcholinesterase) | Methanol extract | [150] |
Anti-Hyperglycemic (by inhibition of α-amylase) | Methanol extract | [150] | ||
Anti-depressant | - | [151] | ||
Risks | Safe to use as a flavor agent | - | [152] | |
Malva sylvestris L. | Health benefits | Anti-bacterial (against Bordetella bronchiseptica, Erwinia carotovora, S. aureus, Streptoccocus agalactiae, and Enterococcus faecalis). Bacteriostatic (against S. aureus) | Methanol extract | [153,154,155] |
Antidiabetic (by inhibition of α-amylase and α-glucosidase) | Ethanol extract | [66] | ||
Antifungal activity (modest) (against Sclerotinia sclerotiorum, Candida kefyr, C. albicans) | Methanol extract | [153] | ||
Antioxidant | Ethanol extract | [74,121,156] | ||
Skin elasticity increase | Aqueous extract | [157] | ||
Triglycerides reduction | Aqueous extract | [157] | ||
Risks | N.D | |||
Matricaria chamomilla | Health benefits | Anti-depressant (by increasing mobility) | Hydroalcoholic extract of flowers | [105] |
Anti-diabetic (by lowering glucose and protection of pancreatic islet cells) | Hydroalcoholic extract of aerial parts | [158] | ||
Antioxidant | Subcritical water extract (210 °C) of flowers | [159] | ||
Anti-spasmodic | Hydroalcoholic extract | [106] | ||
Anti-ulcerative colitis (by reducing inflammation, oxidative stress and immune response biomarkers) | Hydroalcoholic extract | [160] | ||
Cytotoxicity to malign cells | Subcritical water extract (115 °C) of flowers | [159] | ||
Memory improvement (by modulating cholinergic activity and neuroinflammation) | Hydroalcoholic extract of flowers | [161] | ||
Reduction in lung damage (by reduction in pulmonary fibrosis) | Hydroalcoholic extract of flowers | [162] | ||
Wound-curing (by increasing the production of growth factors) | Hydroalcoholic extract | [163] | ||
Risks | No signs of toxicity observed | Hydroalcoholic extract of flowers | [161] | |
Nelumbo nucifera | Health benefits | Anti-obesity (by inhibition of the differentiation of preadipocytes to adipocytes) | Methanol extract | [164] |
Hypolipidemic and hypoglycemic | Dry flowers | [165] | ||
Risks | Genotoxicity when reacting with nitrite (consumers should avoid any nitrite-containing food items) | Methanol extract | [166] | |
Rhododendron arboreum | Health benefits | Antioxidant | Ethanol extract | [69] |
Cardioprotective | Ethanol extract of petals | [167] | ||
Risks | Possible presence of grayanotoxins which can lead to intoxication. Authors state that Rhododendron plants are poisonous | - | [168] | |
Rhododendron honey, flowers or medicinal preparations can lead to intoxication | - | [169] | ||
Toxic effects (convulsions, hypotension, paralysis, vomits) | All parts of rhododendron | [130] | ||
Rosa spp. | Health benefits | Anti-aging (by Inhibition of skin aging-related enzymes) | Ethanol extract | [107] |
Anti-bacterial (against Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Micrococcus luteus, E. coli, K. pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis) | Aqueous and methanol extracts | [170] | ||
Anti-carcinogenic | Aqueous and methanol extracts | [170] | ||
Anti-diabetic (by Inhibition of α-glucosidase) | Methanol extract of flower | [171] | ||
Anti-inflammatory on skin tissues | Ethanol extract | [172] | ||
Antioxidant | Aqueous, ethanol and methanol extracts. Dry petals | [107,173,174] | ||
Anti-Parkinson’s and neuroprotection (by protection of nerve cells and improvement of motor symptoms and balance disorders) | Ethanol extract | [175] | ||
Risks | Low cytotoxicity on kidney epithelium; cytotoxic to blood leukocytes | Ethanol and methanol extract | [176] | |
Tagetes erecta | Health benefits | Anti-carcinogenic | Aqueous extract | [34] |
Anti-diabetic (by inhibition of α-glucosidase) | Aqueous extract | [34] | ||
Anti-inflammatory | Hydroalcoholic extract | [177] | ||
Anti-obesity (by Inhibition of pancreatic lipase) | Aqueous extract | [34] | ||
Antioxidant (strong effect) | Ethanol, hydrophilic, and hydroethanolic extracts | [21,34,178] | ||
Anti-parasite | Aqueous extract | [179] | ||
Risks | No lethality or toxic effects | Aqueous extract | [179] | |
Taraxacum officinale Weber | Health benefits | Anti-angiogenic | Ethanol extract of aerial parts | [180] |
Anti-bacterial (against Helicobacter pylori) | Aqueous and ethanol extracts | [181] | ||
Anti-carcinogenic (against human colon colorectal adenocarcinoma) | Aqueous and ethyl acetate extracts | [182] | ||
Anti-diabetic (by serum glucose reduction) | Aqueous and ethanol extracts | [183] | ||
Anti-inflammatory | Aqueous and ethanol extracts | [180,181] | ||
Anti-nociceptive | Ethanol extracts | [180] | ||
Antioxidant | Aqueous, ethanol, and ethyl acetate extracts | [182,184] | ||
Gastroprotective | Ethanol extract | [181] | ||
LDL-cholesterol and triglycerides reduction, HDL-cholesterol increase | Aqueous extract | [183] | ||
Risks | Allergic reaction.to pollen | - | [185] | |
No lethality | - | [186] | ||
Tropaeolum majus L. | Health benefits | Antiarthritic (low effect) | Methanol extracts of aerial parts | [187] |
Antimicrobial (against Bacillus cereus, Pseudomonas spp., Acinetobacter spp., Staphylococcus spp., Enterococcus spp., and Klebsiella spp.) | Methanol extract of flowers | [188] | ||
Anti-obesity (anti-adipogenic effect and (by inhibition of pancreatic lipase) | Ethanol and methanol extracts | [187,189] | ||
Antioxidant | Aqueous extract of flower | [20] | ||
Hepatoprotective (by preservation of hepatic tissues) | Methanol extract of flowers and leaves | [190] | ||
Risks | High doses (>39.5 g) can exceed the daily intake of erucic acid | - | [8,51] | |
Mortality | Aqueous, hydro-ethanol, and methanol extract of flowers and leaves | [190] | ||
Tulipa gesneriana | Health benefits | Antimicrobial (against S. aureus, Enterobacter cloasea, Salmonella typhimurium, E. coli, Yersinia enterocolitica, L. monocytogenes, B.cereus, and B. subtilis) | Anthocyanin-based extracts of red tulips | [42] |
Risks | Only petals are edible | - | [28] | |
Red tulip consume can be questioned | - | [42] | ||
Yellow and clared red tulip flowers can be toxic | - | [191] | ||
Viola tricolor | Health benefits | Antioxidant | Fresh flowers irradiated | [192] |
Risks | Possible health issues for individuals with sensitivity to salicylic acid due to Methyl salicylate presence | - | [51] | |
Viola × wittrockiana | Health benefits | Antioxidant | Methanol extract | [42,193] |
Neuroprotection (by inhibition of neurodegenerative enzymes) | Ethanol extract of flower | [194] | ||
Risks | N.D |
5. Safety Aspects of Edible Flower Consumption
6. Microbiological Aspects of Edible Flowers
Methods to Reduce Microbiological Load in Edible Flowers
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
b.w | Body weight |
CAR | Carotenoids |
CarboH | Carbohydrates |
CF | Crude fiber |
CFU | Colony forming unit |
d.w | Dry weight |
FDA | Food and Drug Administration |
f.w | Fresh weight |
N.D | No data |
RASFF | Rapid Alert System for Food and Feed |
TDF | Total dietary fiber |
TF | Total flavonoids |
TPC | Total polyphenol content |
References
- Kumar, S.; Uttam, A.; Sharma, S.; Kumar, V. Edible Vegetable Flowers: Next Generation Sustainable Super Foods, Therapeutic Role, Processing and Improvement Approaches. Int. J. Gastron. Food Sci. 2025, 39, 101116. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible Flowers. Benefits and Risks Pertaining to Their Consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Nicolau, A.I.; Gostin, A.I. Safety of Edible Flowers. In Regulating Safety of Traditional and Ethnic Foods; Academic Press: Cambridge, MA, USA, 2016; pp. 395–419. [Google Scholar]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Edible Flowers with the Common Name “Marigold”: Their Therapeutic Values and Processing. Trends Food Sci. Technol. 2019, 89, 76–87. [Google Scholar] [CrossRef]
- Acikgoz, F.E. Edible Flowers. J. Exp. Agric. Int. 2017, 17, 1–5. [Google Scholar] [CrossRef]
- Rodrigues, H.; Spence, C. Looking to the Future, by Studying the History of Edible Flowers. Int. J. Gastron. Food Sci. 2023, 34, 100805. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. The Biodiversity of Edible Flowers: Discovering New Tastes and New Health Benefits. Front. Plant Sci. 2021, 11, 569499. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, H.B.; Badwaik, L.S.; Annapure, U.; Casanova, F.; Alaskar, K. A Review on the Journey of Edible Flowers from Farm to Consumer’s Plate. Appl. Food Res. 2023, 3, 100312. [Google Scholar] [CrossRef]
- Bieżanowska-Kopeć, R.; Ambroszczyk, A.M.; Piątkowska, E.; Leszczyńska, T. Nutritional Value and Antioxidant Activity of Fresh Pumpkin Flowers (Cucurbita sp.) Grown in Poland. Appl. Sci. 2022, 12, 6673. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E.; Casal, S. Phytochemical Characterization of Borago officinalis L. and Centaurea cyanus L. During Flower Development. Food Res. Int. 2019, 123, 771–778. [Google Scholar] [CrossRef]
- Goh, S.E.; Kwong, P.J.; Ng, C.L.; Ng, W.J.; Ee, K.Y. Antioxidant-rich Clitoria ternatea L. flower and its benefits in improving murine reproductive performance. Food Sci. Technol. 2021, 42, e25921. [Google Scholar] [CrossRef]
- Chen, N.H.; Wei, S. Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Qual. Prefer. 2017, 56, 93–100. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Barreira, J.C.; Santos-Buelga, C.; Ferreira, I.C. Incorporation of natural colorants obtained from edible flowers in yogurts. LWT 2018, 97, 668–675. [Google Scholar] [CrossRef]
- Shiau, S.Y.; Yu, Y.; Li, J.; Huang, W.; Feng, H. Phytochemical-rich colored noodles fortified with an aqueous extract of Clitoria ternatea flowers. Foods 2023, 12, 1686. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Tong, W.Y.; Leong, C.R.; Abdul Ghazali, N.M.; Taher, M.A.; Ahmad, N.; Teo, S.H. Anthocyanin microcapsule from Clitoria ternatea: Potential bio-preservative and blue colorant for baked food products. Arab. J. Sci. Eng. 2021, 46, 65–72. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Mujumdar, A.S.; Chang, L. Effect of edible rose (Rosa rugosa cv. Plena) flower extract addition on the physicochemical, rheological, functional and sensory properties of set-type yogurt. Food Biosci. 2021, 43, 101249. [Google Scholar] [CrossRef]
- Shirodkar, S.M.; Multisona, R.R.; Gramza-Michalowska, A. The potential for the implementation of pea flower (Clitoria ternatea) health properties in food matrix. Appl. Sci. 2023, 13, 7141. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Grzelczyk, J.; Drożdżyński, P.; Budryn, G.; Czarnecki, A.; Paprocka, Z.; Gałązka-Czarnecka, I. High-fiber cookies with bamboo flour and edible flowers: Evaluation of structural properties, phenolic content, antioxidant activity and nutritional value. LWT 2025, 216, 117321. [Google Scholar] [CrossRef]
- Conforti, P.A.; Patrignani, M. Antioxidant activity from non-conventional beverage plant sources in Argentina. Beverage Plant Res. 2025, 5, e006. [Google Scholar] [CrossRef]
- Navarro-González, I.; González-Barrio, R.; García-Valverde, V.; Bautista-Ortín, A.B.; Periago, M.J. Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2014, 16, 805–822. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56, S130–S148. [Google Scholar] [CrossRef] [PubMed]
- Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible flowers: Antioxidant compounds and their functional properties. Horticulturae 2021, 7, 66. [Google Scholar] [CrossRef]
- D’Antuono, L.F.; Manco, M.A. Preliminary sensory evaluation of edible flowers from wild Allium species. J. Sci. Food Agric. 2013, 93, 3520–3523. [Google Scholar] [CrossRef] [PubMed]
- Mlcek, J.; Plaskova, A.; Jurikova, T.; Sochor, J.; Baron, M.; Ercisli, S. Chemical, nutritional and sensory characteristics of six ornamental edible flowers species. Foods 2021, 10, 2053. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers—A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef]
- Janarny, G.; Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S. Nutraceutical potential of dietary phytochemicals in edible flowers—A review. J. Food Biochem. 2021, 45, e13642. [Google Scholar] [CrossRef] [PubMed]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Mrázková, M.; Sumczynski, D.; Orsavová, J. Non-traditional muesli mixtures supplemented by edible flowers: Analysis of nutritional composition, phenolic acids, flavonoids and anthocyanins. Plant Foods Hum. Nutr. 2021, 76, 371–376. [Google Scholar] [CrossRef]
- Lim, T.K. The Edible Medicinal and Non-Medicinal Plants. In Edible Medicinal and Non-Medicinal Plants. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; Volume 1, pp. 285–292. [Google Scholar]
- Mitchell, K.A.; Markham, K.R.; Boase, M.R. Pigment chemistry and colour of Pelargonium flowers. Phytochemistry 1998, 47, 355–361. [Google Scholar] [CrossRef]
- Shunying, Z.; Yang, Y.; Huaidong, Y.; Yue, Y.; Guolin, Z. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 2005, 96, 151–158. [Google Scholar] [CrossRef]
- López-Agama, I.; Ramos-García, M.D.L.; Zamilpa, A.; Bautista-Baños, S.; Ventura-Aguilar, R.I. Comparative analysis of the antioxidant compounds of raw edible flowers and ethanolic extracts of Cucurbita pepo, Tagetes erecta, and Erythrina americana during storage. J. Food Process. Preserv. 2021, 45, e15842. [Google Scholar] [CrossRef]
- Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential health enhancing properties of edible flowers from Thailand. Food Res. Int. 2012, 46, 563–571. [Google Scholar] [CrossRef]
- Jalili, C.; Taghadosi, M.; Pazhouhi, M.; Bahrehmand, F.; Miraghaee, S.S.; Pourmand, D.; Rashidi, I. An overview of therapeutic potentials of Taraxacum officinale (dandelion): A traditionally valuable herb with a rich historical background. World Cancer Res. J. 2020, 7, e1679. [Google Scholar]
- González-Castejón, F.; Visioli, A.; Rodriguez-Casado, A. Diverse biological activities of dandelion. Nutr. Rev. 2012, 70, 534–547. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Donno, D.; Ravetto Enri, S.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Wu, Q.; Fu, X.; Chen, Z.; Wang, H.; Wang, J.; Zhu, Z.; Zhu, G. Composition, color stability and antioxidant properties of betalain-based extracts from bracts of Bougainvillea. Molecules 2022, 27, 5120. [Google Scholar] [CrossRef]
- Usami, A.; Kashima, Y.; Marumoto, S.; Miyazawa, M. Characterization of aroma-active compounds in dry flower of Malva sylvestris L. by GC-MS-O analysis and OAV calculations. J. Oleo Sci. 2013, 62, 563–570. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, S.; Rajput, D.; Patil, U.K. Medicinal and culinary importance of edible flowers of Indian origin: An in-depth review. Discov. Food 2024, 4, 148. [Google Scholar] [CrossRef]
- Yadav, R.; Waghmare, R. Consumer perception towards edible flower and safety issues. Indian Food Ind. Mag. 2022, 4, 23–30. [Google Scholar]
- Benvenuti, S.; Bortolotti, E.; Maggini, R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016, 199, 170–177. [Google Scholar] [CrossRef]
- Cheng, Y.; Han, L.; Shao, L.; Wang, H.; Guo, Z.; Li, G. Comparative investigation on the aroma profiles of edible citrus flowers in the main organs and different developmental stages. Food Chem. X 2024, 23, 101568. [Google Scholar] [CrossRef] [PubMed]
- Mulík, S.; Hernández-Carrión, M.; Pacheco-Pantoja, S.E.; Ozuna, C. Endemic edible flowers in the Mexican diet: Understanding people’s knowledge, consumption, and experience. Future Foods 2024, 9, 100374. [Google Scholar] [CrossRef]
- Contreras-López, E.; Ramirez-Godinez, J.; García-Martínez, M.M.; Gutiérrez-Salomón, A.L.; Gonzalez-Olivares, L.G.; Jaimez-Ordaz, J. Low-calorie beverages made from medicinal plants, flowers and fruits: Characteristics and liking of a population with overweight and obesity. Appl. Sci. 2021, 11, 3766. [Google Scholar] [CrossRef]
- Lakshan, S.A.T.; Jayanath, N.Y.; Abeysekera, W.P.K.M.; Abeysekera, W.K.S.M. A commercial potential blue pea (Clitoria ternatea L.) flower extract incorporated beverage having functional properties. Evid.-Based Complement. Altern. Med. 2019, 2019, 2916914. [Google Scholar] [CrossRef]
- Azima, A.S.; Noriham, A.; Manshoor, N. Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana and Syzygium cumini. J. Funct. Foods 2017, 38, 232–241. [Google Scholar] [CrossRef]
- Abbasi, A.; Sabahi, S.; Bazzaz, S.; Tajani, A.G.; Lahouty, M.; Aslani, R.; Hosseini, H. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat. Int. J. Biol. Macromol. 2023, 246, 125660. [Google Scholar] [CrossRef]
- Gokhale, S.; Dubey, G.; Khandave, P.; Kshirsagar, S. Extraction of mucilage as a binder from the petals of Hibiscus rosasinensis Linn and its comparative evaluation–In vitro. Am. J. PharmTech Res. 2018, 8, 78–88. [Google Scholar] [CrossRef]
- Motti, R.; Paura, B.; Cozzolino, A.; Falco, B.D. Edible flowers used in some countries of the Mediterranean basin: An ethnobotanical overview. Plants 2022, 11, 3272. [Google Scholar] [CrossRef] [PubMed]
- Egebjerg, M.M.; Olesen, P.T.; Eriksen, F.D.; Ravn-Haren, G.; Bredsdorff, L.; Pilegaard, K. Are wild and cultivated flowers served in restaurants or sold by local producers in Denmark safe for the consumer? Food Chem. Toxicol. 2018, 120, 129–142. [Google Scholar] [CrossRef]
- Saleem, H.; Zengin, G.; Ahmad, I.; Lee, J.T.B.; Htar, T.T.; Mahomoodally, F.M.; Ahemad, N. Multidirectional insights into the biochemical and toxicological properties of Bougainvillea glabra (Choisy.) aerial parts: A functional approach for bioactive compounds. J. Pharm. Biomed. Anal. 2019, 170, 132–138. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Shen, C. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef] [PubMed]
- Sutakwa, A.; Nadia, L.; Suharman, S. Addition of blue pea flower (Clitoria ternatea L.) extract increases antioxidant activity in yogurt from various types of milk. J. Agercolere 2021, 3, 31–37. [Google Scholar] [CrossRef]
- Lestari, P.D.; Kawiji, K.; Yulviatun, A.; Martien, R.; Muhammad, D.R.A. Physical and sensory characteristics of milk and white compound chocolate added with Asian pigeonwings flower (Clitoria ternatea). E3S Web Conf. 2021, 332, 01001. [Google Scholar] [CrossRef]
- Hutabarat, D.J.C. Chemical and physical characteristics of fermented beverages from plant-based milk with the addition of butterfly pea flower (Clitoria ternatea L.) extracts. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012140. [Google Scholar] [CrossRef]
- Pasukamonset, P.; Pumalee, T.; Sanguansuk, N.; Chumyen, C.; Wongvasu, P.; Adisakwattana, S.; Ngamukote, S. Physicochemical, antioxidant and sensory characteristics of sponge cakes fortified with Clitoria ternatea extract. J. Food Sci. Technol. 2018, 55, 2881–2889. [Google Scholar] [CrossRef]
- Chusak, C.; Henry, C.J.; Chantarasinlapin, P.; Techasukthavorn, V.; Adisakwattana, S. Influence of Clitoria ternatea flower extract on the in vitro enzymatic digestibility of starch and its application in bread. Foods 2018, 7, 102. [Google Scholar] [CrossRef]
- Mulík, S.; Hernández-Carrión, M.; Pacheco-Pantoja, S.E.; Aguilar-Ruiz, N.; Ozuna, C. Culinary uses of Mexican edible flowers: Recipe analysis. Int. J. Gastronom. Food Sci. 2022, 28, 100539. [Google Scholar] [CrossRef]
- Guiné, R.P.; Florença, S.G.; Ferrão, A.C.; Bizjak, M.Č.; Vombergar, B.; Simoni, N.; Vieira, V. Factors affecting eating habits and knowledge of edible flowers in different countries. Open Agric. 2021, 6, 67–81. [Google Scholar] [CrossRef]
- Ratnam, N.; Naijibullah, M.; Ibrahim, M.D. A review on Cucurbita pepo. Int. J. Pharm. Phytochem. Res. 2017, 9, 1190–1194. [Google Scholar] [CrossRef]
- Aquino-Bolaños, E.N.; Urrutia-Hernández, T.A.; López Del Castillo-Lozano, M.; Chavéz-Servia, J.L.; Verdalet-Guzmán, I. Physicochemical Parameters and Antioxidant Compounds in Edible Squash (Cucurbita pepo) Flower Stored under Controlled Atmospheres. J. Food Qual. 2013, 36, 302–308. [Google Scholar] [CrossRef]
- Mulík, S.; Ozuna, C. Mexican edible flowers: Cultural background, traditional culinary uses, and potential health benefits. Int. J. Gastronom. Food Sci. 2020, 21, 100235. [Google Scholar] [CrossRef]
- Ahmed, N.; Hanani, Y.A.; Ansari, S.Y.; Anwar, S. Jasmine (Jasminum sambac L., Oleaceae) oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 487–494. [Google Scholar]
- Kanlayavattanakul, M.; Kitsiripaisarn, S.; Lourith, N. Aroma profiles and preferences of Jasminum sambac L. flowers grown in Thailand. J. Cosmet. Sci. 2013, 64, 483–493. [Google Scholar]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, M.C.; Menichini, F.; Xiao, J.; Tundis, R. Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. J. Agric. Food Chem. 2016, 64, 2467–2474. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Gupta, S. Health promoting benefits of chamomile in the elderly population. In Complementary and Alternative Therapies and the Aging Population; Academic Press: Cambridge, MA, USA, 2009; pp. 135–158. [Google Scholar]
- Raturi, M.; Bose, D.; Mehta, J.; Saraf, D. Rhododendron arboreum as a sustainable food-grade natural flavouring and colouring agent. Food Hum. 2023, 17, 287–304. [Google Scholar] [CrossRef]
- Postolache, A.N.; Veleșcu, I.D.; Stoica, F.; Crivei, I.C.; Arsenoaia, V.N.; Usturoi, M.G.; Constantinescu Pop, C.G.; Lipșa, F.D.; Frunză, G.; Simeanu, D.; et al. A Clean-Label Formulation of Fortified Yogurt Based on Rhododendron Flower Powder as a Functional Ingredient. J. Food Sci. 2024, 12, 4365. [Google Scholar] [CrossRef] [PubMed]
- Pinakin, D.J.; Kumar, V.; Suri, S.; Sharma, R.; Kaushal, M. Nutraceutical potential of tree flowers: A comprehensive review on biochemical profile, health benefits, and utilization. Food Res. Int. 2020, 127, 108724. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P. Rhododendron arboreum: An overview. J. Appl. Pharm. Sci. 2012, 2, 158–162. [Google Scholar]
- Krishna, H.; Attri, B.L.; Kumar, A. Improvised Rhododendron squash: Processing effects on antioxidant composition and organoleptic attributes. J. Food Sci. Technol. 2014, 51, 3404–3410. [Google Scholar] [CrossRef]
- Schmitzer, V.; Mikulic-Petkovsek, M.; Stampar, F. Traditional rose liqueur—A pink delight rich in phenolics. Food Chem. 2019, 272, 434–440. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol. 2010, 48, 1466–1472. [Google Scholar] [CrossRef]
- Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. Borage, camellia, centaurea and pansies: Nutritional, fatty acids, free sugars, vitamin E, carotenoids and organic acids characterization. Food Res. Int. 2020, 132, 109070. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczuk, M.; Wesolowska, A.; Jadczak, D.; Jakubowska, B. Nutritional value of chive edible flowers. Acta Sci. Pol. Hortorum Cultus 2011, 10, 101–108. [Google Scholar]
- Grzeszczuk, M.; Stefaniak, A.; Pachlowska, A. Biological value of various edible flower species. Acta Sci. Pol. Hortorum Cultus 2016, 15, 109–119. [Google Scholar]
- Gargi, A.; Singh, J.; Rasane, P.; Kaur, S.; Kaur, J.; Kumar, M.; Ercisli, S. Effect of drying methods on the nutritional and phytochemical properties of pumpkin flower (Cucurbita maxima) and its characterization. J. Food Meas. Charact. 2023, 17, 5330–5343. [Google Scholar] [CrossRef]
- Ninama, V.; Shah, H.; Kapadia, C.; Italiya, A.; Datta, R.; Singh, S.; Singh, A. Assessment of phytochemicals, nutritional compositions and metabolite profiling using GCMS–from annual edible flowers. Sci. Hortic. 2024, 323, 112551. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Studies on chemical constituents and bioactivity of Rosa micrantha: An alternative antioxidants source for food, pharmaceutical, or cosmetic applications. J. Agric. Food Chem. 2010, 58, 6277–6284. [Google Scholar] [CrossRef]
- dos Santos Silva, L.Y.; da Silva Ramos, A.; Cavalcante, D.N.; Kinupp, V.F.; da Silva Rodrigues, J.V.; Ventura, B.M.L.; de Araújo Bezerra, J. Hibiscus acetosella: An unconventional alternative edible flower rich in bioactive compounds. Molecules 2023, 28, 4819. [Google Scholar] [CrossRef]
- Pires, T.C.; Dias, M.I.; Barros, L.; Ferreira, I.C. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Koprowska, K.; Gottschling, A.; Janda-Milczarek, K. Edible flowers as a source of dietary fibre (total, insoluble and soluble) as a potential athlete’s dietary supplement. Nutrients 2022, 14, 2470. [Google Scholar] [CrossRef]
- Fomina, T.I.; Kukushkina, T.A. Edible flowers of onions (Allium L.) as a source of biologically active substances. Russ. J. Bioorg. Chem. 2022, 48, 1405–1410. [Google Scholar] [CrossRef]
- Halder, S.; Khaled, K.L. Quantitative estimation of mineral content from edible flowers of Allium cepa, Cucurbita maxima and Carica papaya: A comparative study. Int. J. Pharm. Sci. Res. 2022, 13, 2116–2124. [Google Scholar]
- Araújo, S.; Matos, C.; Correia, E.; Antunes, M.C. Evaluation of phytochemicals content, antioxidant activity and mineral composition of selected edible flowers. Qual. Assur. Saf. Crops Foods 2019, 11, 471–478. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Alarcón, A.; Guachamin, A.; Méndez, G.; Osorio, E.; Heredia-Moya, J.; Vera, E. Functional, Antioxidant, Antibacterial, and Antifungal Activity of Edible Flowers. Antioxidants 2024, 13, 1297. [Google Scholar] [CrossRef]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef]
- Chetia, I.; Das, A.J.; Badwaik, L.S. Assessment of nutritional and bioactive properties of selected edible flowers: Characterization of phenolic compounds by reversed-phase high performance liquid chromatography. J. Chromatogr. Open 2024, 6, 100167. [Google Scholar] [CrossRef]
- Ghosh, P.; Rana, S.S. Physicochemical, nutritional, bioactive compounds and fatty acid profiling of Pumpkin flower (Cucurbita maxima), as a potential functional food. SN Appl. Sci. 2021, 3, 216. [Google Scholar] [CrossRef]
- Marchioni, I.; Gabriele, M.; Carmassi, G.; Ruffoni, B.; Pistelli, L.; Najar, B. Phytochemical, nutritional and mineral content of four edible flowers. Foods 2024, 13, 939. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Stefaniak, A.; Meller, E.; Wysocka, G. Mineral composition of some edible flowers. J. Elementol. 2018, 23, 151–162. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.; Paradowska, K. Phytochemical profile and antioxidant activity of Lavandula angustifolia and Lavandula x intermedia cultivars extracted with different methods. Antioxidants 2022, 11, 711. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- Fredotović, Ž.; Puizina, J. Edible Allium species: Chemical composition, biological activity and health effects. Ital. J. Food Sci. 2019, 31, 19–39. [Google Scholar]
- Vahdat, F.; Mehdizadeh, T.; Kazemeini, H.; Reale, A.; Kaboudari, A. Physicochemical, microbial, and sensory characteristics of yogurt with Persian shallot (Allium hirtifolium Boiss) and probiotic bacteria. Food Sci. Nutr. 2024, 12, 3653–3662. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, T.; Kaboudari, A.; Reale, A. Stimulatory effect of Allium ampeloprasum L. ssp. iranicum Wendelbo on the probiotic Bifidobacterium bifidum in Iranian white cheese. J. Dairy Sci. 2021, 104, 10550–10557. [Google Scholar] [CrossRef]
- Kucekova, Z.; Mlcek, J.; Humpolicek, P.; Rop, O. Edible flowers—Antioxidant activity and impact on cell viability. Open Life Sci. 2013, 8, 1023–1031. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Pereira, E.L.; Ramalhosa, E.; Saraiva, J.A. Effect of high hydrostatic pressure on the quality of four edible flowers: Viola× wittrockiana, Centaurea cyanus, Borago officinalis and Camellia japonica. Int. J. Food Sci. Technol. 2017, 52, 2455–2462. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Sharifi-Rad, J. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef]
- Halliwell, B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996, 16, 33–50. [Google Scholar] [CrossRef]
- Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; Oz, F. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Carnevale, G.; Avallone, R.; Zavatti, M.; Corsi, L. Protective effects of Borago officinalis (Borago) on cold restraint stress-induced gastric ulcers in rats: A pilot study. Front. Vet. Sci. 2020, 7, 427. [Google Scholar] [CrossRef]
- Li, Y.; Hao, Y.; Gao, B.; Geng, P.; Huang, H.; Yu, L.; Choe, U.; Liu, J.; Sun, J.; Chen, P.; et al. Chemical profile and in vitro gut microbiota modulatory, anti-inflammatory and free radical scavenging properties of Chrysanthemum morifolium cv. Fubaiju. J. Func. Foods 2019, 58, 114–122. [Google Scholar] [CrossRef]
- Rahnavard, F.; Modaresi, M.; Farhadi, H. The comparative effects of chamomile’s hydro alcoholic extract and imipramine on decreasing depression in mice. Middle East J. Fam. Med. 2015, 7, 198. [Google Scholar] [CrossRef]
- Yazdi, H.; Seifi, A.; Changizi, S.; Khori, V.; Hossini, F.; Davarian, A.; Jand, Y.; Enayati, A.; Mazandarani, M.; Nanvabashi, F. Hydro-alcoholic extract of Matricaria recutita exhibited dual anti-spasmodic effect via modulation of Ca²⁺ channels, NO and PKA2-kinase pathway in rabbit jejunum. Avicenna J. Phytomed. 2017, 7, 334–344. [Google Scholar]
- Choi, E.K.; Guo, H.; Choi, J.K.; Jang, S.K.; Shin, K.; Cha, Y.S.; Choi, Y.; Seo, D.-W.; Lee, Y.-B.; Joo, S.-S.; et al. Extraction conditions of white rose petals for the inhibition of enzymes related to skin aging. Lab. Anim. Res 2015, 31, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, M.R.; Ahmadimoghadam, M.; Shahraki, A.R. The antinociceptive effects of hydroalcoholic extract of Borago officinalis flower in male rats using formalin test. Basic Clin. Neurosci. 2015, 6, 285. [Google Scholar] [PubMed]
- Bashir, S.; Janbaz, K.H.; Jabeen, Q.; Gilani, A.H. Studies on spasmogenic and spasmolytic activities of Calendula officinalis flowers. Phytother. Res. 2006, 20, 906–910. [Google Scholar] [CrossRef]
- Kucekova, Z.; Mlcek, J.; Humpolicek, P.; Rop, O.; Valasek, P.; Saha, P. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules 2011, 16, 10674–10683. [Google Scholar] [CrossRef]
- Karimi, E.; Oskoueian, E.; Karimi, A.; Noura, R.; Ebrahimi, M. Borago officinalis L. flower: A comprehensive study on bioactive compounds and its health-promoting properties. J. Food Meas. Charact. 2018, 12, 826–838. [Google Scholar] [CrossRef]
- Aliakbarlu, J.; Tajik, H. Antioxidant and antibacterial activities of various extracts of Borago officinalis flowers. J. Food Proc. Preserv. 2012, 36, 539–544. [Google Scholar] [CrossRef]
- Manthena, S.S.; Polimati, H.; Annam, S.S.P.; Hieu, H.V. Hepatoprotective Properties of Starflowers from an Annual Herb, Borago officinalis L. (Boraginaceae). Int. Pharm. Acta 2022, 5, e7. [Google Scholar]
- Mirsadraee, M.; Moghaddam, S.K.; Saeedi, P.; Ghaffari, S. Effect of Borago officinalis extract on moderate persistent asthma: A phase two randomized, double blind, placebo-controlled clinical trial. Tanaffos 2016, 15, 168. [Google Scholar]
- Avila, C.; Breakspear, I.; Hawrelak, J.; Salmond, S.; Evans, S. A systematic review and quality assessment of case reports of adverse events for borage (Borago officinalis), coltsfoot (Tussilago farfara) and comfrey (Symphytum officinale). Fitoterapia 2020, 142, 104519. [Google Scholar] [CrossRef] [PubMed]
- Krishna, R.G.; Sundararajan, R. Cardioprotective and antioxidant effects of Bougainvillea glabra against isoproterenol induced myocardial necrosis in albino rats. Int. J. Phytomed. 2018, 10, 45–57. [Google Scholar] [CrossRef]
- Shalini, M.; Aminah, A.; Khalid, H.M.; Vimala, S.; Katherine, S.; Khoo, M.G.H. In-vitro antioxidant activities, phytoconstituent and toxicity evaluation of local Bougainvillea glabra bract (bunga kertas). Int. J. ChemTech Res. 2018, 11, 22–30. [Google Scholar] [CrossRef]
- Pratibha, J.S.; Manita, T.W. Antibacterial and synergistic activity of Calendula officinalis methanolic petal extract on Klebsiella pneumoniae Co-producing ESBL and AmpC Beta Lactamase. Phytomedicine 2015, 29, 45–52. [Google Scholar]
- Abdel-Aziem, S.H.; Hassan, A.M.; El-Denshary, E.S.; Hamzawy, M.A.; Mannaa, F.A.; Abdel-Wahhab, M.A. Ameliorative effects of thyme and calendula extracts alone or in combination against aflatoxins-induced oxidative stress and genotoxicity in rat liver. Cytotechnology 2014, 66, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Shivasharan, B.D.; Nagakannan, P.; Thippeswamy, B.S.; Veerapur, V.P. Protective effect of Calendula officinalis L. flowers against monosodium glutamate induced oxidative stress and excitotoxic brain damage in rats. Indian J. Clin. Biochem. 2013, 28, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Żbik, K.; Onopiuk, A.; Szpicer, A.; Kurek, M. Comparison of the effects of extraction method and solvents on biological activities of phytochemicals from selected violet and blue pigmented flowers. J. Food Meas. Charact. 2023, 17, 6600–6608. [Google Scholar] [CrossRef]
- Haziri, A.; Faiku, F.; Rudhani, I.; Mehmeti, I.; Motori, D. Antibacterial activity of different extracts of Centaurea cyanus (L.) growing wild in Kosovo. Orient. J. Chem. 2017, 33, 1636–1641. [Google Scholar] [CrossRef]
- Escher, G.B.; Santos, J.S.; Rosso, N.D.; Marques, M.B.; Azevedo, L.; do Carmo, M.A.V.; Daguer, H.; Molognoni, L.; do Prado-Silva, L.; Sant’Ana, A.S.; et al. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food Chem. Toxicol. 2018, 118, 439–453. [Google Scholar] [CrossRef]
- Sharonova, N.; Nikitin, E.; Terenzhev, D.; Lyubina, A.; Amerhanova, S.; Bushmeleva, K.; Sinyashin, K. Comparative assessment of the phytochemical composition and biological activity of extracts of flowering plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. Plants 2021, 10, 1279. [Google Scholar] [CrossRef]
- Kim, C.; Kim, M.C.; Kim, S.M.; Nam, D.; Choi, S.H.; Kim, S.H.; Ahn, K.S.; Lee, E.H.; Jung, S.H.; Ahn, K.S. Chrysanthemum indicum L. extract induces apoptosis through suppression of constitutive STAT3 activation in human prostate cancer DU145 cells. Phytother. Res. 2013, 27, 30–38. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, Y. Chrysanthemum morifolium flower extract inhibits adipogenesis of 3T3-L1 cells via AMPK/SIRT1 pathway activation. Nutrients 2020, 12, 2726. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, T.; Igarashi, K. Identification of major flavonoids in petals of edible chrysanthemum flowers and their suppressive effect on carbon tetrachloride-induced liver injury in mice. Food Sci. Technol. Res. 2009, 15, 499–506. [Google Scholar] [CrossRef]
- Jeong, S.C.; Kim, S.M.; Jeong, Y.T.; Song, C.H. Hepatoprotective effect of water extract from Chrysanthemum indicum L. flower. Chin. Med. 2013, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.F.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Six new compounds from the flowers of Chrysanthemum morifolium and their biological activities. Bioorg. Chem. 2019, 82, 139–144. [Google Scholar] [CrossRef]
- Oehme, F.W. The hazard of plant toxicities to the human population. In Effects of Poisonous Plants on Livestock; Academic Press: Cambridge, MA, USA, 1978; pp. 67–80. [Google Scholar]
- Li, L.; Gu, L.; Chen, Z.; Wang, R.; Ye, J.; Jiang, H. Toxicity study of ethanolic extract of Chrysanthemum morifolium in rats. J. Food Sci. 2010, 75, T105–T109. [Google Scholar] [CrossRef] [PubMed]
- Pieroni, A.; Giusti, M.E.; Quave, C.L. Cross-cultural ethnobiology in the Western Balkans: Medical ethnobotany and ethnozoology among Albanians and Serbs in the Pešter Plateau, Sandžak, South-Western Serbia. Hum. Ecol. 2011, 39, 333–349. [Google Scholar] [CrossRef]
- Phrueksanan, W.; Yibchok-anun, S.; Adisakwattana, S. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes. Res. Vet. Sci. 2014, 97, 357–363. [Google Scholar] [CrossRef]
- Verma, P.R.; Itankar, P.R.; Arora, S.K. Evaluation of antidiabetic, antihyperlipidemic and pancreatic regeneration potential of aerial parts of Clitoria ternatea. Rev. Bras. Farmacogn. 2013, 23, 819–829. [Google Scholar] [CrossRef]
- Taranalli, A.D.; Cheeramkuzhy, T.C. Influence of Clitoria ternatea extracts on memory and central cholinergic activity in rats. Pharm. Biol. 2000, 38, 51–56. [Google Scholar] [CrossRef]
- Morittu, V.M.; Musco, N.; Mastellone, V.; Bonesi, M.; Britti, D.; Infascelli, F.; Loizzo, M.R.; Tundis, R.; Sicari, V.; Tudisco, R.; et al. In vitro and in vivo studies of Cucurbita pepo L. flowers: Chemical profile and bioactivity. Nat. Prod. Res. 2021, 35, 2905–2909. [Google Scholar] [CrossRef] [PubMed]
- Maciel, L.G.; do Carmo, M.A.V.; Azevedo, L.; Daguer, H.; Molognoni, L.; de Almeida, M.M.; Granato, D.; Rosso, N.D. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol. 2018, 113, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Sogo, T.; Terahara, N.; Hisanaga, A.; Kumamoto, T.; Yamashiro, T.; Wu, S.; Wu, S.; Sakao, K.; Hou, D.X. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. BioFactors 2015, 41, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, D.C.; Aneke, E.; Nwachukwu, N.Z.; Obika, L.F.O.; Nwagha, U.I.; Eze, A.A. Effect of Hibiscus sabdariffa on blood pressure and electrolyte profile of mild to moderate hypertensive Nigerians: A comparative study with hydrochlorothiazide. Niger. J. Clin. Pract. 2015, 18, 762–770. [Google Scholar] [CrossRef]
- Nwachukwu, D.C.; Aneke, E.; Obika, L.F.O.; Nwachukwu, N.Z. Investigation of antihypertensive effectiveness and tolerability of Hibiscus sabdariffa in mild to moderate hypertensive subjects in Enugu, South-east, Nigeria. Am. J. Phytomed. Clin. Ther. 2015, 3, 339–345. [Google Scholar]
- Kim, M.S.; Kim, J.K.; Kim, H.J.; Moon, S.R.; Shin, B.C.; Park, K.W.; Yang, H.O.; Kim, S.M.; Park, R. Hibiscus extract inhibits the lipid droplet accumulation and adipogenic transcription factors expression of 3T3-L1 preadipocytes. J. Altern. Complement. Med. 2003, 9, 499–504. [Google Scholar] [CrossRef]
- Fakeye, T.O.; Pal, A.; Bawankule, D.U.; Yadav, N.P.; Khanuja, S.P.S. Toxic effects of oral administration of extracts of dried calyx of Hibiscus sabdariffa Linn. (Malvaceae). Phytother. Res. 2009, 23, 412–416. [Google Scholar] [CrossRef]
- Onyenekwe, P.C.; Ajani, E.O.; Ameh, D.A.; Gamaniel, K.S. Antihypertensive effect of roselle (Hibiscus sabdariffa) calyx infusion in spontaneously hypertensive rats and a comparison of its toxicity with that in Wistar rats. Cell Biochem. Funct. 1999, 17, 199–206. [Google Scholar] [CrossRef]
- Akindahunsi, A.A.; Olaleye, M.T. Toxicological investigation of aqueous-methanolic extract of the calyces of Hibiscus sabdariffa L. J. Ethnopharmacol. 2003, 89, 161–164. [Google Scholar] [CrossRef]
- Kolawole, J.A.; Maduenyi, A. Effect of zobo drink (Hibiscus sabdariffa water extract) on the pharmacokinetics of acetaminophen in human volunteers. Eur. J. Drug Metab. Pharmacokinet. 2004, 29, 25–29. [Google Scholar] [CrossRef]
- Kalaiselvi, M.; Narmadha, R.; Ragavendran, P.; Ravikumar, G.; Gomathi, D.; Sophia, D.; Arul Raj, C.; Uma, C.; Kalaivani, K. In vivo and in vitro antitumor activity of Jasminum sambac (Linn) Ait Oleaceae flower against Dalton’s ascites lymphoma induced Swiss albino mice. Int. J. Pharm. Pharm. Sci. 2011, 4, 144–147. [Google Scholar]
- Rakhmawati, A. Antimicrobial Activity and Chemical Composition Analysis of Jasminum sambac L. and Plumeria alba L. Flower Extracts. Trop. J. Nat. Prod. Res. 2022, 6, 330–338. [Google Scholar]
- Suaputra, V.; Limanan, D.; Yulianti, E.; Ferdinal, F. Phytochemical Screening, Total Antioxidant Capacity and Toxicity Test of White Jasmine Flower Extract (Jasminum sambac). In Proceedings of the 1st Tarumanagara International Conference on Medicine and Health (TICMIH 2021), Jakarta, Indonesia, 5–6 August 2021; Atlantis Press: Dordrecht, Netherlands, 2021; Volume 41, pp. 45–51. [Google Scholar]
- Kunhachan, P.; Banchonglikitkul, C.; Kajsongkram, T.; Khayungarnnawee, A.; Leelamanit, W. Chemical composition, toxicity and vasodilatation effect of the flowers extract of Jasminum sambac (L.) Ait. “G. Duke of Tuscany”. Evid.-Based Complement. Altern. Med. 2012, 2012, 471312. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, P.; Wojdyło, A. Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants 2019, 8, 308. [Google Scholar] [CrossRef] [PubMed]
- Araj-Khodaei, M.; Noorbala, A.A.; Yarani, R.; Emadi, F.; Emaratkar, E.; Faghihzadeh, S.; Parsian, Z.; Alijaniha, F.; Kamalinejad, M.; Naseri, M. A double-blind, randomized pilot study for comparison of Melissa officinalis L. and Lavandula angustifolia Mill. with Fluoxetine for the treatment of depression. BMC Complement. Med. Ther. 2020, 20, 207. [Google Scholar] [CrossRef]
- FDA. Code of Federal Regulations, Title 21, Part 182.10—Substances Generally Recognized as Safe. U.S. Food and Drug Administration. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-182 (accessed on 23 March 2025).
- Razavi, S.M.; Zarrini, G.; Molavi, G.; Ghasemi, G. Bioactivity of Malva sylvestris L., a medicinal plant from Iran. Iran. J. Basic Med. Sci. 2011, 14, 574. [Google Scholar]
- Cheng, C.L.; Wang, Z.Y. Bacteriostatic activity of anthocyanin of Malva sylvestris. J. For. Res. 2006, 17, 83–85. [Google Scholar] [CrossRef]
- Bonjar, S. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol. 2004, 94, 301–305. [Google Scholar] [CrossRef]
- Beghdad, M.C.; Benammar, C.; Bensalah, F.; Sabri, F.Z.; Belarbi, M.; Chemat, F. Antioxidant activity, phenolic and flavonoid content in leaves, flowers, stems and seeds of mallow (Malva sylvestris L.) from North Western of Algeria. Afr. J. Biotechnol. 2014, 13, 486–491. [Google Scholar]
- Seiberg, M.; Stone, V.; Iotsova, V.; Zhao, R.; Bruning, E. Ingestible Compositions Containing Extracts. U.S. Patent No. 7,754,248 B2, 13 July 2010. [Google Scholar]
- Cemek, M.; Kağa, S.; Şimşek, N.; Büyükokuroğlu, M.E.; Konuk, M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J. Nat. Med. 2008, 62, 284–293. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Jerković, J.; Zengin, G.; Gašić, U.; Tešić, Z.; Mašković, P.; Soares, C.; Barroso, M.F.; et al. The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chem. 2019, 271, 328–337. [Google Scholar] [CrossRef]
- Menghini, L.; Ferrante, C.; Leporini, L.; Recinella, L.; Chiavaroli, A.; Leone, S.; Pintore, G.; Vacca, M.; Orlando, G.; Brunetti, L. An hydroalcoholic chamomile extract modulates inflammatory and immune response in HT29 cells and isolated rat colon. Phytother. Res. 2016, 30, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Ionita, R.; Postu, P.A.; Mihasan, M.; Gorgan, D.L.; Hancianu, M.; Cioanca, O.; Hritcu, L. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study. Phytomedicine 2018, 47, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, A.A.; Jalali, A.; Keshavarz, P. Effect of chamomile hydroalcoholic extract on Bleomycin-induced pulmonary fibrosis in rat. Tanaffos 2018, 17, 264. [Google Scholar]
- Emami Aref, P.; Khoshdel, A.; Nicknia, S.; Mahmoodi, M.; Hajizadeh, M.R.; Mirzaiey, M.R.; Fahmidehkar, M.A. Effect of Hydroalcoholic Extract of Chamomile, Aloe Vera, and Green Tea on the Diabetic Wound in Rats. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2024, 94, 803–810. [Google Scholar] [CrossRef]
- Velusami, C.C.; Agarwal, A.; Mookambeswaran, V. Effect of Nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity. Evid.-Based Complement. Altern. Med. 2013, 2013, 145925. [Google Scholar] [CrossRef]
- Islam, D.; Huque, A.; Mohanta, L.C.; Das, S.K.; Sultana, A.; Lipy, E.P.; Prodhan, U.K. Hypoglycemic and hypolipidemic effects of Nelumbo nucifera flower in Long-Evans rats. J. Herbmed Pharmacol. 2018, 7, 148–154. [Google Scholar] [CrossRef]
- Wongwattanasathien, O.; Kangsadalampai, K.; Tongyonk, L. Antimutagenicity of some flowers grown in Thailand. Food Chem. Toxicol. 2010, 48, 1045–1051. [Google Scholar] [CrossRef]
- Parcha, V.; Yadav, N.; Sati, A.; Dobhal, Y.; Sethi, N. Cardioprotective effect of various extract of Rhododendron arborium Sm flower on Albino rats. J. Pharm. Phytochem. 2017, 6, 1703–1707. [Google Scholar]
- Shi, Y.; Zhou, M.; Zhang, Y.; Fu, Y.; Li, J.; Yang, X. Poisonous delicacy: Market-oriented surveys of the consumption of Rhododendron flowers in Yunnan, China. J. Ethnopharmacol. 2021, 265, 113320. [Google Scholar] [CrossRef]
- Popescu, R.; Kopp, B. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol. 2013, 147, 42–62. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Olech, M.; Pecio, Ł.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 2014, 94, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Gholamhoseinian, A.; Fallah, H. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on α-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine 2009, 16, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Nam, T.G.; Lee, I.; Shin, E.J.; Han, A.R.; Lee, P.; Lim, T.G. Skin anti-inflammatory activity of rose petal extract (Rosa gallica) through reduction of MAPK signaling pathway. Food Sci. Nutr. 2018, 6, 2560–2567. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shin, Y. Antioxidant compounds and activities of edible roses (Rosa hybrida spp.) from different cultivars grown in Korea. Appl. Biol. Chem. 2017, 60, 129–136. [Google Scholar] [CrossRef]
- Dehghan, K.A.; Rasooli, I.; Rezaee, M.B.; Owlia, P. Antioxidative properties and toxicity of white rose extract. J. Ethnopharmacol. 2011, 137, 87–94. [Google Scholar]
- Jivad, N.; Shahraki, Z.F.; Naseri, A.M. An Investigation of the Protective Effects of the Hydroalcoholic Extract of Persian Yellow Rose (Rosa foetida Herrm.) on Rats with Parkinson’s Disease Induced by 6-Hydroxydopamine. Herb. Med. J. 2023, 8, 1–16. [Google Scholar]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Najdenski, H. Rose flowers—A delicate perfume or a natural healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef]
- Vaz, C.R.; Benvenutti, L.; Goldoni, F.C.; Nunes, R.; Schneiker, G.S.; Rosa, G.A.; Santin, J.R. Tagetes erecta L.: A traditional medicine effective in inflammatory process treatment. J. Ethnopharmacol. 2024, 334, 118558. [Google Scholar] [CrossRef]
- Santos, P.C.D.; Santos, V.H.M.D.; Mecina, G.F.; Andrade, A.R.D.; Fegueiredo, P.A.; Moraes, V.M.O.; Silva, R.M.G.D. Phytotoxicity of Tagetes erecta L. and Tagetes patula L. on plant germination and growth. S. Afr. J. Bot. 2015, 100, 114–121. [Google Scholar] [CrossRef]
- Chaniad, P.; Techarang, T.; Phuwajaroanpong, A.; Na-Ek, P.; Viriyavejakul, P.; Punsawad, C. In vivo antimalarial activity and toxicity study of extracts of Tagetes erecta L. and Synedrella nodiflora (L.) Gaertn. from the Asteraceae family. Evid.-Based Complement. Alternat. Med. 2021, 2021, 1270902. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.J.; Kang, H.J.; Jung, H.J.; Kang, Y.S.; Lim, C.J.; Kim, Y.M.; Park, E.H. Anti-inflammatory activity of Taraxacum officinale. J. Ethnopharmacol. 2008, 115, 82–88. [Google Scholar] [CrossRef]
- Dong, H.; Qiao, J.; Hou, S.; Ran, H.; Sun, W.; Lin, B.; Li, Y. Potentialities of Dandelion (Taraxacum Mongolicum Hand.-Mazz.) flower extracts on gastric protection against Helicobacter pylori and characterization of its bioactive constituents. Chem. Biodiv. 2024, 21, e202400140. [Google Scholar] [CrossRef]
- Hu, C.; Kitts, D.D. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 2005, 12, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Park, J.Y.; Park, E.M.; Choi, M.S.; Lee, M.K.; Jeon, S.M.; Park, Y.B. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin. Chim. Acta 2002, 317, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Kitts, D.D. Antioxidant, prooxidant, and cytotoxic activities of solvent-fractionated dandelion (Taraxacum officinale) flower extracts in vitro. J Agric. Food Chem. 2003, 51, 301–310. [Google Scholar] [CrossRef]
- Cohen, S.H.; Yunginger, J.W.; Rosenberg, N.; Fink, J.N. Acute allergic reaction after composite pollen ingestion. J. Allergy Clin. Immunol. 1979, 64, 270–274. [Google Scholar] [CrossRef]
- Martinez, M.; Poirrier, P.; Chamy, R.; Prüfer, D.; Schulze-Gronover, C.; Jorquera, L.; Ruiz, G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015, 169, 244–262. [Google Scholar] [CrossRef]
- Musolino, V.; Marrelli, M.; Perri, M.R.; Palermo, M.; Gliozzi, M.; Mollace, V.; Conforti, F. Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical profile, in vitro anti-denaturation effects and lipase inhibitory activity of two ornamental plants traditionally used as herbal remedies. Molecules 2022, 28, 32. [Google Scholar] [CrossRef]
- Ailane, L.; Djahoudi, A.; Bennadja, S. Comparative study evaluating phytochemical screening, functional groups analysis, and antimicrobial activity of Tropaeolum majus L. leaves, flowers, and fruits. Plant Arch. 2022, 22, 24–36. [Google Scholar] [CrossRef]
- Kim, G.C.; Kim, J.S.; Kim, G.M.; Choi, S.Y. Anti-adipogenic effects of Tropaeolum majus (nasturtium) ethanol extract on 3T3-L1 cells. Food Nutr. Res. 2017, 61, 1339555. [Google Scholar] [CrossRef] [PubMed]
- Koriem, K.M.; Arbid, M.S.; El-Gendy, N.F. The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats. Toxicol. Mech. Methods 2010, 20, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, O.; Ekici, L.; Ozturk, I.; Tekinay, T.; Polat, B.; Tastemur, B.; Bayram, O.; Senturk, B. Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins. Food Chem. Toxicol. 2013, 58, 432–439. [Google Scholar] [CrossRef]
- Koike, A.; Barreira, J.C.; Barros, L.; Santos-Buelga, C.; Villavicencio, A.L.; Ferreira, I.C. Edible flowers of Viola tricolor L. as a new functional food: Antioxidant activity, individual phenolics and effects of gamma and electron-beam irradiation. Food Chem. 2015, 179, 6–14. [Google Scholar] [CrossRef]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Moliner, C.; Barros, L.; Dias, M.I.; Reigada, I.; Ferreira, I.C.F.R.; López, V.; Langa, E.; Gómez Rincón, C. Viola cornuta and Viola x wittrockiana: Phenolic compounds, antioxidant and neuroprotective activities on Caenorhabditis elegans. J. Food Drug Anal. 2019, 27, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.D.O., Jr.; Di Gioia, F.; Rouphael, Y.; Ferreira, I.C.; Caleja, C.; Barros, L.; Petropoulos, S.A. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021, 26, 6940. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible Flowers: Bioactive Profile and Its Potential to Be Used in Food Development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Pigłowski, M.; Niewczas-Dobrowolska, M. Hazards in products of plant origin reported in the rapid alert system for food and feed (RASFF) from 1998 to 2020. Sustainability 2023, 15, 8091. [Google Scholar] [CrossRef]
- Wilczynska, A.; Kukułowicz, A.; Lewandowska, A. Preliminary assessment of microbial quality of edible flowers. LWT—Food Sci. Technol. 2021, 148, 111926. [Google Scholar] [CrossRef]
- Rawat, S. Food spoilage: Microorganisms and their prevention. Asian J. Plant Sci. Res. 2015, 5, 47–56. [Google Scholar]
- Kowalska, B.; Szczech, M. Differences in microbiological quality of leafy green vegetables. Ann. Agric. Environ. Med. 2022, 29, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Habibi Najafi, M.B.; Bahreini, M. Microbiological quality of mixed fresh-cut vegetable salads and mixed ready-to-eat fresh herbs in Mashhad, Iran. In Proceedings of the International Conference on Nutrition and Food Sciences IPCBEE, Singapore, 23–24 July 2012; IACSIT Press: Singapore, 2012; Volume 39, pp. 62–66. [Google Scholar]
- Tournas, V.H. Moulds and yeasts in fresh and minimally processed vegetables, and sprouts. Int. J. Food Microbiol. 2005, 99, 71–77. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Lee, D.-H.; Hwang, E.-K.; Sohn, H.-Y. Monitoring of Pathogenic Bacteria, Heavy Metals, and Pesticide Residues in Commercial Edible Dry Flowers. J. Life Sci. 2022, 32, 438–446. [Google Scholar]
- Purohit, S.R.; Rana, S.S.; Idrishi, R.; Sharma, V.; Ghosh, P. A review on nutritional, bioactive, toxicological properties and preservation of edible flowers. Future Foods 2021, 4, 100078. [Google Scholar] [CrossRef]
- Wilczyńska, A.; Kukułowicz, A.; Lewandowska, A. Effect of Packaging on Microbial Quality of Edible Flowers During Refrigerated Storage. Polish J. Food Nutr. Sci. 2023, 73, 32–38. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Pereira, E.L.; Saraiva, J.A.; Ramalhosa, E. Freezing of edible flowers: Effect on microbial and antioxidant quality during storage. J. Food Sci. 2020, 85, 1151–1159. [Google Scholar] [CrossRef]
- Polizzi, D.; Aiello, V.; Guarnaccia, A.; Vitale, G.; Perrone, G.; Stea, G. First Report of Fusarium Wilt of Paper Flower (Bougainvillea glabra) Caused by Fusarium oxysporum in Italy. Plant Dis. 2010, 94, 483. [Google Scholar] [CrossRef] [PubMed]
- Fürnkranz, M.; Lukesch, B.; Müller, H.; Huss, H.; Grube, M.; Berg, G. Microbial Diversity Inside Pumpkins: Microhabitat-Specific Communities Display a High Antagonistic Potential Against Phytopathogens. Microb. Ecol. 2012, 63, 418–428. [Google Scholar] [CrossRef]
- Sasu, I.; Seidl-Adams, K.; Wall, J.A.; Winsor, A.G.; Stephenson, A.G. Floral Transmission of Erwinia tracheiphila by Cucumber Beetles in a Wild Cucurbita pepo. Environ. Entomol. 2010, 39, 140–148. [Google Scholar] [CrossRef]
- Baruzzi, F.; Cefola, M.; Carito, A.; Vanadia, S.; Calabrese, N. Changes in Bacterial Composition of Zucchini Flowers Exposed to Refrigeration Temperatures. Sci. World J. 2012, 2012, 127805. [Google Scholar] [CrossRef] [PubMed]
- Lara-Cortés, S.; Bautista-Baños, L.; Barrera-Necha, L.L.; Hernández-Zárate, G.; León-Rodríguez, R. Detección e identificación molecular de Pantoea vagans en flores de Dahlia sp. TIP Rev. Especializada en Cienc. Químico-Biol. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, S.E.; Han, K.S.; Lee, S.H.; Shin, H.D. First Report of Choanephora Blight Caused by Choanephora infundibulifera on Hibiscus rosa-sinensis in Korea. Plant Dis. 2014, 98, 1275. [Google Scholar] [CrossRef]
- Seidler-Lozykowska, K.; Mordalski, R.; Kucharski, W.; Kedzia, B.; Bocianowski, J. Yielding and Quality of Lavender Flowers (Lavandula angustifolia Mill.) From Organic Cultivation. Acta Sci. Pol. Hortorum Cultus 2014, 13, 173–183. [Google Scholar]
- Kuang, W.; Gong, X.; Lin, Y.; Chen, L.; Zheng, X.; Tang, J.; Shi, X.; Sun, X.; Zhang, L.; Cui, R. First Report of Serratia marcescens Causing Seed Necrosis on Nelumbo nucifera in China. Crop Prot. 2023, 173, 106379. [Google Scholar] [CrossRef]
- Chaudhari, D.; Kiran, S.; Choudhary, A.; Silveira, K.; Narwade, N.; Dhotre, D.; Khazir, J.; Mir, B.A.; Shouche, Y.S.; Rahi, P. Prokaryotic Communities Adapted to Microhabitats on the Indian Lotus (Nelumbo nucifera) Growing in the High-Altitude Urban Dal Lake. Int. Microbiol. 2022, 26, 257–267. [Google Scholar] [CrossRef]
- Carpena, M.A.; Prieto, M.; Trząskowska, M. Chemical and Microbial Risk Assessment of Wild Edible Plants and Flowers. EFSA J. 2024, 22, e221111. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, K.; Lee, J.; Lee, C.S.; Binkley, M. Comparison of Microbial Diversity of Edible Flowers and Basil Grown with Organic Versus Conventional Methods. Can. J. Microbiol. 2010, 56, 943–951. [Google Scholar] [CrossRef]
- Ampuero, J.; Latorre, B.A.; Torres, R.; Chávez, E.R. Identification of Phytophthora cryptogea as the Cause of Rapid Decline of Petunia (Petunia × hybrida) in Chile. Plant Dis. 2008, 92, 1529–1536. [Google Scholar] [CrossRef]
- South, K.A.; Peduto Hand, F.; Jones, M.L. Beneficial Bacteria Identified for the Control of Botrytis cinerea in Petunia Greenhouse Production. Plant Dis. 2020, 104, 1801–1810. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010.
- Ruiz Rodríguez, L.G.; Mohamed, F.; Bleckwedel, J.; Medina, R.; Vuyst, L.D.; Hebert, E.M.; Mozzi, F. Diversity and Functional Properties of Lactic Acid Bacteria Isolated from Wild Fruits and Flowers Present in Northern Argentina. Front. Microbiol. 2019, 10, 1091. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Z.; Caleb, O.J.; Opara, U.L. Perforation-Mediated Modified Atmosphere Packaging of Fresh and Minimally Processed Produce—A Review. Food Packag. Shelf Life 2015, 6, 7–20. [Google Scholar] [CrossRef]
- Demasi, S.; Mellano, M.G.; Falla, N.M.; Caser, M.; Scariot, V. Sensory Profile, Shelf Life, and Dynamics of Bioactive Compounds During Cold Storage of 17 Edible Flowers. Horticulturae 2021, 7, 166. [Google Scholar] [CrossRef]
Scientific Name | Microorganisms Present in Flower | Origins of Flowers | References |
---|---|---|---|
Acacia decurrens | Aerobic bacteria, S. aureus, Listeria spp. | Republic of Korea | [203] |
Azadirachta indica | Salmonella spp. | Thailand | [204] |
Bellis | S. aureus, yeasts and molds, E. coli | Poland | [198,205] |
Borago officinalis | Aerobic Mesophilic bacteria, psychotropic bacteria, yeasts and molds, total coliforms | Portugal | [99,206] |
Bougainvillea glabra | Aerobic bacteria, yeasts and molds; Fusarium oxysporum | Malesia | [117,207] |
Calendula officinalis | S. aureus, yeasts and molds, E. coli | Poland | [198,203] |
Camellia japonica | Aerobic Mesophilic bacteria, yeasts and molds, total coliforms, psychotropic bacteria | Portugal | [99] |
Centaurea cyanus L. | Salmonella spp. Aerobic Mesophilic bacteria, yeasts and molds, total coliforms, psychotropic bacteria | Albania, Portugal | [99,204] |
Chrysanthemum morifolium | Aerobic bacteria | Republic of Korea | [203] |
Cucurbita pepo L. | Bacillus flexus, Bacillus gibsonii, Bacillus indicus, Bacillus firmus, B. subtilis, Pseudomonas viridiflava, Pseudomonas syringae, Plectosphaerella cucumerina, Phoma herbarum, Oidiodendron spp., Capnobotryella spp., Pleosporaceae spp.; Erwinia tracheiphila; Mesophilic aerobic bacteria, yeasts and molds, Acinetobacter spp., Staphylococcus spp., Arthrobacter spp., Serratia marcescens, Enterobacter spp., Pantoea spp., Weissella spp., Klebsiella spp., Erwinia spp., Pseudoclavibacter spp., Bacillus spp., Pseudomonas spp. (cold storage) | Austria, USA, Italy | [208,209,210] |
Dahlia spp. | Pantoea vagans | Mexico | [211] |
Dianthus caryophyllus L. | S. aureus, yeasts and molds, E. coli | Poland | [198] |
Hemerocallis L. | S. aureus, yeasts and molds, E. coli | Poland | [198] |
Hibiscus rosa-sinensis L. | C hoanephora infundibulifera | Republic of Korea | [212] |
Jasminum sambac L. | Aerobic bacteria, S. aureus, Listeria spp. | China | [203] |
Kalanchoe blossfeldiana | Aerobic Mesophilic bacteria, psychotropic bacteria, Yeasts | Portugal | [206] |
Lavandula angustifolia | Aerobic bacteria, yeasts and molds, Enterobacteriaceae | Poland | [213] |
Magnolia kobus A. P. DC. | Aerobic bacteria, S. aureus, Listeria spp. | Republic of Korea | [203] |
Matricaria recutita L. | Aerobic bacteria, S. aureus, Listeria spp. | Republic of Korea | [203] |
Nelumbo Nucifera | S. marcescens; Erwinia spp., Sphingomonas spp., Dickeya spp., Escherichia-Shigella spp., Pantoea spp., Serratia spp., Raoultella spp. | China, India | [214,215] |
Ocimum basilicum | Aerobic bacteria, Mesophilic bacteria, yeasts and molds; Enterobacter spp., Bacillus pumilus, Bacillus stratosphericus, P. aeruginosa, Salmonella enterica subsp. enterica serovar Typhimurium, Erwinia spp., Klebsiella singaporensis, Enterococcus raffinosus | Spain, Poland, USA | [216,217] |
Origanum vulgare | Mesophilic bacteria, E. coli, Enterobacteriaceae | Spain, Poland | [216] |
Pelargonium hortorum | Enterobacter spp., Bacillus spp., P. aeruginosa, S. enterica subsp. enterica serovar Typhimurium | USA | [217] |
Petunia hybrida | Phytophthora infestans, Phytophthora cryptogea, Botrytis cinerea, Phytophthora parasitica Dast. (syn. Phytophthora nicotianae Breda de Haan.) | USA, Africa, Chile, Romania | [218,219] |
Prunus serrulata var. spontanea | Aerobic bacteria, Listeria spp. | Republic of Korea | [203] |
Pueraria lobata Ohwi | Aerobic bacteria, S. aureus, Listeria spp. | Republic of Korea | [203] |
Salvia rosmarinus | Aerobic Mesophilic bacteria, B. cereus, L. monocytogenes, Clostridium perfringens | Spain, Poland | [216] |
Tagetes erecta | S. aureus, yeasts and molds, Salmonella spp. | Poland, Egypt | [204,205] |
Taraxacum officinale | Yeasts and molds, Aerobic Mesophilic bacteria, psychotropic bacteria | Portugal | [206] |
Thymus vulgaris | L. monocytogenes, C. perfringens, Mesophilic bacteria | Spain, Poland | [216] |
Tropaeolum majus L. | S. aureus, yeasts and molds, E. coli Enterobacter spp., Bacillus spp., P. aeruginosa, S. enterica subsp. enterica serovar Typhimurium | Poland, USA | [198,217] |
Viola tricolor L. | Enterobacter spp., Bacillus spp., P. aeruginosa, S. enterica subsp. enterica serovar Typhimurium, psychotropic bacteria | USA, Portugal | [206,217] |
Viola × wittrockiana White/violet | Aerobic Mesophilic bacteria, Listeria spp., E. coli, S. aureus, yeasts and molds, total coliforms, psychotropic bacteria | Republic of Korea, Poland, Portugal | [99,203,205] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carboni, A.D.; Di Renzo, T.; Nazzaro, S.; Marena, P.; Puppo, M.C.; Reale, A. A Comprehensive Review of Edible Flowers with a Focus on Microbiological, Nutritional, and Potential Health Aspects. Foods 2025, 14, 1719. https://doi.org/10.3390/foods14101719
Carboni AD, Di Renzo T, Nazzaro S, Marena P, Puppo MC, Reale A. A Comprehensive Review of Edible Flowers with a Focus on Microbiological, Nutritional, and Potential Health Aspects. Foods. 2025; 14(10):1719. https://doi.org/10.3390/foods14101719
Chicago/Turabian StyleCarboni, Angela Daniela, Tiziana Di Renzo, Stefania Nazzaro, Pasquale Marena, Maria Cecilia Puppo, and Anna Reale. 2025. "A Comprehensive Review of Edible Flowers with a Focus on Microbiological, Nutritional, and Potential Health Aspects" Foods 14, no. 10: 1719. https://doi.org/10.3390/foods14101719
APA StyleCarboni, A. D., Di Renzo, T., Nazzaro, S., Marena, P., Puppo, M. C., & Reale, A. (2025). A Comprehensive Review of Edible Flowers with a Focus on Microbiological, Nutritional, and Potential Health Aspects. Foods, 14(10), 1719. https://doi.org/10.3390/foods14101719