Enrofloxacin Rapid Detection in Aquatic Foods: Based on DNA Aptamer Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Methods
2.2.1. Immobilization of ENR
2.2.2. In Vitro Screening of Aptamers
2.2.3. Sequencing and Structural Analysis
2.2.4. Affinity of Aptamers to ENR
2.2.5. Development of ENR Aptamer-Based Sensor
2.2.6. Characterization of ENR Aptamer-Based Sensor
2.2.7. Analysis of the Real Aquatic Samples
2.2.8. Data Analysis and Statistics
3. Results and Discussion
3.1. Immobilization of ENR
3.2. In Vitro Screening
3.3. Sequencing and Structural Analysis of Aptamers
3.4. Affinity of Aptamer
3.5. Development of ENR Aptamer-Based Sensor
3.6. Characteristics of ENR Aptamer-Based Sensor
3.7. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, B.; Liu, Z. Measurement and Evolution of High-quality Development Level of Marine Fishery in China. Chin. Geogr. Sci. 2022, 32, 251–267. [Google Scholar] [CrossRef]
- Chen, W.; Gao, S. Current status of industrialized aquaculture in China: A review. Environ. Sci. Pollut. Res. 2023, 30, 32278–32287. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Qu, L.; Gao, P.; Du, G. Bioassay and Whole-Genome Analysis of Bacillus velezensis FIO1408, a Biocontrol Agent Against Pathogenic Bacteria in Aquaculture. Curr. Microbiol. 2023, 80, 354. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Steele, J.C.; Meng, X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Liu, R.; Zhang, F.; Chitrakar, B.; Wang, X. Screening of Single-Stranded DNA Aptamer Specific for Florfenicol and Application in Detection of Food Safety. Biosensors 2022, 12, 701. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, Ł.; Gaffke, L.; Pierzynowska, K.; Cyske, Z.; Choszcz, M.; Węgrzyn, G.; Węgrzyn, A. Enrofloxacin—The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int. J. Mol. Sci. 2022, 23, 3648. [Google Scholar] [CrossRef]
- Trouchon, T.; Lefebvre, S. A Review of Enrofloxacin for Veterinary Use. Open J. Vet. Med. 2016, 6, 40–58. [Google Scholar] [CrossRef]
- Malik, H.; Singh, R.; Kaur, S.; Dhaka, P.; Bedi, J.S.; Gill, J.P.S.; Gongal, G. Review of antibiotic use and resistance in food animal production in WHO South-East Asia Region. J. Infect. Public Health 2023, 16, 172–182. [Google Scholar] [CrossRef]
- Currie, J.; Lin, W.; Meng, J. Addressing antibiotic abuse in China: An experimental audit study. J. Dev. Econ. 2014, 110, 39–51. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Li, P.; Zhang, S.-Q.; He, S.-W.; Xing, S.-Y.; Cao, Z.-H.; Lu, R.; Li, Z.-H. Effects of environmental norfloxacin concentrations on the intestinal health and function of juvenile common carp and potential risk to humans. Environ. Pollut. 2021, 287, 117612. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-Q.; He, S.-W.; Liu, B.; Wang, X.; Xing, S.-Y.; Cao, Z.-H.; Chen, C.-Z.; Li, P.; Li, Z.-H. Exposure to enrofloxacin and depuration: Endocrine disrupting effect in juvenile grass carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 257, 109358. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.; Yang, Y.; Liu, Y.; Marawan, M.A.; Ares, I.; Martinez, M.A.; Martinez-Larranaga, M.R.; Wang, X.; Anadon, A.; Martinez, M. Toxicity induced by ciprofloxacin and enrofloxacin: Oxidative stress and metabolism. Crit. Rev. Toxicol. 2021, 51, 754–787. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pan, K.; Xu, H.; Song, Y.; Qi, X.; Lu, Y.; Jiang, X.; Liu, H. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides). Chemosphere 2024, 348, 140751. [Google Scholar] [CrossRef] [PubMed]
- Teglia, C.M.; Guiñez, M.; Culzoni, M.J.; Cerutti, S. Determination of residual enrofloxacin in eggs due to long term administration to laying hens. Analysis of the consumer exposure assessment to egg derivatives. Food Chem. 2021, 351, 129279. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, Y.; Lin, H.; Sun, Y.; Pan, Y.; Qiao, J.-Q.; Lian, H.-Z.; Xu, C.-X. Residue screening and analysis of enrofloxacin and its metabolites in real aquatic products based on ultrahigh-performance liquid chromatography coupled with high resolution mass spectrometry. Food Chem. 2023, 404, 13475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, M.; Li, L.; Dong, W.; Ren, Q.; Xu, F.; Wang, Y.; Xu, T.; Liu, J. Rapid Limit Test of Eight Quinolone Residues in Food Based on TLC-SERS, a New Limit Test Method. Molecules 2023, 28, 6473. [Google Scholar] [CrossRef]
- Girmatsion, M.; Mahmud, A.; Abraha, B.; Xie, Y.; Cheng, Y.; Yu, H.; Yao, W.; Guo, Y.; Qian, H. Rapid detection of antibiotic residues in animal products using surface-enhanced Raman Spectroscopy: A review. Food Control 2021, 126, 108019. [Google Scholar] [CrossRef]
- Panzenhagen, P.H.; Aguiar, W.S.; Gouvea, R.; de Oliveira, A.M.; Barreto, F.; Pereira, V.L.; Aquino, M.H. Investigation of enrofloxacin residues in broiler tissues using ELISA and LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control. Expo Risk Assess 2016, 33, 639–643. [Google Scholar] [CrossRef]
- Haiping, L.; Jiangyue, W.; Fanping, M.; Aifeng, L. Immunochromatographic assay for the detection of antibiotics in animal-derived foods: A review. Food Control 2021, 130, 108356. [Google Scholar] [CrossRef]
- Wei, P.; Wang, S.; Wang, W.; Niu, Z.; Rodas-Gonzalez, A.; Li, K.; Li, L.; Yang, Q. CoNi bimetallic metal–organic framework and gold nanoparticles-based aptamer electrochemical sensor for enrofloxacin detection. Appl. Surf. Sci. 2022, 604, 154369. [Google Scholar] [CrossRef]
- Mathai, T.; Pal, T.; Prakash, N.; Mukherji, S. Portable biosensor for the detection of Enrofloxacin and Ciprofloxacin antibiotic residues in food, body fluids, environmental and wastewater samples. Biosens. Bioelectron. 2023, 237, 115478. [Google Scholar] [CrossRef]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2021, 69, 1771–1792. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.J.; Behera, B.K.; Parida, P.K.; Aralappanavar, V.K.; Mondal, S.; Dei, J.; Das, B.K.; Mukherjee, S.; Pal, S.; Weerathunge, P.; et al. Aptamer-based NanoBioSensors for seafood safety. Biosens. Bioelectron. 2023, 219, 114771. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Feng, Z.; Qin, H.; Chen, L.; Yan, M.; Li, L.; Qu, F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024, 266, 124998. [Google Scholar] [CrossRef] [PubMed]
- Pavase, T.R.; Lin, H.; Soomro, M.A.; Zheng, H.; Li, X.; Wang, K.; Li, Z. Visual detection of tropomyosin, a major shrimp allergenic protein using gold nanoparticles (AuNPs)-assisted colorimetric aptasensor. Mar. Life Sci. Technol. 2021, 3, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Yang, Z.; Mou, Q.; Luan, Y.; Zhang, B.; Pei, R.; Lu, Y. Monitoring leaching of Cd2+ from cadmium-based quantum dots by an Cd aptamer fluorescence sensor. Biosens. Bioelectron. 2023, 220, 114880. [Google Scholar] [CrossRef]
- Wu, H.; Gu, L.; Ma, X.; Tian, X.; Fan, S.; Qin, M.; Lu, J.; Lyu, M.; Wang, S. Rapid Detection of Helicobacter pylori by the Naked Eye Using DNA Aptamers. ACS Omega 2021, 6, 3771–3779. [Google Scholar] [CrossRef]
- Khatami, S.H.; Karami, S.; Siahkouhi, H.R.; Taheri-Anganeh, M.; Fathi, J.; Aghazadeh Ghadim, M.B.; Taghvimi, S.; Shabaninejad, Z.; Tondro, G.; Karami, N.; et al. Aptamer-based biosensors for Pseudomonas aeruginosa detection. Mol. Cell. Probes 2022, 66, 101865. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Feng, W. Selection and Characterization of DNA Aptamers Targeting hLCN6 Protein for Sperm Capture. Appl. Biochem. Biotechnol. 2022, 194, 2565–2580. [Google Scholar] [CrossRef]
- Manea, I.; Casian, M.; Hosu-Stancioiu, O.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Cristea, C. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Anal. Chim. Acta 2024, 1927, 342325. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Zhao, H.; Du, L.; Gan, X.; Quan, X. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens. Bioelectron. 2016, 83, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, E.Y.; Kim, S.Y.; Byun, S.K.; Lee, D.; Oh, K.-J.; Kim, W.K.; Han, B.S.; Chi, S.-W.; Lee, S.C.; et al. Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX. Mol. Cells 2014, 37, 742–746. [Google Scholar] [CrossRef]
- Eaton, R.M.; Shallcross, J.A.; Mael, L.E.; Mears, K.S.; Minkoff, L.; Scoville, D.J.; Whelan, R.J. Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Anal. Bioanal. Chem. 2015, 407, 6965–6973. [Google Scholar] [CrossRef] [PubMed]
- Dolati, S.; Ramezani, M.; Nabavinia, M.S.; Soheili, V.; Abnous, K.; Taghdisi, S.M. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Anal. Biochem. 2018, 549, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Yan, X.; Zheng, X.; Kou, Q.; Yang, L.; Tang, J.; Chen, X.; Xie, Y.; Le, T. Selection and truncation of aptamers as fluorescence sensing platforms for selective and sensitive detection of nitrofurazone. Anal. Chim. Acta 2023, 1252, 341044. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; He, K.; Gunasekaran, S. Selection of ssDNA aptamer using GO-SELEX and development of DNA nanostructure-based electrochemical aptasensor for penicillin. Biosens. Bioelectron. X 2022, 12, 100220. [Google Scholar] [CrossRef]
- Balaji, A.; Yang, S.; Wang, J.; Zhang, J. Graphene Oxide-Based Nanostructured DNA Sensor. Biosensors 2019, 9, 74. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Y.; Zhou, L.; Li, B.; Gu, L. Photoluminescence and Fluorescence Quenching of Graphene Oxide: A Review. Nanomaterials 2022, 12, 2444. [Google Scholar] [CrossRef]
- Chen, A.; Tapia, H.; Goddard, J.M.; Gibney, P.A. Trehalose and its applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5004–5037. [Google Scholar] [CrossRef]
- Ni, H.; Zhang, S.; Ding, X.; Mi, T.; Wang, Z.; Liu, M. Determination of Enrofloxacin in Bovine Milk by a Novel Single-Stranded DNA Aptamer Chemiluminescent Enzyme Immunoassay. Anal. Lett. 2014, 47, 2844–2856. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liu, S.; Wang, J.; Li, Y. Selection and Preliminary Application of Zonula Occludens-1 Aptamers. Trans. Beijing Inst. Technol. 2023, 43, 870–877. [Google Scholar] [CrossRef]
- Lee, M.; Shin, S.; Kim, S.; Park, N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023, 28, 7327. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, N.; Zhang, X.; Yang, E.; Song, Y.; Zhang, J.; Han, Q. Utilizing the DNA Aptamer to Determine Lethal α-Amanitin in Mushroom Samples and Urine by Magnetic Bead-ELISA (MELISA). Molecules 2022, 27, 538. [Google Scholar] [CrossRef] [PubMed]
- Zixuan, S.; Pengfei, M.; Mahmood, K.I.; Yin, Z.; Zhouping, W. A DNA tweezers fluorescence aptasensor based on split aptamer -assisted magnetic nanoparticles for the detection of enrofloxacin in food. Food Control 2023, 145, 109437. [Google Scholar]
- Shen, G.; Ma, Y.; Zhang, H.; Wang, F.; Yang, F.; Ye, H.; Li, R.; Wang, C.; Tang, Y. Novel fluorescence strategy based on G-quadruplex structure-switching aptamer for enrofloxacin detection in food and environmental samples. Food Chem. 2024, 441, 138393. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.a.; Jin, Y.; Ren, T.; Wang, S.; Wang, X.; Zhang, F.; Tang, Y. A novel terbium (III) and aptamer-based probe for label-free detection of three fluoroquinolones in honey and water samples. Food Chem. 2022, 386, 132751. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pan, C.; Zhu, J.; Shen, G.; Deng, Y.; Xie, X.; Geng, X.; Wang, L. Selection and identification of a DNA aptamer for fluorescent detection of netilmicin. Talanta 2022, 250. [Google Scholar] [CrossRef]
Method | Linear Range | LOD | Reference |
---|---|---|---|
HPLC-MS | -- | 0.1 µg/kg | [16] |
TLC-SERS | -- | 12.6 ng/mL | [17] |
Graphene oxide-based label-free fluorescent assay | 5–250 nM | 3.7 nM | [35] |
DNA tweezers fluorescence aptasensor | 0.01–100 ng/mL | 0.008 ng/mL | [45] |
Based on G-quadruplex structure-switching aptamer | 0.05–20 µM | 26.7 nM | [46] |
terbium (III) and aptamer-based probe | 1.0–100 ng/mL | 0.061 ng/mL | [47] |
This work | 1–600 nM | 14.72 nM |
Sample | Spiked ENR Concentration (nM) | Measured Concentration (nM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|
Larimichthys polyactis | 15 | 16.145 | 107.634 | 12.444 |
28 | 24.340 | 87.555 | 6.839 | |
50 | 57.496 | 114.992 | 9.613 | |
Portunus trituberculatus | 15 | 17.610 | 117.398 | 14.566 |
28 | 23.492 | 83.676 | 1.757 | |
50 | 51.905 | 103.811 | 11.219 | |
Lateolabrax japonicus | 15 | 16.044 | 106.958 | 6.414 |
28 | 29.480 | 105.287 | 2.418 | |
50 | 56.628 | 113.256 | 1.614 | |
Parabramis pekinensis | 15 | 13.469 | 91.114 | 4.347 |
28 | 23.489 | 84.494 | 5.419 | |
50 | 47.655 | 95.310 | 1.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, X.; Wang, S.; Hao, Q.; Bai, Y.; Li, S.; Zhang, S.; Zhang, L.; Kang, X.; Lyu, M.; Wang, S. Enrofloxacin Rapid Detection in Aquatic Foods: Based on DNA Aptamer Sensor. Foods 2024, 13, 941. https://doi.org/10.3390/foods13060941
Bao X, Wang S, Hao Q, Bai Y, Li S, Zhang S, Zhang L, Kang X, Lyu M, Wang S. Enrofloxacin Rapid Detection in Aquatic Foods: Based on DNA Aptamer Sensor. Foods. 2024; 13(6):941. https://doi.org/10.3390/foods13060941
Chicago/Turabian StyleBao, Xiuli, Siyuan Wang, Qingfang Hao, Yue Bai, Siying Li, Shuai Zhang, Lei Zhang, Xinxin Kang, Mingsheng Lyu, and Shujun Wang. 2024. "Enrofloxacin Rapid Detection in Aquatic Foods: Based on DNA Aptamer Sensor" Foods 13, no. 6: 941. https://doi.org/10.3390/foods13060941
APA StyleBao, X., Wang, S., Hao, Q., Bai, Y., Li, S., Zhang, S., Zhang, L., Kang, X., Lyu, M., & Wang, S. (2024). Enrofloxacin Rapid Detection in Aquatic Foods: Based on DNA Aptamer Sensor. Foods, 13(6), 941. https://doi.org/10.3390/foods13060941