Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultures and Preparation
2.2. Sample Preparation and Inoculation
2.3. Growth Studies
2.4. Primary Model Development
2.5. Secondary Model Development
2.6. Validation of Predictive Models
3. Results and Discussion
3.1. The Primary Model of E. coli-R168 and Background Microflora
3.1.1. The Primary Model of E. coli-R168
3.1.2. The Primary Model of Background Microflora
Temperature/°C | Model | μmax/h−1 | λ/h | AIC | RMSE | R2 |
---|---|---|---|---|---|---|
E. coli-R168 | ||||||
10 | SGompertz | 0.020 | 35.682 | −56.906 | 0.053 | 0.999 |
Huang | 0.036 | 12.267 | −30.439 | 0.150 | 0.999 | |
Baranyi | 0.036 | 9.667 | −25.072 | 0.187 | 0.998 | |
SLogistic | 0.022 | 49.551 | −35.939 | 0.126 | 0.991 | |
15 | SGompertz | 0.060 | 8.889 | −60.484 | 0.109 | 0.993 |
Huang | 0.117 | 4.601 | −20.644 | 0.180 | 0.998 | |
Baranyi | 0.117 | 2.385 | −15.890 | 0.224 | 0.997 | |
SLogistic | 0.065 | 13.274 | −27.890 | 0.479 | 0.983 | |
25 | SGompertz | 0.382 | 2.337 | −42.701 | 0.095 | 0.997 |
Huang | 0.758 | 1.706 | −17.101 | 0.261 | 0.997 | |
Baranyi | 0.798 | 1.930 | −16.681 | 0.266 | 0.997 | |
SLogistic | 0.423 | 3.229 | −34.905 | 0.132 | 0.993 | |
30 | SGompertz | 0.586 | 1.682 | −23.206 | 0.077 | 0.998 |
Huang | 1.047 | 0.891 | −15.886 | 0.167 | 0.999 | |
Baranyi | 1.088 | 1.070 | −15.410 | 0.171 | 0.999 | |
SLogistic | 0.612 | 2.395 | −12.564 | 0.132 | 0.995 | |
36 | SGompertz | 0.875 | 1.112 | −56.148 | 0.103 | 0.997 |
Huang | 1.688 | 0.620 | −17.423 | 0.383 | 0.996 | |
Baranyi | 1.763 | 0.768 | −18.130 | 0.374 | 0.996 | |
SLogistic | 0.989 | 1.669 | −40.384 | 0.174 | 0.993 | |
Background microflora | ||||||
10 | SGompertz | 0.020 | 38.403 | −34.609 | 0.181 | 0.993 |
Huang | 0.038 | 23.825 | −5.286 | 0.427 | 0.987 | |
Baranyi | 0.038 | 20.763 | −3.102 | 0.468 | 0.997 | |
SLogistic | 0.027 | 63.579 | −9.191 | 0.531 | 0.982 | |
15 | SGompertz | 0.086 | 10.400 | −33.632 | 0.111 | 0.992 |
Huang | 0.152 | 4.672 | −2.169 | 0.418 | 0.988 | |
Baranyi | 0.191 | 11.267 | −5.597 | 0.358 | 0.991 | |
SLogistic | 0.096 | 13.529 | −12.122 | 0.296 | 0.994 | |
25 | SGompertz | 0.282 | 2.864 | −23.037 | 0.216 | 0.973 |
Huang | 0.595 | 2.512 | 3.213 | 0.609 | 0.976 | |
Baranyi | 0.637 | 2.733 | 4.975 | 0.655 | 0.972 | |
SLogistic | 0.321 | 3.824 | −19.458 | 0.251 | 0.963 | |
30 | SGompertz | 0.274 | 1.985 | −12.278 | 0.133 | 0.987 |
Huang | 0.560 | 1.534 | 2.982 | 0.429 | 0.987 | |
Baranyi | 0.575 | 1.473 | 4.043 | 0.453 | 0.985 | |
SLogistic | 0.038 | 3.069 | −6.472 | 0.178 | 0.977 | |
36 | SGompertz | 0.432 | 1.937 | −42.200 | 0.164 | 0.980 |
Huang | 0.864 | 1.449 | −14.170 | 0.427 | 0.982 | |
Baranyi | 0.956 | 1.765 | −10.791 | 0.478 | 0.978 | |
SLogistic | 0.514 | 2.708 | −36.513 | 0.198 | 0.970 |
3.2. Secondary Model of E. coli-R168 and Background Microflora
3.3. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef]
- Qu, D. FAO Headquarters Is Now Home to a Hydroponics Facility. Available online: https://www.fao.org/director-general/news/details/FAO-headquarters-is-now-home-to-a-hydroponics-facility/en (accessed on 28 March 2024).
- Knödler, M.; Berger, M.; Dobrindt, U. Long-term survival of the Shiga toxin-producing Escherichia coli O104:H4 outbreak strain on fenugreek seeds. Food Microbiol. 2016, 59, 190–195. [Google Scholar] [CrossRef]
- Spalding, A.; Goodhue, R.E.; Kiesel, K.; Sexton, R.J. Economic impacts of food safety incidents in a modern supply chain: E. coli in the romaine lettuce industry. Am. J. Agric. Econ. 2022, 105, 597–623. [Google Scholar] [CrossRef]
- Herman, K.M.; Hall, A.J.; Gould, L.H. Outbreaks attributed to fresh leafy vegetables, United States, 1973–2012. Epidemiol. Infect. 2015, 143, 3011–3021. [Google Scholar] [CrossRef] [PubMed]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce From 2010 to 2017. Front. Microbiol. 2019, 10, 02667. [Google Scholar] [CrossRef] [PubMed]
- Delbeke, S.; Ceuppens, S.; Hessel, C.T.; Castro, I.; Jacxsens, L.; De Zutter, L.; Uyttendaele, M. Microbial safety and sanitary quality of strawberry primary production in Belgium: Risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination. Appl. Environ. Microbiol. 2015, 81, 2562–2570. [Google Scholar] [CrossRef]
- Park, S.; Navratil, S.; Gregory, A.; Bauer, A.; Srinath, I.; Jun, M.; Szonyi, B.; Nightingale, K.; Anciso, J.; Ivanek, R. Generic Escherichia coli contamination of spinach at the preharvest stage: Effects of farm management and environmental factors. Appl. Environ. Microbiol. 2013, 79, 4347–4358. [Google Scholar] [CrossRef]
- Allende, A.; Truchado, P.; Lindqvist, R.; Jacxsens, L. Quantitative microbial exposure modelling as a tool to evaluate the impact of contamination level of surface irrigation water and seasonality on fecal hygiene indicator E. coli in leafy green production. Food Microbiol. 2018, 75, 82–89. [Google Scholar] [CrossRef]
- Lei, C.; Engeseth, N.J. Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT—Food Sci. Technol. 2021, 150, 111931. [Google Scholar] [CrossRef]
- Markland, S.M.; Shortlidge, K.L.; Hoover, D.G.; Yaron, S.; Patel, J.; Singh, A.; Sharma, M.; Kniel, K.E. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach. Zoonoses Public Health 2012, 60, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Photosynthesis, yield and fruit quality of tomatoes and soil microorganisms in response to soil temperature in the greenhouse. Irrig. Drain. 2022, 71, 604–618. [Google Scholar] [CrossRef]
- Cuggino, S.G.; Posada-Izquierdo, G.; Bascón Villegas, I.; Theumer, M.G.; Pérez-Rodríguez, F. Effects of chlorine and peroxyacetic acid wash treatments on growth kinetics of Salmonella in fresh-cut lettuce. Food Res. Int. 2023, 167, 112451. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.M.; Bratchell, N.; Roberts, T.A. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J. Appl. Bacteriol. 1987, 62, 479–490. [Google Scholar] [CrossRef]
- Huang, L. Optimization of a new mathematical model for bacterial growth. Food Control 2013, 32, 283–288. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. Mathematics of predictive food microbiology. Int. J. Food Microbiol. 1995, 26, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. IPMP 2013--a comprehensive data analysis tool for predictive microbiology. Int. J. Food Microbiol. 2013, 171, 100–107. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Lowry, R.K.; McMeekin, T.A.; Stokes, A.N.; Chandler, R.E. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 1983, 154, 1222–1226. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Lan, H.; Li, X.; Zhang, H.; Zeng, Y.; Niu, H.; Niu, X.; Xiao, A.; Liu, Y. Prediction method of shelf life of damaged Korla fragrant pears. J. Food Process. Eng. 2021, 44, e13902. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Olley, J.; McMeekin, T.A.; Ball, A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 1982, 149, 1–5. [Google Scholar] [CrossRef]
- Lu, K.-H.; Sheen, Y.-J.; Huang, T.-P.; Kao, S.-H.; Cheng, C.-L.; Hwang, C.-A.; Sheen, S.; Huang, L.; Sheen, L.-Y. Effect of temperature on the growth of Staphylococcus aureus in ready-to-eat cooked rice with pork floss. Food Microbiol. 2019, 89, 103374. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Yuan, X.; Wen, D.; Shi, H. Growth and thermal inactivation of Listeria monocytogenes and Escherichia coli O157:H7 in four kinds of traditionally non-fermented soya bean products. Int. J. Food Sci. Technol. 2021, 56, 4062–4069. [Google Scholar] [CrossRef]
- Sommers, C.; Huang, C.-Y.; Sheen, L.-Y.; Sheen, S.; Huang, L. Growth modeling of Uropathogenic Escherichia coli in ground chicken meat. Food Control 2018, 86, 397–402. [Google Scholar] [CrossRef]
- Tarlak, F.; Costa, J.C.C.P. Comparison of modelling approaches for the prediction of kinetic growth parameters of Pseudomonas spp. in oyster mushroom (Pleurotus ostreatus). Food Sci. Technol. Int. 2022, 29, 631–640. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wen, C.-F.; Chiu, Y.-H.; Lee, I.N.; Kao, H.-Y.; Lee, I.C.; Ho, W.-H. Leuconostoc mesenteroides growth in food products: Prediction and sensitivity analysis by adaptive-network-based fuzzy inference systems. PLoS ONE 2013, 8, e6499. [Google Scholar] [CrossRef] [PubMed]
- Katipoglu-Yazan, T.; Dev, S.; Desmond-Le Quéméner, E.; Bouchez, T. Data on the influence of temperature on the growth of Escherichia coli in a minimal medium containing glucose as the sole carbon source for the joint computation of growth yields and rates at each temperature from 27 to 45 °C. Data Brief 2023, 48, 109037. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Park, J.Y.; Suh, S.H.; Kim, M.-G.; Kwak, H.-S.; Kim, S.H.; Heo, E.J. Development and validation of a predictive model for pathogenic Escherichia coli in fresh-cut produce. Food Sci. Nutr. 2021, 9, 6866–6872. [Google Scholar] [CrossRef]
- de Oliveira Elias, S.; Noronha, T.B.; Tondo, E.C. Assessment of Salmonella spp. and Escherichia coli O157:H7 growth on lettuce exposed to isothermal and non-isothermal conditions. Food Microbiol. 2017, 72, 206–213. [Google Scholar] [CrossRef]
- Lopez-Velasco, G.; Tomas-Callejas, A.; Sbodio, A.O.; Pham, X.; Wei, P.; Diribsa, D.; Suslow, T.V. Factors affecting cell population density during enrichment and subsequent molecular detection of Salmonella enterica and Escherichia coli O157:H7 on lettuce contaminated during field production. Food Control 2015, 54, 165–175. [Google Scholar] [CrossRef]
- Manthou, E.; Coeuret, G.; Chaillou, S.; Nychas, G.-J.E. Metagenetic characterization of bacterial communities associated with ready-to-eat leafy vegetables and study of temperature effect on their composition during storage. Food Res. Int. 2022, 158, 111563. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Khan, R.; Lee, S.-W. Dissection of plant microbiota and plant-microbiome interactions. J. Microbiol. 2021, 59, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Zhongmin, H.; Yangyang, H.; Zijie, D.; Peng, G.; Xiaojie, W.; Shuli, W.; Mengmeng, L.; Biao, S. Modelling the growth of Staphylococcus aureus with different levels of resistance to low temperatures in glutinous rice dough. LWT—Food Sci. Technol. 2022, 173, 114263. [Google Scholar]
- Rose, J.B.; Haas, C.N. A risk assessment framework for the evaluation of skin infections and the potential impact of antibacterial soap washing. Am. J. Infect. Control 1999, 27, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.-A.; Huang, L. Dynamic Analysis Of Competitive Growth Of Escherichia Coli O157:H7 In Raw Ground Beef. Food Control 2018, 93, 251–259. [Google Scholar] [CrossRef]
- Atsushi, I.; Akihiko, N.; Tomoyasu, T.; Shigehiro, Y.; Takehiro, S.; Toru, K. Transportation via containers at ice temperature inhibits decay and maintains the quality of certain fresh produce. CyTA—J. Food 2022, 20, 285–296. [Google Scholar]
- Francis, G.A.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Bai, W.; Li, X.; Fang, T.; Li, C. Assessing the growth of Listeria monocytogenes in salmon with or without the competition of background microflora—A one-step kinetic analysis. Food Control 2020, 114, 107139. [Google Scholar] [CrossRef]
- Kang, J.; Oh, H.; Lee, Y.; Lee, H.; Lee, S.; Kim, S.; Ha, J.; Choi, Y.; Kim, Y.; Seo, Y.; et al. Dynamic model to describe kinetic behavior of Listeria monocytogenes in smoked salmon. J. Food Saf. 2021, 41, e12925. [Google Scholar] [CrossRef]
Bacteria | Secondary Model | Equation | Af | Bf | RMSE | R2 |
---|---|---|---|---|---|---|
E. coli-R168 | Ratkowsky square root model | 1.144 | 0.989 | 0.018 | 0.995 | |
Polynomial | 172.629 | 172.629 | 60.475 | 0.963 | ||
Inverse second order | 1.832 | 0.737 | 0.057 | 0.969 | ||
Background microflora | Ratkowsky square root model | 1.236 | 1.051 | 0.002 | 0.954 | |
Polynomial | 1.091 | 1.000 | 0.028 | 0.963 | ||
Inverse second order | 1.117 | 1.014 | 0.032 | 0.952 |
Bacteria | Temperature/°C | RMSE | Equation |
---|---|---|---|
E. coli-R168 | 5 | 0.115 | |
20 | 0.239 | ||
Background microflora | 20 | 0.145 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, X.; Yang, D.; Qu, Y.; Guo, M.; Zhang, Y.; Zhao, X.; Suo, Y. Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce. Foods 2024, 13, 1359. https://doi.org/10.3390/foods13091359
You X, Yang D, Qu Y, Guo M, Zhang Y, Zhao X, Suo Y. Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce. Foods. 2024; 13(9):1359. https://doi.org/10.3390/foods13091359
Chicago/Turabian StyleYou, Xiaoyan, Dongqun Yang, Yang Qu, Mingming Guo, Yangping Zhang, Xiaoyan Zhao, and Yujuan Suo. 2024. "Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce" Foods 13, no. 9: 1359. https://doi.org/10.3390/foods13091359
APA StyleYou, X., Yang, D., Qu, Y., Guo, M., Zhang, Y., Zhao, X., & Suo, Y. (2024). Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce. Foods, 13(9), 1359. https://doi.org/10.3390/foods13091359