Characterizing Environmental Background Microflora and Assessing Their Influence on Listeria Persistence in Dairy Processing Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection from a Dairy Processing Plant
2.1.1. Collection of Floor Swab Samples
2.1.2. Collection of Air Samples
2.2. Isolation and Identification of Microflora from Environmental Samples
2.2.1. Isolation and Identification of Floor Swab Microflora
2.2.2. Isolation and Identification of Air Microflora
2.3. Co-Culture Growth of Environmental Microflora with the L. monocytogenes (Lm) Test Strain
2.3.1. Multispecies Co-Growth Study
2.3.2. Single-Species Co-Growth Study
2.4. Screening Isolates for Their Potential Inhibition of the L. monocytogenes (Lm) Test Strain
2.4.1. Using the Cell-Free Extract of Individual Environmental Isolates
2.4.2. Analyzing the Antimicrobial Activity of the Dialyzed Cell-Free Extracts of Individual Isolates
2.5. Screening of Floor Swab Samples for Their Potential Inhibition of the L. monocytogenes (Lm) Test Strain
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization and Comparison of the Microflora from Floor Swabs and Air Samples
3.1.1. Seasonal Variation of Microflora
3.1.2. Scenario 1 and 2: Distribution of Microflora
3.1.3. Distribution of Microflora Across Production Lines (PL)
3.2. Co-Culture Growth of Environmental Microflora with L. monocytogenes (Lm) Test Strain
3.3. Screening Isolates for Their Potential Inhibition of L. monocytogenes (Lm) Test Strain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, G.; Magalhães, R.; Carneiro, L.; Santos, I.; Silva, J.; Ferreira, V.; Hogg, T.; Teixeira, P. Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int. J. Food Microbiol. 2013, 167, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, B.; Cerf, O. Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Cortes, B.W.; Naditz, A.L.; Anast, J.M.; Schmitz-Esser, S. Transcriptome sequencing of Listeria monocytogenes reveals major gene expression changes in response to lactic acid stress exposure but a less pronounced response to oxidative stress. Front. Microbiol. 2020, 10, 3110. [Google Scholar] [CrossRef]
- Silva, A.; Silva, V.; Gomes, J.P.; Coelho, A.; Batista, R.; Saraiva, C.; Esteves, A.; Martins, Â.; Contente, D.; Diaz-Formoso, L. Listeria monocytogenes from food products and food associated environments: Antimicrobial resistance, genetic clustering and biofilm Insights. Antibiotics 2024, 13, 447. [Google Scholar] [CrossRef]
- CDC. Listeria Outbreak Linked to Meats Sliced at Delis. 2024. Available online: https://www.cdc.gov/listeria/outbreaks/delimeats-7-24/index.html (accessed on 10 February 2025).
- Vidovic, S.; Paturi, G.; Gupta, S.; Fletcher, G.C. Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Crit. Rev. Food Sci. Nutr. 2024, 64, 1817–1835. [Google Scholar] [CrossRef]
- Anast, J.M.; Bobik, T.A.; Schmitz-Esser, S. The Cobalamin-dependent gene cluster of Listeria monocytogenes: Implications for virulence, stress response, and food safety. Front. Microbiol. 2020, 11, 601816. [Google Scholar] [CrossRef]
- Unrath, N.; McCabe, E.; Macori, G.; Fanning, S. Application of whole genome sequencing to aid in deciphering the persistence potential of Listeria monocytogenes in food production environments. Microorganisms 2021, 9, 1856. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes–how this pathogen survives in food-production environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- Taylor, A.J.; Stasiewicz, M.J. Persistent and sporadic Listeria monocytogenes strains do not differ when growing at 37 C, in planktonic state, under different food associated stresses or energy sources. BMC Microbiol. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- John, J.; Joy, W.-C.; Jovana, K. Prevalence of Listeria spp. in produce handling and processing facilities in the Pacific Northwest. Food Microbiol. 2020, 90, 103468. [Google Scholar] [CrossRef] [PubMed]
- Tuytschaever, T.; Raes, K.; Sampers, I. Environmental monitoring of a freezing tunnel and its close surroundings in the potato processing industry: Insights into Listeria monocytogenes contamination, cleaning and disinfection efficacy, and transmission risks. Food Control 2024, 165, 110657. [Google Scholar] [CrossRef]
- Gil, M.I.; Truchado, P.; Tudela, J.A.; Allende, A. Environmental monitoring of three fresh-cut processing facilities reveals harborage sites for Listeria monocytogenes. Food Control 2024, 155, 110093. [Google Scholar] [CrossRef]
- Dzieciol, M.; Schornsteiner, E.; Muhterem-Uyar, M.; Stessl, B.; Wagner, M.; Schmitz-Esser, S. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment. Int. J. Food Microbiol. 2016, 223, 33–40. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive response of Listeria monocytogenes to the stress factors in the food processing environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef]
- Heir, E.; Møretrø, T.; Simensen, A.; Langsrud, S. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. Int. J. Food Microbiol. 2018, 275, 46–55. [Google Scholar] [CrossRef]
- Rolon, M.L.; Voloshchuk, O.; Bartlett, K.V.; LaBorde, L.F.; Kovac, J. Multi-species biofilms of environmental microbiota isolated from fruit packing facilities promoted tolerance of Listeria monocytogenes to benzalkonium chloride. Biofilm 2024, 7, 100177. [Google Scholar] [CrossRef]
- Bremer, P.J.; Monk, I.; Osborne, C.M. Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J. Food Prot. 2001, 64, 1369–1376. [Google Scholar] [CrossRef]
- Puga, C.H.; Dahdouh, E.; SanJose, C.; Orgaz, B. Listeria monocytogenes colonizes Pseudomonas fluorescens biofilms and induces matrix over-production. Front. Microbiol. 2018, 9, 1706. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.M.; Solomon, K.; Moore, J.E.; Wall, P.G.; Fanning, S. Phylogenetic profiles of in-house microflora in drains at a food production facility: Comparison and biocontrol implications of Listeria-positive and-negative bacterial populations. Appl. Environ. Microbiol. 2014, 80, 3369–3374. [Google Scholar] [CrossRef]
- Elias, S.; Banin, E. Multi-species biofilms: Living with friendly neighbors. FEMS Microbiol. Rev. 2012, 36, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-J.; Park, S.-M.; Ahn, B.-Y. Isolation and characterization of an antimicrobial substance from Bacillus subtilis BY08 antagonistic to Bacillus cereus and Listeria monocytogenes. Food Sci. Biotechnol. 2013, 22, 433–440. [Google Scholar] [CrossRef]
- Stellato, G.; De Filippis, F.; La Storia, A.; Ercolini, D. Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy processing environment. Appl. Environ. Microbiol. 2015, 81, 7893–7904. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, B.; Heir, E.; Møretrø, T.; Skaar, I.; Langsrud, S. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes. J. Dairy Sci. 2013, 96, 6161–6171. [Google Scholar] [CrossRef]
- Chowdhury, B. Control of Persistent Environmental Listeria Monocytogenes Using Phenotypic and Genomic Approaches. Electronic Thesis and Dissertations, South Dakota State University, Brookings, SD, USA, 2023. [Google Scholar]
- Stobnicka-Kupiec, A.; Gołofit-Szymczak, M.; Górny, R. Microbial contamination level and microbial diversity of occupational environment in commercial and traditional dairy plants. Ann. Agric. Environ. Med. 2019, 26, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Vackova, M.; Smetana, J.; Chlibek, R.; Bostikova, V.; Splino, M. Microbial air load at the transplant intensive care unit. Mil. Med. Sci. Lett. 2011, 80, 52–57. [Google Scholar] [CrossRef]
- Wattal, C.; Oberoi, J.; Goel, N.; Raveendran, R.; Khanna, S. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 807–812. [Google Scholar] [CrossRef]
- Singh, N.; Anand, S.; Kraus, B.; Sutariya, S. Evaluating the recovery potential of injured cells of Listeria innocua under product temperature-abuse conditions and passage through simulated gastrointestinal fluids. J. Dairy Sci. 2021, 104, 2787–2793. [Google Scholar] [CrossRef]
- Verma, P.; Anand, S. Antimicrobial activity as a potential factor influencing the predominance of Bacillus subtilis within the constitutive microflora of a whey reverse osmosis membrane biofilm. J. Dairy Sci. 2020, 103, 9992–10000. [Google Scholar] [CrossRef]
- Choyam, S.; Lokesh, D.; Kempaiah, B.B.; Kammara, R. Assessing the antimicrobial activities of Ocins. Front. Microbiol. 2015, 6, 1034. [Google Scholar] [CrossRef]
- de Farias, F.M.; Soria, M.C.; O’Connor, P.M.; Huang, X.; Buttimer, C.; Kamilari, E.; Deliephan, A.; Hill, D.; Fursenko, O.; Wiese, J. Leuconostoc lactis strain APC 3969 produces a new variant of cyclic bacteriocin leucocyclicin Q and displays potent anti-Clostridium perfringens activity. Sci. Rep. 2025, 15, 6372. [Google Scholar] [CrossRef]
- Sermkaew, N.; Atipairin, A.; Krobthong, S.; Aonbangkhen, C.; Yingchutrakul, Y.; Uchiyama, J.; Songnaka, N. Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis. Antibiotics 2024, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.T.; Lefcourt, A.M.; Nou, X.; Shelton, D.R.; Zhang, G.; Lo, Y.M. Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation. J. Food Prot. 2013, 76, 827–832. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Møretrø, T. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr. Opin. Food Sci. 2021, 37, 171–178. [Google Scholar] [CrossRef]
- Takenaka, S.; Tonoki, T.; Taira, K.; Murakami, S.; Aoki, K. Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Appl. Environ. Microbiol. 2007, 73, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, G.T.; Tuncel, G. Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek 2006, 89, 329–336. [Google Scholar] [CrossRef]
- Rolon, M.L.; Chandross-Cohen, T.; Kaylegian, K.E.; Roberts, R.F.; Kovac, J. Context matters: Environmental microbiota from ice cream processing facilities affected the inhibitory performance of two lactic acid bacteria strains against Listeria monocytogenes. Microbiol. Spectr. 2024, 12, e01167-23. [Google Scholar] [CrossRef]
- Didienne, R.; Defargues, C.; Callon, C.; Meylheuc, T.; Hulin, S.; Montel, M.-C. Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int. J. Food Microbiol. 2012, 156, 91–101. [Google Scholar] [CrossRef]
- Tang, X.; Flint, S.; Brooks, J.; Bennett, R. Factors affecting the attachment of micro-organisms isolated from ultrafiltration and reverse osmosis membranes in dairy processing plants. J. Appl. Microbiol. 2009, 107, 443–451. [Google Scholar] [CrossRef]
- Calasso, M.; Ercolini, D.; Mancini, L.; Stellato, G.; Minervini, F.; Di Cagno, R.; De Angelis, M.; Gobbetti, M. Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant. Food Microbiol. 2016, 54, 115–126. [Google Scholar] [CrossRef]
- Oliveira, M.; Tiwari, B.K.; Duffy, G. Emerging technologies for aerial decontamination of food storage environments to eliminate microbial cross-contamination. Foods 2020, 9, 1779. [Google Scholar] [CrossRef]
- Salustiano, V.C.; Andrade, N.J.; Brandão, S.C.C.; Azeredo, R.M.C.; Lima, S.A.K. Microbiological air quality of processing areas in a dairy plant as evaluated by the sedimentation technique and a one-stage air sampler. Braz. J. Microbiol. 2003, 34, 255–259. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int. J. Food Microbiol. 2011, 150, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhou, F.; Zhou, R.; Wang, Q.; Pan, S.; Wang, W. Microbial Level and Microbiota Change of Laver in Dried Laver Processing Line During Production Seasons. Foods 2025, 14, 399. [Google Scholar] [CrossRef]
- Gu, G.; Ottesen, A.; Bolten, S.; Wang, L.; Luo, Y.; Rideout, S.; Lyu, S.; Nou, X. Impact of routine sanitation on the microbiomes in a fresh produce processing facility. Int. J. Food Microbiol. 2019, 294, 31–41. [Google Scholar] [CrossRef]
- Rolon, M.L.; Tan, X.; Chung, T.; Gonzalez-Escalona, N.; Chen, Y.; Macarisin, D.; LaBorde, L.F.; Kovac, J. The composition of environmental microbiota in three tree fruit packing facilities changed over seasons and contained taxa indicative of L. monocytogenes contamination. Microbiome 2023, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.K.; Verma, K.S. Assessment of airborne bacteria of milk processing unit complex associated environment. Int. J. Environ. Health Eng. 2013, 2, 35. [Google Scholar] [CrossRef]
- Tan, X.; Chung, T.; Chen, Y.; Macarisin, D.; LaBorde, L.; Kovac, J. The occurrence of Listeria monocytogenes is associated with built environment microbiota in three tree fruit processing facilities. Microbiome 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Wu, C.; Deng, W.; Wang, D.; Zhao, G.; Song, J.; Jiang, Y. Molecular analysis of dominant species in Listeria monocytogenes-positive biofilms in the drains of food processing facilities. Appl. Microbiol. Biotechnol. 2016, 100, 3165–3175. [Google Scholar] [CrossRef]
- Oxaran, V.; Dittmann, K.K.; Lee, S.H.; Chaul, L.T.; Fernandes de Oliveira, C.A.; Corassin, C.H.; Alves, V.F.; De Martinis, E.C.P.; Gram, L. Behavior of foodborne pathogens Listeria monocytogenes and Staphylococcus aureus in mixed-species biofilms exposed to biocides. Appl. Environ. Microbiol. 2018, 84, e02038-18. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1022–1041. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.S.; Ju, T.; Yang, X.; Gänzle, M. A meta-analysis of bacterial communities in food processing facilities: Driving forces for assembly of core and accessory microbiomes across different food commodities. Microorganisms 2023, 11, 1575. [Google Scholar] [CrossRef]
- Dailey, R.C.; Martin, K.G.; Smiley, R.D. The effects of competition from non-pathogenic foodborne bacteria during the selective enrichment of Listeria monocytogenes using buffered Listeria enrichment broth. Food Microbiol. 2014, 44, 173–179. [Google Scholar] [CrossRef]
- Mellefont, L.; McMeekin, T.; Ross, T. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. Int. J. Food Microbiol. 2008, 121, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Doyle, M.P.; Zhao, P. Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Appl. Environ. Microbiol. 2004, 70, 3996–4003. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.P.P.; Harada, A.M.M.; Kabuki, D.Y. Competitive and/or cooperative interactions of listeria monocytogenes with Bacillus cereus in dual-species biofilm formation. Front. Microbiol. 2020, 11, 177. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.; Ahmed, S.; Wang, F.; Gu, Y.; Zhang, C.; Chai, X.; Wu, Y.; Cai, J.; Cheng, G. Antimicrobial activity and resistance: Influencing factors. Front. Pharmacol. 2017, 8, 364. [Google Scholar] [CrossRef]
- Hajdu, S.; Holinka, J.; Reichmann, S.; Hirschl, A.M.; Graninger, W.; Presterl, E. Increased temperature enhances the antimicrobial effects of daptomycin, vancomycin, tigecycline, fosfomycin, and cefamandole on staphylococcal biofilms. Antimicrob. Agents Chemother. 2010, 54, 4078–4084. [Google Scholar] [CrossRef]
- Gomes, F.; Teixeira, P.; Ceri, H.; Oliveira, R. Evaluation of antimicrobial activity of certain combinations of antibiotics against in vitroStaphylococcus epidermidis biofilms. Indian J. Med. Res. 2012, 135, 542–547. [Google Scholar]
- Palacios-Rodriguez, A.P.; Espinoza-Culupú, A.; Durán, Y.; Sánchez-Rojas, T. Antimicrobial activity of Bacillus amyloliquefaciens BS4 against Gram-negative pathogenic Bacteria. Antibiotics 2024, 13, 304. [Google Scholar] [CrossRef]
Scenario | PL 1 | Floor Swab Sample (log10 CFU/cm2) | Air Samples (log10 CFU/m3) | ||||
---|---|---|---|---|---|---|---|
Fall | Spring | Summer | Fall | Spring | Summer | ||
Scenario 1 | PL1 | 5.21 ± 0.01 bC | 4.07 ± 0.03 cC | 5.78 ± 0.15 aC | 1.64 ± 0.03 bC | 1.60 ± 0.31 bC | 1.88 ± 0.02 aB |
PL 2 | 5.40 ± 0.10 bC | 3.93 ± 0.06 cD | 6.13 ± 0.15 aB | 1.65 ± 0.02 bC | 1.51 ± 0.03 cC | 1.98 ± 0.02 aA | |
PL 3 | 6.34 ± 0.06 aB | 3.78 ± 0.15 cD | 5.11 ± 0.15 bD | 1.88 ± 0.03 aA | 1.87 ± 0.02 aA | 1.64 ± 0.03 bC | |
Scenario 2 | PL 4 | 3.93 ± 0.12 cD | 5.71 ± 0.1 aA | 5.15 ± 0.22 bD | 1.69 ± 0.01 bC | 1.90 ± 0.01 aA | 1.61 ± 0.0.5 bC |
PL 5 | 6.69 ± 0.1 aA | 5.87 ± 0.09 bB | 7.09 ± 0.05 aA | 1.74 ± 0.01 bB | 1.7 ± 0.03 bB | 1.87 ± 0.01 aB | |
PL 6 | 6.20 ± 0.03 bB | 5.91 ± 0.04 cA | 6.85 ± 0.03 aA | 1.79 ± 0.02 aB | 1.72± 0.02 aB | 1.60 ± 0.03 bC |
Floor Swab Samples | Air Samples |
---|---|
Klebsiella oxytoca | Micrococcus luteus |
Shewanella putrefaciens | Staphylococcus pasteuri |
Serratia liquefaciens | Pseudomonas fulva |
Pseudomonas koreensis | Peribacillus simplex |
Pseudomonas veronii | Bacillus infantis |
Pseudomonas fragi | Staphylococcus epidermidis |
Shewanella oneidensis | Bacillus thuringiensis |
Serratia marcescens | Bacillus velezensis |
Leuconostoc mesenteroides | Paenibacillus glucanolyticus |
Pseudomonas gessardii | Pseudomonas synxantha |
Exiguobacterium mexicanum | Staphylococcus hominis |
Pseudomonas gessardii | Acinetobacter lwoffii |
Lelliottia amnigena | Staphylococcus warneri |
Pseudomonas synxantha | Staphylococcus saprophyticus |
Citrobacter gillenii | Lysinibacillus fusiformis |
Serratia proteamaculans | Enterococcus casseliflavus |
Ewingella americana | Bacillus mycoides |
Leuconostoc pseudomesenteroides | Stenotrophomonas maltophilia |
Raoultella ornithinolytica | Niallia circulans |
Pseudomonas fluorescens | Arthrobacter parietis |
Genera in Swab | Genera in Air | |
---|---|---|
Scenario 1 | Aeromonas Citrobacter Enterobacter | Acinetobacter Aspergillus Corynebacterium Cytobacillus Enterococcus Kocuria Lysinibacillus Metabacillus Niallia Penicillium Peribacillus Pseudescherichia Stenotrophomonas |
Scenario 2 | Ewingella Exiguobacterium Hafnei Raoultella | No distinct genera found in Scenario 2 of air samples, all genera identified were similar to Scenario 1 air samples. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poswal, V.; Anand, S.; Kraus, B. Characterizing Environmental Background Microflora and Assessing Their Influence on Listeria Persistence in Dairy Processing Environment. Foods 2025, 14, 1694. https://doi.org/10.3390/foods14101694
Poswal V, Anand S, Kraus B. Characterizing Environmental Background Microflora and Assessing Their Influence on Listeria Persistence in Dairy Processing Environment. Foods. 2025; 14(10):1694. https://doi.org/10.3390/foods14101694
Chicago/Turabian StylePoswal, Vaishali, Sanjeev Anand, and Brian Kraus. 2025. "Characterizing Environmental Background Microflora and Assessing Their Influence on Listeria Persistence in Dairy Processing Environment" Foods 14, no. 10: 1694. https://doi.org/10.3390/foods14101694
APA StylePoswal, V., Anand, S., & Kraus, B. (2025). Characterizing Environmental Background Microflora and Assessing Their Influence on Listeria Persistence in Dairy Processing Environment. Foods, 14(10), 1694. https://doi.org/10.3390/foods14101694